Data revisions in macroeconomic time series are typically studied in isolation ignoring the joint behaviour of revisions across different series. This ignores (i) the possibility that early releases of some series may help forecast revisions in other series and (ii) the problems statitical agencies may face in producing estimates consistent with accounting identities. This paper extends the Jacobs and van Norden (2011) modeling framework to multivariate data revisions. We consider systems of variables, where true values and news and noise can be correlated, and which may be linked by one or more identities. We show how to model such systems with standard linear state space models. We motivate and illustrate the multivariate modeling framework with Swiss current account data using Bayesian econometric methods for estimation and inference.

Voir le document

Dernières publications

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document

2017MO-04 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :