Pour tenir compte des problèmes de sur-entraînement qui apparaissent quand il n'y a pas assez d'exemples comparativement au nombre de variables d'entrées durant l'apprentissage supervisé, les approches traditionnelles sont la pénalisation de la norme des paramètres (weight decay) et la sélection de variables vorace. Une alternative qui est apparue tout récemment est de garder toutes les variables, mais de mettre plus d'emphase sur celles qui sont le plus utiles. Nous introduisons une nouvelle méthode de régularisation, appelé "pénalisation sur la norme des entrées"" (input decay), qui applique une plus grande penalité relative sur les paramètres associés aux entrées qui contribuent le moins à la fonction apprise. Cette méthode, comme la pénalisation de la norme des paramètres (weight decay) et la sélection de variables, demande tout de même d'appliquer une sorte de sélection de modèle. Une série d'expériences comparatives avec cette nouvelle méthode ont été appliquées à deux taches de régression, une qui était simulée et l'autre à partir d'une vrai problème financier."

Voir le document

Dernières publications

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document

2017MO-04 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :