Dans ce texte, nous étudions plusieurs tests pour l'egalité de deux distributions inconnues. Deux de ces tests sont basés sur des fonctions de distribution empiriques, trois autres sur des estimateurs non-paramétriques de fonctions de densité, et les trois derniers sur des moments empiriques. Nous proposons de contrôler la taille des tests (sous des hypothèses non-paramétriques) en employant des versions permutationnelles de ces tests conjointement avec la méthode des tests de Monte Carlo ajustée pour tenir compte de la possibilité de distributions discontinues. Nous proposons aussi une méthode pour combiner plusieurs de ces tests, le niveau de ces procédures étant aussi contrôlé par la technique des tests de Monte Carlo, laquelle possède de meilleures propriétés de puissance que les tests individuels combinés. Finalement, nous montrons dans une étude de simulation que la technique suggérée contrôle parfaitement la taille des différents tests considérés et que les nouveaux tests proposés peuvent fournir de notables améliorations de puissance.

Voir le document

Dernières publications

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document

2017MO-04 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :