We study two linear estimators for stationary invertible VARMA models in echelon form – to achieve identification (model parameter unicity) – with known Kronecker indices. Such linear estimators are much simpler to compute than Gaussian maximum-likelihood estimators often proposed for such models, which require highly nonlinear optimization. The first estimator is an improved two-step estimator which can be interpreted as a generalized-least-squares extension of the two-step least-squares estimator studied in Dufour and Jouini (2005). The setup considered is also more general and allows for the presence of drift parameters. The second estimator is a new relatively simple three-step linear estimator which is asymptotically equivalent to ML, hence asymptotically efficient, when the innovations of the process are Gaussian. The latter is based on using modified approximate residuals which better take into account the truncation error associated with the approximate long autoregression used in the first step of the method. We show that both estimators are consistent and asymptotically normal under the assumption that the innovations are a strong white noise, possibly non-Gaussian. Explicit formulae for the asymptotic covariance matrices are provided. The proposed estimators are computationally simpler than earlier “efficient” estimators, and the distributional theory we supply does not rely on a Gaussian assumption, in contrast with Gaussian maximum likelihood or the estimators considered by Hannan and Kavalieris (1984b) and Reinsel, Basu and Yap (1992). We present simulation evidence which indicates that the proposed three-step estimator typically performs better in finite samples than the alternative multi-step linear estimators suggested by Hannan and Kavalieris (1984b), Reinsel et al. (1992), and Poskitt and Salau (1995).

Voir le document

Dernières publications

2017s-08 CS
An experimental investigation of rating-market regulation
Claudia Keser, Asri Özgümüs, Emmanuel Peterlé et Martin Schmidt
Voir le document

2017s-07 CS
Statistical tests of the demand for insurance: an “all or nothing” decision
Anne Corcos, François Pannequin et Claude Montmarquette
Voir le document

2017RP-02 RP
Politiques favorables à l’innovation en santé
Nadia Benomar, Joanne Castonguay, Marie-Hélène Jobin et François Lespérance
Voir le document

2017RP-01 RP
Évaluation économique du service de premiers répondants sur le territoire de l’agglomération de Montréal
Nathalie de Marcellis-Warin, François Vaillancourt, Ingrid Peignier, Brigitte Bouchard-Milord et Alain Vaillancourt
(document non-disponible)

2017MO-02 MO
Perception des risques - Baromètre Cirano 2017
Nathalie de Marcellis-Warin et Ingrid Peignier
Voir le document

Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039

© 2017 CIRANO. Tous droits réservés.

Partenaire de :