Data revisions in macroeconomic time series are typically studied in isolation ignoring the joint behaviour of revisions across different series. This ignores (i) the possibility that early releases of some series may help forecast revisions in other series and (ii) the problems statitical agencies may face in producing estimates consistent with accounting identities. This paper extends the Jacobs and van Norden (2011) modeling framework to multivariate data revisions. We consider systems of variables, where true values and news and noise can be correlated, and which may be linked by one or more identities. We show how to model such systems with standard linear state space models. We motivate and illustrate the multivariate modeling framework with Swiss current account data using Bayesian econometric methods for estimation and inference.

Voir le document

Dernières publications

2017s-08 CS
An experimental investigation of rating-market regulation
Claudia Keser, Asri Özgümüs, Emmanuel Peterlé et Martin Schmidt
Voir le document

2017s-07 CS
Statistical tests of the demand for insurance: an “all or nothing” decision
Anne Corcos, François Pannequin et Claude Montmarquette
Voir le document

2017RP-02 RP
Politiques favorables à l’innovation en santé
Nadia Benomar, Joanne Castonguay, Marie-Hélène Jobin et François Lespérance
Voir le document

2017RP-01 RP
Évaluation économique du service de premiers répondants sur le territoire de l’agglomération de Montréal
Nathalie de Marcellis-Warin, François Vaillancourt, Ingrid Peignier, Brigitte Bouchard-Milord et Alain Vaillancourt
(document non-disponible)

2017MO-02 MO
Perception des risques - Baromètre Cirano 2017
Nathalie de Marcellis-Warin et Ingrid Peignier
Voir le document

Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039

© 2017 CIRANO. Tous droits réservés.

Partenaire de :