This paper illustrates the usefulness of resampling based methods in the context of multiple (simultaneous) tests, with emphasis on econometric applications. Economic theory often suggests joint (or simultaneous) hypotheses on econometric models; consequently, the problem of evaluating joint rejection probabilities arises frequently in econometrics and statistics. In this regard, it is well known that ignoring the joint nature of multiple hypotheses may lead to serious test size distortions. Whereas most available multiple test techniques are conservative in the presence of non-independent statistics, our proposed tests provably achieve size control. Specifically, we use the Monte Carlo (MC) test technique to extend several well known combination methods to the non-independent statistics contexts. We first cast the multiple test problem into a unified statistical framework which: (i) serves to show how exact global size control is achieved through the MC test method, and (ii) yields a number of superior tests previously not considered. Secondly, we provide a review of relevant available results. Finally, we illustrate the applicability of our proposed procedure to the problem of moments-based normality tests. For this problem, we propose an exact variant of Kiefer and Salmon's (1983) test, and an alternative combination method which exploits the well known Fisher-Pearson procedure. Our simulation study reveals that the latter method seems to correct for the problem of test biases against platikurtic alternatives. In general, our results show that concrete and non-spurious power gains (over standard combination methods) can be achieved through our multiple Monte Carlo test approach.

View the document

Center for Interuniversity Research and Analysis of Organizations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2019 CIRANO. All rights reserved.



Partner of :

Website Security Test