Nous proposons un modèle de volatilité stochastique avec déformation du temps suite aux travaux par Mandelbrot et Taylor (1967), Clark (1973), Tauchen et Pitts (1983) et autres. La volatilité est supposée être un processus qui évolue dans un temps déformé déterminé par l'arrivée de l'information sur le marché d'actifs financiers. Des séries telles que le volume de transaction et le rendement passé sont utilisées pour identifier la correspondance entre le temps calendrier et opérationnel. Le modèle est estimé soit par la procédure de pseudo maximum de vraisemblance comme proposé par Harvey et al. (1994), soit par des méthodes d'inférence indirecte utilisant la densité SNP de Gallant, Rossi et Tauchen (1992). Dans la partie empirique, nous utilisons des données journalières de la bourse de New York. Un modèle univarié de volatilité stochastique ainsi qu'un modèle bivarié de volume et rendements avec déformation du temps sont analysés.

Voir le document

Dernières publications

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document

2017MO-04 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :