L'apprentissage multi-tâches est une manière d'apprendre des particularités d'un domaine (le biais) qui comprend plusieurs tâches possibles. On entraîne simultanément plusieurs modèles, un par tâche, en imposant des contraintes sur les paramètres de manière à capturer ce qui est en commun entre les tâches, afin d'obtenir une meilleure généralisation sur chaque tâche, et pour pouvoir rapidement généraliser (avec peu d'exemples) sur une nouvelle tâche provenant du même domaine. Ici cette commonalité est définie par une variété affine dans l'espace des paramètres. Dans cet article, nous appliquons ces méthodes à la prédiction du prix d'options d'achat de l'indice S&P 500 entre 1987 et 1993. Une analyse de la variance des résultats est présentée, démontrant des améliorations significatives de la prédiction hors-échantillon.

Voir le document

Dernières publications

2017s-12 CS
Policy relevance of applied economist: Examining sensitivity and inferences
Maurice Doyon, Stéphane Bergeron et Lota Dabio Tamini
Voir le document

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :