Beyond PPML: Exploring Machine Learning Alternatives for Gravity Model Estimation in International Trade
Cette étude examine le potentiel des méthodes d'apprentissage automatique (ML) pour améliorer l'estimation du modèle de gravité, une méthode clé de l'analyse du commerce international qui explique les flux commerciaux en fonction de la taille de l'économie et de la distance. Traditionnellement estimés à l'aide de méthodes telles que l'approche du pseudo-maximum de vraisemblance de Poisson (PPML), les modèles de gravité ont souvent du mal à saisir pleinement les relations non linéaires et les interactions complexes entre les variables. En s'appuyant sur les données du Canada et des États-Unis, l'une des relations commerciales bilatérales les plus importantes au monde, cet article effectue une analyse comparative des approches traditionnelles et des approches par apprentissage automatique. Les résultats révèlent que les méthodes de ML peuvent être nettement plus performantes que les approches traditionnelles pour prédire les flux commerciaux, offrant ainsi une alternative robuste pour saisir les complexités de la dynamique du commerce mondial. Ces résultats soulignent la valeur de l'intégration des techniques de ML dans l'analyse de la politique commerciale, fournissant aux décideurs politiques et aux économistes des outils améliorés pour la prise de décision.