secure

Simulation-Based Finite-Sample Tests for Heteroskedasticity and ARCH Effects

Un grand éventail de tests d'hétéroskédasticité a été proposé en économétrie et en statistique. Bien qu'il existe quelques tests d'homoskédasticité exacts, les procédures couramment utilisées sont généralement fondées sur des approximations asymptotiques qui ne procurent pas un bon contrôle du niveau dans les échantillons finis. Plusieurs études récentes ont tenté d'améliorer la fiabilité des tests d'hétéroskédasticité usuels, sur base de méthodes de type Edgeworth, Bartlett, jackknife et bootstrap. Cependant, ces méthodes demeurent approximatives. Dans cet article, nous décrivons une solution au problème de contrôle du niveau des tests d'homoskédasticité dans les modèles de régression linéaire. Nous étudions des procédures basées sur les critères de test standards [e.g., les critères de Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White et Szroeter], de même que des tests pour l'hétéroskédasticité autorégressive conditionnelle (les modèles de type ARCH). Nous suggérons plusieurs extensions des procédures usuelles (les statistiques de type-sup ou combinées) pour tenir compte de points de ruptures inconnus dans la variance des erreurs. Nous appliquons la technique des tests de Monte Carlo (MC) de façon à obtenir des seuils de signification marginaux (les valeurs-p) exacts, pour les test usuels et les nouveaux tests que nous proposons. Nous démontrons que la procédure de MC permet de résoudre les problèmes des distributions compliquées sous l'hypothèse nulle, en particulier ceux associés aux statistiques de type-sup, aux statistiques combinées et aux paramètres de nuisance non-identifiés sous l'hypothèse nulle. La méthode proposée fonctionne exactement de la même manière en présence de lois Gaussiennes et non-Gaussiennes [comme par exemple les lois aux queues épaisses ou les lois stables]. Nous évaluons la performance des procédures proposées par simulation. Les expériences de Monte Carlo que nous effectuons portent sur: (1) les alternatives de type ARCH, GARCH and ARCH-en-moyenne; (2) le cas où la variance augmente de manière monotone en fonction: (i) d'une variable exogène, et (ii) de la moyenne de la variable dépendante; (3) l'hétéroskédasticité groupée; (4) les ruptures en variance à des points inconnus. Nos résultats montrent que les tests proposés permettent de contrôler parfaitement le niveau et ont une bonne puissance.
[ - ]
[ + ]
Website Security Test