For the new version of this paper, see http://cirano.qc.ca/files/publications/2016s-36.pdf

This paper advances beyond the prediction of the probability of a recession by also considering its severity in terms of output loss and duration. First, Probit models are used to estimate the probability of a recession at period t + h from the information available at period t. Next, a Vector Autoregression (VAR) augmented with diffusion indices and an inverse Mills ratio (IMR) is fitted to selected measures of real economic activity. The latter model is used to generate two forecasts: an average forecast, and a forecast under the pessimistic assumption that a recession occurs at the forecast horizon. The severity of recessions is then predicted as the gap between these two forecasts. Finally, a zero-inated Poisson model is fitted to historical durations of recessions. Our empirical results suggest that U.S. recessions are fairly predictable, both in terms of occurrence and severity. Out-of-sample experiments suggest that the inclusion of the IMR in the VAR model significantly improves its forecasting performance.

Voir le document

Dernières publications

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document

2017MO-04 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :