Dans cet article, on montre une équivalence directe entre la classification spectrale et l'ACP à noyau, et on montre que les deux sont des cas particuliers d'un problème plus général, celui d'apprendre les fonctions propres d'un noyau. Ces fonctions fournissent une base pour un espace de Hilbert dont le produit scalaire est défini par rapport à la densité des données. Les fonctions propres définissent une transformation de coordonnées naturelles pour de nouveaux points, alors que des méthodes comme la classification spectrale et les 'Laplacian eigenmaps' ne fournissaient un système de coordonnées que pour les exemples d'apprentissage. Cette analyse suggère aussi de nouvelles approches à l'apprentissage non-supervisé dans lesquelles on extrait des abstractions qui résument la densité des données, telles que des variétés et des classes naturelles.

Voir le document

Dernières publications

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-02 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document

2017s-08 CS
An experimental investigation of rating-market regulation
Claudia Keser, Asri Özgümüs, Emmanuel Peterlé et Martin Schmidt
Voir le document

2017s-07 CS
Statistical tests of the demand for insurance: an “all or nothing” decision
Anne Corcos, François Pannequin et Claude Montmarquette
Voir le document

2017RP-02 RP
Politiques favorables à l’innovation en santé
Nadia Benomar, Joanne Castonguay, Marie-Hélène Jobin et François Lespérance
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :