The Market for Crash Risk

David S. Bates
University of Iowa and NBER

September 2001

Abstract
This paper examines the equilibrium when negative stock market jumps (crashes) can occur, and investors have heterogeneous attitudes towards crash risk. The less crash-averse insure the more crash-averse through the options markets that dynamically complete the economy. The resulting equilibrium is compared with various option pricing anomalies reported in the literature: the tendency of stock index options to overpredict volatility and jump risk, the Jackwerth (2000) implicit pricing kernel puzzle, and the stochastic evolution of option prices. The specification of crash aversion is compatible with the static option pricing puzzles, while heterogeneity partially explains the dynamic puzzles. Heterogeneity also magnifies substantially the stock market impact of adverse news about fundamentals.
Empirical option pricing research involving stock index options has revealed substantial divergences between the “risk-neutral” distributions compatible with observed post-’87 option prices, and the conditional distributions estimated from time series analyses of the underlying stock index. Perhaps the most important has been the substantial disparity between implicit standard deviations (ISD’s) inferred from at-the-money options, and the subsequent realized volatility over the lifetime of the option. As illustrated below in Figure 1, ISD’s have generally been higher than realized volatility. Furthermore, regressing realized volatility upon ISD’s almost invariably indicates that ISD’s are informative but biased predictors of future volatility, with bias increasing in the ISD level.

While the level of at-the-money ISD’s is puzzling, the shape of the volatility surface across strike prices and maturities also appears at odds with estimates of conditional distributions. It is now widely recognized that the “volatility smirk” implies substantial negative skewness in risk-neutral distributions, and various correspondingly skewed models have been proposed: implied binomial trees, stochastic volatility models with “leverage” effects, and jump-diffusions. And although these models can roughly match observed option prices, the associated implicit parameters do not appear especially consistent with the absence of substantial negative skewness in post-’87 stock index returns. To paraphrase Samuelson, the option markets have predicted nine out of the past five market corrections. A further puzzle is that the predictions are somewhat countercyclical. Within the Bates (2000) jump-diffusion model, implicit jump risk was highest immediately after substantial market drops, and was low during the bull market of 1992-96.

It is of course possible that the pronounced divergence between objective and risk-neutral measures represents risk premia on the underlying risks. The fundamental theorem of asset pricing states that provided there exist no outright arbitrage opportunities, it is possible to construct a “representative agent” whose preferences are compatible with any observed divergences between the two distributions. However, Jackwerth (2000) and Rosenberg and Engle (2000) have pointed out that the preferences necessary to reconcile the two distributions appear rather oddly shaped, with sections that are locally risk-loving rather than risk-averse. Furthermore, the post-’87 Sharpe ratios from writing put options or straddles seem extraordinarily high -- two to six times that of investing directly in the stock market.
The overall industrial organization of the stock index option markets does not appear especially compatible with the idealized construction of representative agents. In that construction, all individuals trade until at the margin they are indifferent to taking on more or less risk. The resultant risk-pooling of systematic risks across all agents permits the calibration of standard asset pricing models from aggregate data sources: e.g., estimating the consumption CAPM based on aggregate consumption data, or the CAPM based on proxies for the return on aggregate wealth. However, most investors do not routinely use options to manage the underlying risks. Although stock index options are among the most actively traded options, the stock positions hedged by exchange-traded options on the S&P index or futures represented at most 2.6% of the S&P 500 market capitalization in 1998.¹

In stock index option markets, individual investors can easily buy options but face obstacles at the broker level to writing naked puts or calls. While hard data are not readily available, anecdotal evidence suggests a fundamental post-'87 dichotomy between the buyers and sellers in the stock index option market. A broad array of individual and institutional investors buy options as part of their overall risk management strategies, while a relatively concentrated group of option market makers predominantly write them and delta-hedge their positions. And although all investors need not be rational for markets to be efficient, this broad and apparently persistent dichotomy between buyers and sellers suggests closer scrutiny of option market making is warranted.

The objective of this paper is therefore to focus more carefully on the financial intermediation of crash risk through option markets. A general equilibrium model is constructed in which relatively crash-tolerant option market makers insure crash-averse investors. Heterogeneity in attitudes towards crash risk is modeled via heterogeneous state-dependent utility functions similar to those in Ho, Perraudin and Sørensen (1996). Crashes can occur in the model, given occasional adverse jumps in news about fundamentals. Derivatives are consequently not redundant in the

¹This is computed based upon the 1998 open interest for CBOE options on the S&P 100 and S&P 500 indexes, and for CME options on S&P 500 futures. It represents an upper limit in assuming every option corresponds one-for-one to an underlying stock position. Strategies involving multiple options (vertical spreads, collars, straddles, etc.) would substantially reduce the estimate of the stock positions being protected.
model and serve the important function of dynamically completing the market. Given complete markets, equilibrium can be derived using an equivalent central planner’s problem, and the corresponding dynamic trading strategies and market equilibria are identified.

The view of options markets as an insurance market for crash risk may be able to explain some of the option pricing anomalies -- especially if there exist barriers to entry. If crash risk is concentrated among option market makers, calibrations based upon the risk-taking capacity of all investors can be misleading. Speculative opportunities such as writing straddles become unappealing when the market makers are already overly involved in the business. Furthermore, the dynamic response of option prices to market drops resembles the price cycles observed in insurance markets: an increase in the price of crash insurance caused by the contraction in market makers’ capital following losses.

This paper therefore represents an initial exploration of the financial intermediation of crash risk via the options markets. Section 1 recapitulates the various stylized facts from empirical options research that the various models will attempt to match. Section 2 introduces the basic framework, and identifies a benchmark homogeneous-agent equilibrium. Section 3 explores the implications of heterogeneity in agents. Section 4 concludes.

\[\text{\footnotesize 2}\] Basak and Cuoco (1998) make a similar point regarding calibrations of the consumption CAPM when most investors don’t hold stock.

\[\text{\footnotesize 3}\] Froot (2001, Figure 3) illustrates the strong, temporary impacts of Hurricane Andrew in 1992 and the Northbridge earthquake in 1994 upon the price of catastrophe insurance.
1. Empirical option pricing anomalies and stylized facts

Three categories of discrepancies between objective and risk-neutral measures will be kept in mind in the theoretical section of the paper: volatility, higher moments, and the implicit pricing kernel that in principle reconciles the objective and risk-neutral probability measures. Furthermore, each category can be decomposed further into average discrepancies, and conditional discrepancies.

The unconditional volatility puzzle is that implicit standard deviations (ISD’s) from stock index options have been higher on average over 1988-98 than realized volatility over the options’ lifetimes. For instance, ISD’s from 30-day at-the-money put and call options on S&P 500 futures have been 2% higher on average than the subsequent annualized daily volatility over the lifetime of the options. This discrepancy has generated substantial post-'87 profits on average from writing at-the-money puts or straddles, with Sharpe ratios two to six times that of investing in the stock market. See, e.g., Fleming (1998) or Jackwerth (2000).

The conditional volatility puzzle is that regressing realized volatility upon ISD’s generally yields slopes that are significantly positive, but significantly less than one. For instance, the regressions using the 30-day ISD’s and realized volatilities mentioned above yield volatility and variance results

\[
\sqrt{\frac{365}{T} \sum_{t=T-30}^{T} (\Delta \ln F_{t})^2} = 0.0160 + 0.756 ISD_t + \epsilon_{t,T}, \quad R^2 = 0.45
\]

\[
\frac{365}{T} \sum_{t=T-30}^{T} (\Delta \ln F_{t})^2 = 0.0027 + 0.681 ISD_t^2 + \epsilon_{t,T}, \quad R^2 = 0.33
\]

\[\text{(1)}\]

\[\text{(2)}\]

The puzzle is slightly exacerbated by the fact that at-the-money ISD’s are in principle downwardly biased predictors of the (risk-neutral) volatility over the lifetime of the options.
Christensen and Prabhala (1998) argue that measurement error in ISD’s may be biasing slope estimates downwards, and estimate essentially unitary slopes on post-’87 monthly data using instrumental variables. Using instrumental variables on my data had negligible effect on point estimates. However the associated loss of power did increase standard errors, to the point where unbiasedness could not be rejected in some cases. Jorion (1995) provides a Monte Carlo assessment of measurement error’s impact on volatility regressions.

In options research, implicit skewness is roughly measured by the shape of the volatility “smirk,” or pattern of ISD’s across different strike prices (“moneyness”). The skewness/maturity interaction can be seen by examined by the volatility smirk at different horizons conditional upon rescaling moneyness proportionately to the standard deviation appropriate at different horizons. See, Figure 1. ISD’s and realized volatility, 1988-98. ISD’s are from 30-day S&P 500 futures options. Realized volatility is annualized, from daily log-differenced futures prices over the lifetime of the options.

with heteroskedasticity-consistent standard errors in parentheses. Since intercepts are small, the regressions imply that ISD’s are especially poor forecasts of realized volatility when high.

The skewness puzzle is that the levels of skewness implicit in stock index options are generally much larger in magnitude than those estimated from stock index returns -- whether from unconditional returns (Jackwerth, 2000) or conditional upon a time series model that captures salient features of time-varying distributions (Rosenberg and Engle, 2000). Furthermore, implicit skewness falls off only slightly for longer maturities of stock index options of, e.g., 3-6 months. By contrast,

5Christensen and Prabhala (1998) argue that measurement error in ISD’s may be biasing slope estimates downwards, and estimate essentially unitary slopes on post-’87 monthly data using instrumental variables. Using instrumental variables on my data had negligible effect on point estimates. However the associated loss of power did increase standard errors, to the point where unbiasedness could not be rejected in some cases. Jorion (1995) provides a Monte Carlo assessment of measurement error’s impact on volatility regressions.

6In options research, implicit skewness is roughly measured by the shape of the volatility “smirk,” or pattern of ISD’s across different strike prices (“moneyness”). The skewness/maturity interaction can be seen by examined by the volatility smirk at different horizons conditional upon rescaling moneyness proportionately to the standard deviation appropriate at different horizons. See,
the distribution of log-differenced stock indexes or stock index futures converges rapidly towards near-normality as one progresses from daily to weekly to monthly holding periods.

A further puzzle is the evolution of distributions implicit in option prices. Figure 2 below summarizes that evolution using updated estimates of the Bates (2000) 2-factor stochastic volatility/jump-diffusion model with time-varying jump risk. The affine structure of that model permits a factor representation of implicit cumulants in terms of two underlying state variables. The first factor (V1) affects variance directly and also determines the jump intensity, thereby affecting cumulants at all maturities. The second factor (V2) influences instantaneous variance (with roughly

Table 1
 Implicit jump parameters, and (risk-neutral) cumulants at 1- and 6-month horizons, 1988-98 estimates.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average jump size</td>
<td>-6.6%</td>
</tr>
<tr>
<td>Jump standard deviation</td>
<td>11.0%</td>
</tr>
<tr>
<td>Jump intensity</td>
<td>$\lambda_t = 81.41 V_{1t} + .01 V_{2t}$</td>
</tr>
</tbody>
</table>

1-month cumulants

$K_2 = 1.76e^{-4} + .2053 V_{1t} + .0795 V_{2t}$
$K_3 = -1.01e^{-5} - .0371 V_{1t} - .0012 V_{2t}$
$K_4 = 2.47e^{-6} + 10.54e^{-3} V_{1t} + .06e^{-3} V_{2t}$

6-month cumulants

$K_2 = .0058 + 1.3080 V_{1t} + .3802 V_{2t}$
$K_3 = -.0012 - .8112 V_{1t} - .0336 V_{2t}$
$K_4 = .0007 + .7556 V_{1t} + .0083 V_{2t}$

Average factor realizations: $\text{Avg}(V_1) = .0092$; $\text{Avg}(V_2) = .0143$.
Conditional variance = K_2; skewness = $K_3/K_2^{3/2}$; excess kurtosis = K_4/K_2^2.

e.g., Bates (2000, Figure 4). Tompkins (2000) provides a comprehensive survey of volatility surface patterns, including the maturity effects.
Figure 2. Implicit factor estimates from S&P 500 futures options, 1988-98.
V1 affects all cumulants, at all maturities. V2 affects conditional variance but has little impact on higher cumulants. Units are in instantaneous variance per year conditional on no jumps (left scale), or in implicit jump frequency (right scale). See Bates (2000) for estimation details.

half the variance loading of V1 -- see Table 1 below), but has relatively little impact on higher cumulants.

The graph indicates that the sharp market declines over 1988-98 (in January 1988, October 1989, August 1990, November 1997, and August 1998) were accompanied by sharp increases in implicit jump risk. The puzzles here are the abruptness of the shifts (Bates (2000) rejects the hypothesis that implicit jump risk follows an affine diffusion), and the magnitudes of implicit jump risk achieved following the market declines. Furthermore, affine models assume the risk-neutral and objective jump intensity are proportional. These models therefore imply objective crash risk is highest immediately following crashes, which some (e.g., Chernov et al, 1999) would find unappealing.
Finally, there is the implicit pricing kernel puzzle discussed in Jackwerth (2000) and Rosenberg and Engle (2000). The sharp discrepancy between the negatively skewed risk-neutral distribution and roughly lognormal objective distribution at monthly horizons causes the risk-neutral mode to be to the right of the estimated objective mode, even though the risk-neutral mean is perforce to the left of the objective mean. If the level of the stock index is viewed as a reasonably good proxy for overall wealth of the representative agent, this discrepancy in distributions implies marginal utility of wealth is locally increasing in areas – implying utility functions that are locally convex in areas, rather than globally concave.7

It is possible that a standard representative agent/pricing kernel model can explain the above puzzles. Pan (2001), for instance, finds a substantial risk premium on time-varying jump risk is a promising candidate. The risk premium raises implicit jump risk, volatility, and skewness relative to the values from the objective distribution, while the time variation in jump risk can explain the conditional volatility bias. Bates (2000) finds that this model can also match the maturity profile of implicit skewness better than models with constant implicit jump risk.

The challenges for this explanation are the magnitude of the speculative opportunities associated with the implicit risk premia, and its failure to address the pricing kernel anomaly. The stochastic evolution of implicit and objective jump risk is also puzzling.

7Jackwerth’s results are disputed by Aït-Sahalia and Lo (2000), who find no anomalies when comparing average option prices from 1993 with the unconditional return distribution estimated from overlapping data from 1989-93. The difference in results perhaps highlights the importance of using conditional rather than unconditional distributions, as in Rosenberg and Engle (2000). For instance, both conditional variance and implicit standard deviations are time-varying; and a substantial divergence between the two can produce anomalous implicit utility functions even in a lognormal environment.
2. A jump-diffusion economy

I consider a simple continuous-time endowment economy over \([0, T]\), with a single terminal dividend payment \(\tilde{D}_T\) at time \(T\). News about this dividend (or, equivalently, about the terminal value of the investment) arrives as a univariate Markov jump-diffusion of the form

\[
d\ln D = \mu d t + \sigma dZ + \gamma dN
\]

(3)

where \(Z\) is a standard Wiener process,

\(N\) is a Poisson counter with constant intensity \(\lambda\), and

\(\gamma_d < 0\) is a deterministic jump size or announcement effect, assumed negative.

Financial assets are claims on terminal outcomes. Given the simple specification of news arrival, any three non-redundant assets suffice to dynamically span this economy; e.g., bonds, stocks, and a single long-maturity stock index option. However, it is analytically more convenient to work with the following three fundamental assets:

1) a riskless numeraire bond in zero net supply that delivers one unit of terminal consumption in all terminal states of nature;
2) an equity claim in unitary supply that pays a terminal dividend \(D_T\) at time \(T\), and is priced at \(S_t\) at time \(t\) relative to the riskless asset; and
3) a jump insurance contract in zero net supply that costs an instantaneous and endogenously determined insurance premium \(\lambda^*_t dt\) and pays off 1 additional unit of the numeraire asset conditional on a jump. The terminal payoff of one insurance contract held to maturity is \(N_T - \int_0^T \lambda^*_t dt\).

Other assets such as options are redundant given these fundamental assets, and are priced by no arbitrage given equilibrium prices for the latter two assets. Equivalently, the jump insurance contract can be synthesized from the short-maturity options markets with overlapping maturities that we actually observe. The equivalence between option and jump insurance contracts is discussed below in section 3.5.

Agents are assumed to have crash-averse utility functions over terminal outcomes of the form
$U(W_t, N_t, t) = E_t \left[e^{Y N_t} \frac{\tilde{W}_T^{1-R} - 1}{1 - R} \right] \text{ for } R > 0$ (4)

where W_T is terminal wealth, N_T is the number of jumps over $[0, T]$, and $Y > 0$ is a parameter of crash aversion. This generalization of power utility is the deterministic-jump equivalent of the equilibrium pricing kernel specification in Ho, Perraudin, and Sørensen (1996), and has several advantages. First, as discussed in Ho et al and below, these preferences for a representative agent facing independent and identically distributed returns imply constant risk-neutral jump intensities, facilitating option pricing under the risk-neutral probability measure. Indeed, the above utility function can be derived as the entropy-minimizing pricing kernel that generates specific instantaneous equity and jump risk premia given an i.i.d jump-diffusion process.

Second, these preferences retain the homogeneity of standard power utility, and the myopic investment strategy property of the log utility subcase. Third, investors with crash-averse preferences ($Y > 0$) use exaggerated certainty-equivalent crash frequency estimates when choosing portfolio allocations, in a fashion potentially consistent with risk-neutral jump intensities inferred from option prices:

$$E_0 \left[e^{Y N_t} u(\tilde{W}_T) \right] = \sum_{N=0}^{\infty} \frac{e^{-\lambda T e^Y} \lambda^N T^N}{N!} E_0[u(W_T) | N \text{ jumps}]$$

$$= e^{\lambda T (e^Y - 1)} E^*_0[u(W_T) | \lambda^* = \lambda e^Y].$$ (5)

An alternate interpretation is that Y captures heterogeneous beliefs regarding the unknown frequency of crashes. However, this interpretation would require strong priors that preclude investors from updating their subjective jump frequency λe^Y based on learning over time, or from trading with other investors in the heterogeneous-agent equilibria derived below.

8See Shefrin (1997) for an alternate model for pricing options under heterogeneous beliefs.
The above is a model of “external” crash aversion. An alternate “internal” crash aversion model could be constructed assuming investors’ aversion to crashes depends only on the degree to which their own investments are directly affected:

$$U(W_T) = u(W_T) \exp \left[-y \sum \gamma_w \right]$$

(6)

where γ_w is the jump in log wealth conditional upon a jump occurring, and conditional upon the investor’s portfolio allocation. The major advantage to the external crash aversion in (4) is its analytic tractability. While it is possible to work out homogeneous-agent equilibria using internal crash aversion, deriving heterogeneous-agent equilibria is trickier. The difference in specifications echoes the analytic advantages of external over internal habit formation models discussed in Campbell, Lo and MacKinlay (1997, p. 327-8).

2.1 Equilibrium in a homogeneous-agent economy

The fundamental equations for pricing equity and crash insurance are

$$\eta_t = E_t \eta_T$$

$$S_t = E_t \frac{\eta_T D_T}{\eta_t}$$

$$\lambda_t^* = \lambda \left[\eta_{t+dt} \big| dN_t = 1 \right]$$

(7)

where η_T/η_t is a nonnegative pricing kernel. The first two equations are standard; see, e.g., Grossman and Zhou (1996). The last is derived in Bates (1988, 1991).\(^9\) If all agents have identical crash-averse preferences of the form given in (4) above, the pricing kernel can be derived from the terminal marginal utility:

$$\eta_T = U_{w}(W_T, N_T) \big|_{W_T = D_T}$$

$$= D_T^{-R} e^{YN_T}.$$

(8)

\(^9\)A crash insurance with instantaneous cost $\lambda_t^* dt$ that pays off 1 unit of the numeraire conditional upon a jump occurring in $(t, t+dt]$ is priced at $$\eta_t \lambda_t^* dt = E_t \left[\eta_{t+dt} \right]_{dN_t = 1} = \lambda dt \eta_{t+dt} \big|_{dN_t = 1}$$ yielding the above expression.
The following is useful for computing relevant conditional expectations.

Lemma: If \(d_t = \ln D_t \) follows the jump-diffusion in (3) above and \(N_t \) is the underlying jump counter with intensity \(\lambda \), then

\[
E_t e^{\Phi d_t + \Psi N_t} = \exp\left\{ \Phi d_t + \Psi N_t + (T-t) \left[\Phi \mu_d + \frac{1}{2} \Phi^2 \sigma^2_d + \lambda e^{\Phi \gamma_d + \Psi} \right] \right\}.
\] (9)

Proof: There is a probability \(w_n = e^{-\lambda \tau} (\lambda \tau)^n / n! \) of observing \(n = N_T - N_t \) jumps over \((t, T] \). Conditional upon \(n \) jumps, \(\Delta d \equiv \ln D_T / D_t - N[\mu_d \tau + \gamma_d n, \sigma^2_d \tau] \) for \(\tau = T - t \), and

\[
E_t e^{\Phi \tilde{d}_\tau + \Psi \tilde{N}_\tau} = e^{\Phi \gamma_d + \Psi} E_t \exp[\Phi \Delta \tilde{d} + \Psi] = e^{\Phi \gamma_d + \Psi} E_t \exp[\Phi \Delta \tilde{d} + \Psi] = e^{\Phi \gamma_d + \Psi} \exp\left[(\Phi \mu_d + \frac{1}{2} \Phi^2 \sigma^2_d) \tau + \lambda \tau (e^{\Phi \gamma_d + \Psi} - 1) \right] \] (10)

The last line follows from the independence of the Wiener and jump components, and from the moment generating functions for Wiener and jump processes.

Using the lemma and the pricing kernel (8) yields the following asset pricing equations:

\[
\lambda^* = \lambda e^{Y - R \gamma_d}
\] (11)

\[
\eta_t = D_t e^{Y N_t} e^{(T-t)[-R \mu_d + \frac{1}{2} \sigma^2_d + (\lambda^* - \lambda)]}
\] (12)

\[
S_t = D_t \exp\left((T-t) \left[\mu_d + \frac{1}{2} \sigma^2_d - R \sigma^2_d + \lambda^* (e^Y - 1) \right] \right)
\] (13)

The last equation implies that the price of equity relative to the riskless numeraire follows roughly the same i.i.d. jump-diffusion process as the underlying dividend process, with identical instantaneous volatility and jump magnitudes:

\[
dS/S = \mu dt + \sigma_d dZ + k(dN - \lambda dt)
\] (14)

for \(k = e^{\gamma_d} - 1 \). The instantaneous equity premium

\[
\mu = R \sigma^2 + (\lambda - \lambda^*) k
\]

\[
\approx R \left(\sigma^2 + \lambda^2 \gamma_d \right) + (-\lambda \gamma_d) Y
\] (15)
reflects required compensation for two types of risk. First is the required compensation for stock market variance from diffusion and jump components, roughly scaled by the coefficient of relative risk aversion. Second, the crash aversion parameter $Y \geq 0$ increases the required excess return when stock market jumps are negative.

Crash aversion also directly affects the price of crash insurance relative to the actual arrival rate of crashes:

$$\log(\lambda^*/\lambda) = -R\gamma_d + Y.$$ \hfill (16)

Finally, derivatives are priced as if equity followed the risk-neutral martingale

$$dS/S = \sigma_d dZ^* + k (dN^* - \lambda^* dt)$$ \hfill (17)

where N^* is a jump counter with constant intensity λ^*. The resulting (forward) option prices are identical to the deterministic-jump special case of Bates (1991), given the geometric jump-diffusion.

2.2 Consistency with empirical anomalies

The homogeneous crash aversion model can explain some of the stylized facts from section 1. First, unconditional bias in implied volatilities is explained by the potentially substantial divergence between the risk-neutral instantaneous variance $\sigma^2 + \lambda^* \gamma^2_d$ implicit in option prices, and the actual instantaneous variance $\sigma^2 + \lambda \gamma^2_d$ of log-differenced asset prices. Second, the difference between λ^* and λ is consistent with the observation in Bates (2000, pp. 220-1) and Jackwerth (2000, pp. 446-7) of too few observed jumps over 1988-98 relative to the number predicted by stock index options. The extra parameter Y permits greater divergence in λ^* from λ than is feasible under standard parameterizations of power utility.

To illustrate this, consider the following calibration: a stock market volatility $\sigma = 15\%$ annually conditional upon no jumps, and adverse dividend news of $\gamma_d = -10\%$ that arrives on average once every four years ($\lambda = .25$). From equations (15) and (16), the equity premium and crash insurance premium are

$$\mu \approx .025 R + .025 Y$$

$$\ln(\lambda^*/\lambda) = .10 R + Y$$ \hfill (18)
For $R = 1$ and $Y = 1$, the equity premium is 5%/year, while the jump risk λ^* implicit in option prices is three times that of the true jump risk. Thus, the crash aversion parameter Y is roughly as important as relative risk aversion for the equity premium, but substantially more important for the crash premium. Achieving the observed substantial disparity between λ^* and λ using risk aversion alone ($Y = 0$) would require levels of R that most would find unpalatable, and which would imply an implausibly high equity premium.

Since returns are i.i.d. under both the actual and risk-neutral distribution, the homogeneous-agent model is not capable of capturing the dynamic anomalies discussed in section 1. The standard results from regressing realized on implicit variance cannot be replicated here, because neither is time-varying in this model. Were there a time-varying volatility component in the dividend news process, however, the difference between λ^* and λ would affect the intercept from such regressions but could not explain why the slope estimate is less than 1. Second, the model cannot match the observed tendency of λ^* to jump contemporaneously with substantial market drops. Finally, the i.i.d. return structure implies that implicit distributions should rapidly converge towards lognormality at longer maturities -- which does not accord with the maturity profile of the volatility smirk.

Furthermore, Jackwerth’s (2000) anomaly cannot be replicated under homogeneous crash aversion. As discussed in Rosenberg and Engle (2000), Jackwerth’s implicit pricing kernel involves the projection of the actual pricing kernel upon asset payoffs. E.g., stock index options with terminal payoff $V(S_t)$ have an initial price

$$v_0 = \frac{E_0[\eta_t V(S_t)]}{\eta_0}$$

$$= E_0\left[V(S_t) \frac{E_0[\eta_t | S_t]}{E_0[\eta_t]} \right]$$

$$= E_0\left[V(S_t) M(S_t) \right], \quad (19)$$

where $M(S_t)$ has the usual properties of pricing kernels: it is nonnegative, and $E_0[M(S_t)] = 1$.

It is shown in the appendix that for crash-averse preferences, this projection takes the form
where $\kappa(t)$ is a function of time and $p(S_t \mid \lambda)$ is the probability density function of S_t conditional upon a jump intensity of λ over $(0, t)$. Implicit relative risk aversion is given by $-\partial \ln M(S) / \partial \ln S$. For $Y = 0$, one observes the strictly decreasing pricing kernel and constant relative risk aversion associated with power utility. For $Y > 0$, it is proven in the appendix that $\ln M(S_t)$ is a strictly decreasing function of $\ln S_t$ that is illustrated below in Figure 3. Thus, this pricing kernel cannot replicate the negative implicit risk aversion (positive slope) estimated by Jackwerth (2000) and Rosenberg and Engle (2000) for some values of S_t. However, crash-averse preferences can replicate the higher implicit risk aversion (steeper negative slope) for low $\ln S_t$ values that was estimated by those authors and by Aït-Sahalia and Lo (2000).

Jackwerth (2000, p.446) conjectures that the negative risk aversion estimate may be attributable to investors overestimating the crash risk relative to the observed ex post crash frequency. Within this model, such overestimation is equivalent to a positive value of Y, and cannot generate the required divergences between objective and risk-neutral distributions. In equilibrium the equity premium (15) is also positively affected by Y, shifting the mode of the objective.
distribution sufficiently to the right to preclude observing Jackwerth’s anomaly. Of course, there could still be an anomalous disparity between the risk-neutral distribution and the estimate of the objective distribution.

Jackwerth’s exploration of whether the divergence between the risk-neutral and estimated objective distributions is implausibly profitable is a separate issue. Within this framework, crash aversion can generate investment opportunities with high Sharpe ratios. For instance, the instantaneous Sharpe ratio on writing crash insurance is

$$\frac{\lambda^* \, dt - E_t[1_{dN-1}]}{\sqrt{Var_t[1_{dN-1}]} = \frac{(\lambda^* - \lambda) \, dt}{\lambda \, dt \, (1 - \lambda \, dt)}} = \frac{\lambda^*}{\lambda} - 1$$

which can be substantially larger than the instantaneous Sharpe ratio \(\mu / \sqrt{\sigma^2 + \lambda k^2} \) on equity given investors’ aversion to this type of risk. The put selling strategies examined in Jackwerth implicitly involve a portfolio that is instantaneously long equity and short crash insurance. Since adding a high Sharpe ratio investment to a market investment must raise instantaneous Sharpe ratios, this model is consistent with the substantial profitability of option-writing strategies reported in Jackwerth (2000) and elsewhere.
3. Equilibrium in a heterogeneous-agent economy

As this model is dynamically complete, equilibrium in the heterogeneous-agent case can be identified by examining an equivalent central planner’s problem in weighted utility functions. The solution to that problem is Pareto-optimal, and can be attained by a competitive equilibrium for traded assets in which all investors willingly hold market-clearing optimal portfolios given equilibrium asset price evolution. Section 3.1 below outlines the central planner’s problem, while Section 3.2 discusses the resulting asset market equilibrium. Section 3.3 identifies the supporting individual wealth evolutions and associated portfolio allocations, and confirms the optimality of the equilibrium. Section 3.4 discusses the implications for option prices, while Section 3.5 compares the equilibrium with the stylized facts discussed above in Section 1.

3.1 The central planner’s problem

Under homogeneous beliefs about state probabilities, the central planner’s problem of maximizing a weighted average of expected state-dependent utilities is equivalent to constructing a representative state-dependent utility function in terminal wealth (Constantinides 1982, Lemma 2):

\[
U(W_T, N_T; \omega) = \max \sum Y \omega_Y f^Y(N_T) \frac{W_{YT}^{1-R} - 1}{1-R}, \quad R > 0
\]

subject to \(W_T = \sum Y W_{YT}, \quad W_{YT} \geq 0 \forall Y \)

for fixed weights \(\omega = \{\omega_Y\} \) that depend upon the initial wealth allocation in a fashion determined below in Section 3.3. Since the individual marginal utility functions \(U_p(W_{YT}, N_T; Y) = +\infty \) at \(W_{YT} = 0 \) and the horizon is finite, the individual no-bankruptcy constraints \(W_{YT} \geq 0 \) are non-binding and can be ignored. Optimizing the Lagrangian

\[
\max_{\{W_{YT}\}, \eta_T} \sum Y \omega_Y f^Y(N_T) \frac{W_{YT}^{1-R} - 1}{1-R} + \eta_T \left[W_T - \sum Y W_{YT} \right]
\]

yields a terminal state-dependent wealth allocation

\[
w_Y(N_T, T; \omega) = \frac{W_{YT}}{W_T} = \frac{[\omega_Y f^Y(N_T)]^{1/R}}{\sum Y [\omega_Y f^Y(N_T)]^{1/R}}
\]

and a Lagrangian multiplier
\[
\eta_T = W_T^{-R} \left\{ \sum_Y \left[\omega_Y f^Y(N_T) \right]^R \right\} \\
= W_T^{-R} \bar{f}(N_T; \omega)
\]

(25)

where \(\bar{f} \) is a CES-weighted average of individual crash aversion functions \(f^Y \)'s. The Lagrangian multiplier \(\eta_T = U_w(W_T, N_T; \omega) \) is the shadow value of terminal wealth, and therefore determines the pricing kernel when evaluated at \(W_T = D_T \). From the first-order condition to (23), all individual terminal marginal utilities of wealth are directly proportional to the multiplier:

\[
U_w(W_{YT}, N_T; \omega) = \eta_T \omega_Y.
\]

(26)

3. 2 Asset market equilibrium

As in equations (7) above, the pricing kernel \(\eta_T/\eta_t \) can be used to price all assets. That asset market equilibrium depends critically upon expectations of average crash aversion. Define

\[
g(N_t, t; \lambda^{'}) = E_t \left[\bar{f}(n_t + \tilde{n}) | \lambda^{'}, \gamma_d \right] \\
= \sum_n e^{-(\lambda^{'})^{(T-t)}[\lambda^{'}, (T-t)]^n} f(n_t + n)
\]

(27)

as the conditional expectation of \(\bar{f}(N_T) \) given jump intensity \(\lambda^{'}, \gamma_d \) for future jumps \(\tilde{n} = N_T - N_t \). It is shown in the appendix that the resulting asset pricing equations are

\[
\eta_t = e^{\kappa_\eta (T-t)} D_t^{-R} \frac{g(N_t, t, \lambda e^{-R\gamma_d})}{g(N_t, t, \lambda e^{-R\gamma_d})}
\]

(28)

\[
\frac{S_t}{D_t} = e^{\kappa_s (T-t)} \frac{g(N_t, t, \lambda e^{(1-R)\gamma_d})}{g(N_t, t, \lambda e^{-R\gamma_d})}
\]

(29)

\[
= e^{\kappa_s (T-t)} m(N_t, t)
\]

\[
\lambda^*(N_t, t) = \lambda e^{-R\gamma_d} \frac{g(N_t + 1, t, \lambda e^{-R\gamma_d})}{g(N_t, t, \lambda e^{-R\gamma_d})}
\]

(30)

where \(\kappa_\eta = -R\mu_d + \frac{1}{2} R^2 \sigma_d^2 + \lambda(e^{-R\gamma_d} - 1) \),
and \(\kappa_s = \mu_d + (1/2 - R) \sigma_d^2 + \lambda e^{-R\gamma_d}(e^{\gamma_d} - 1) \).
The equilibrium equity price follows a jump-diffusion of the form

$$\frac{dS}{S} = \mu(N_t, t) dt + \sigma_d dZ + k(N_t, t) (dN - \lambda dt)$$

(31)

where

$$\mu(N_t, t) = -E_r \left[\frac{dS}{S} \frac{d\eta}{\eta} \right]$$

(32)

$$= R \sigma_d^2 + [\lambda - \lambda^*(N_t, t)] k(N_t, t)$$

and

$$1 + k(N_t, t) = e^{\gamma \mu} \frac{m[N_t + 1, t]}{m[N_t, t]}$$

(33)

for $m[N, t]$ defined above in equation (29). The risk-neutral price process follows a martingale of the form

$$\frac{dS}{S} = \sigma_d dZ + k(N_t^*, t)[dN^* - \lambda^* dt]$$

(34)

for N^* a risk-neutral jump counter with instantaneous jump intensity $\lambda^*(N_t^*, t)$, the functional form of which is given above in equation (30).

Several features of the equilibrium are worth emphasizing. First, conditional upon no jumps the asset price follows a diffusion similar to D_t -- i.e., with identical and constant instantaneous volatility σ_d. This property reflects the assumption of common relative risk aversion R, and would not hold in general under alternate utility specifications or heterogeneous risk aversion. A further implication discussed below is that all investors hold identical equity positions.

Second, the equilibrium price process and crash insurance premium depend critically upon the heterogeneity of agents. This is simplest to illustrate in the unitary risk aversion case, for which equilibrium values can be expressed directly in terms of the weighted distribution of individual crash aversions. Define pseudo-probabilities

$$\pi_{Y_t} = \frac{\omega_Y \exp[YN_t + \lambda e^{-\gamma}(T-t)(e^Y - 1)]}{\sum_Y \omega_Y \exp[YN_t + \lambda e^{-\gamma}(T-t)(e^Y - 1)]}$$

(35)
as the weight assigned to investors of type Y at time t, and define cross-sectional average $E_{CS}(\bullet)$, variance $Var_{CS}(\bullet)$, and covariance with respect to those weights. It is shown in the appendix that the asset market equilibrium takes the form

$$
\ln(h^t_i / \lambda) = -R_g \gamma_d + \ln E_{CS}[e^Y]
= -R_g \gamma_d + E_{CS}[Y] + \frac{1}{2} Var_{CS}[Y]
$$

(36)

$$
\frac{\ln(S_i/D_i)}{T-t} = -\kappa_s + \ln E_{CS}[e^{\Phi(e^Y-1)}] = \Phi = \lambda(T-t) e^{-\gamma_d(e^Y-1)}
\approx \mu_d - (R-\frac{1}{2})\sigma_d^2 + \lambda e^{-\gamma_d} E_{CS}[e^Y](e^{\gamma_d}-1)
\approx \mu_d - \frac{1}{2} \sigma_d^2 + \lambda e^{-\gamma_d} E_{CS}[e^Y](e^{\gamma_d}-1)
$$

(37)

$$
\ln(1+k_t) \approx \gamma_d \left[1 + \lambda e^{-\gamma_d(T-t)} Cov_{CS}(Y, e^Y)\right].
$$

(38)

To a first-order approximation, jump insurance premia in (36) and equity prices in (37) replicate the homogeneous-agent equilibria, using average values for Y and e^Y, respectively. However, heterogeneity introduces second- and higher-order effects, as well, depending upon the dispersion of agents. In particular, the size of log equity jumps $\ln(1+k_t)$ in (33) and (38) can be substantially magnified relative to the dividend signal γ_d when there is substantial heterogeneity in agents.

Figure 4 below illustrates these impacts in the case of only two types of agents, conditional upon the initial wealth distribution and its impact on social weights ω (given below in equation (41)) and conditional upon an adverse dividend shock $\gamma_d = -.03$. The impact of small dividend announcements upon jumps in log equity prices is greatest in the central areas of wealth distribution. The substantial divergence of preferences in the center implies greater trading of crash insurance, and more substantial wealth redistribution and shifts in the investment opportunity set conditional upon a jump. The result is that a modest 3% drop in the dividend signal can induce a 3% to 18% drop in the log price of equity! As indicated in Table 2 below, this magnification is also present for alternate values of the risk aversion parameter R.

The crash insurance rate λ_t^* is always between the $\lambda e^{-R\gamma_d}$ value of the crash-tolerant investors ($Y = 0$), and the $\lambda e^{-Y-R\gamma_d}$ value of the crash-averse investors. Its value depends monotonically upon the relative weights of the two types of investors, and is biased upward relative to the wealth-weighted average by the variance term in equation (36). The equity premium μ varies somewhat with the magnitude of crash risk, in a non-monotonic fashion.

A final observation is that the asset market equilibrium depends upon the number of jumps N_t, and is consequently nonstationary. This is an almost unavoidable feature of equilibrium models with a fixed number of heterogeneous agents. Heterogeneity implies agents have different portfolio allocations, implying their relative wealth weights and the resulting asset market equilibrium depend

<table>
<thead>
<tr>
<th>$\ln(1 + k_t)$ given:</th>
<th>R</th>
<th>.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td></td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td></td>
</tr>
<tr>
<td>.0001</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td></td>
</tr>
<tr>
<td>.001</td>
<td>-.032</td>
<td>-.032</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td></td>
</tr>
<tr>
<td>.01</td>
<td>-.052</td>
<td>-.045</td>
<td>-.036</td>
<td>-.031</td>
<td>-.030</td>
<td></td>
</tr>
<tr>
<td>.1</td>
<td>-.157</td>
<td>-.136</td>
<td>-.090</td>
<td>-.044</td>
<td>-.034</td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>-.189</td>
<td>-.178</td>
<td>-.135</td>
<td>-.061</td>
<td>-.038</td>
<td></td>
</tr>
<tr>
<td>.3</td>
<td>-.187</td>
<td>-.189</td>
<td>-.163</td>
<td>-.079</td>
<td>-.043</td>
<td></td>
</tr>
<tr>
<td>.4</td>
<td>-.171</td>
<td>-.183</td>
<td>-.177</td>
<td>-.097</td>
<td>-.048</td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>-.149</td>
<td>-.166</td>
<td>-.178</td>
<td>-.114</td>
<td>-.053</td>
<td></td>
</tr>
<tr>
<td>.6</td>
<td>-.125</td>
<td>-.144</td>
<td>-.169</td>
<td>-.128</td>
<td>-.059</td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>-.101</td>
<td>-.118</td>
<td>-.149</td>
<td>-.135</td>
<td>-.066</td>
<td></td>
</tr>
<tr>
<td>.8</td>
<td>-.076</td>
<td>-.090</td>
<td>-.119</td>
<td>-.129</td>
<td>-.072</td>
<td></td>
</tr>
<tr>
<td>.9</td>
<td>-.053</td>
<td>-.060</td>
<td>-.079</td>
<td>-.096</td>
<td>-.065</td>
<td></td>
</tr>
<tr>
<td>.99</td>
<td>-.032</td>
<td>-.033</td>
<td>-.035</td>
<td>-.035</td>
<td>-.033</td>
<td></td>
</tr>
<tr>
<td>.999</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td>-.030</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4: Impact of initial relative wealth share $w_t = W'_t(0)/W(0)$ upon initial equilibrium quantities. Two agents, with crash aversion $Y = 0, 1$, respectively. Calibration: $\sigma = .20$, $\lambda = .25$, $\gamma_d = -.03$; $R = 1$, $T = 50$, $t = 0$.

Log jump size $\ln(1 + k_i)$

Crash premium λ^*_i / λ

Equity premium $\mu_t = R\sigma^2 + (\lambda - \lambda^*_i)k_i$

upon the nonstationary outcome of asset price evolution.\(^{10}\) In this model, the number of jumps N_t and time t are proxies for wealth distribution. Crashes redistribute wealth towards the more crash-averse, making the representative agent more crash-averse. An absence of crashes has the opposite effect through the payment of crash insurance premia.

\(^{10}\)See Dumas (1989) and Wang (1996) for examples of the predominantly nonstationary impact of heterogeneity in a diffusion context. An interesting exception is Chen and Kogan (2001), who show that external habit formation preferences can induce stationarity in an exchange economy with heterogeneous agents.
3.3 Supporting wealth evolution and portfolio choice

An investor’s wealth at any time t can be viewed as the value (or cost) of a contingent claim that pays off the investor’s share of terminal wealth $W_T = D_T$ conditional upon the number of jumps:

$$ W_Y(t) = E_t \left[\tilde{n}_T \tilde{D}_T \ w_Y(N_T, T; \omega) \right] $$

$$ = S_t \ \frac{E_t \left[\tilde{f}(N_T; \omega) \ \sum_y \omega_y^{1/R} e^{Y_N e^{Y_{Y_T}} / R} \right]}{E_t \left[\tilde{f}(N_T; \omega) \right]} \ \lambda e^{(1-R)Y_T} $$

$$ = S_t w_Y(N_T, t; \omega), \tag{39} $$

see equation (A.16) in the appendix for details. The quantity $w_Y(N_T, t; \omega)$ is the current share of current total wealth $W(t) = S_t$, and appropriately sums to 1 across all investors. The weights ω of the social utility function are implicitly identified up to an arbitrary factor of proportionality by the initial wealth distribution:

$$ w_{Y|I=0} = w_Y(0,0; \omega) $$

$$ = \kappa E_0 \left[\omega_y^{1/R} e^{Y_N e^{Y_{Y_T}} / R} \ f(N_T; \omega) \right]^{1 - \frac{1}{R}} \ \lambda e^{(1-R)Y_T} \tag{40} $$

for $\kappa = E_0 \left[\tilde{f}(N_T; \omega) \right] \ \lambda e^{(1-R)Y_T}$. In the $R = 1$ case the mapping between ω and the initial wealth distribution is explicit, and takes the form

$$ w_{Y|I=0} = \kappa \omega_Y e^{\lambda T(y - 1)}. \tag{41} $$

The investment strategy that dynamically replicates the evolution of $W_Y(t)$ can be identified using positions in equity and crash insurance that mimic the diffusion- and jump-contingent evolution:
\[X_Y = \frac{\partial W_Y(S, N, t)}{\partial S} = w_Y(N, t; \omega) \]

\[Q_Y = [\Delta W_Y - N_s \Delta S]_{dN} \]

\[= S(1 + k_t)[w_Y(N + 1, t, \omega) - w_Y(N, t, \omega)]. \tag{42} \]

where \(k_t = k(N, t) \) is the percentage jump size in the equity price given above in equations (33) and (38). Thus, each investor holds \(X_Y = W_Y(t)/S \) shares of equity (i.e., is 100% invested in equity), and holds a relative crash insurance position of

\[q_Y(t) = \frac{Q_Y(t)}{W_Y(t)} = (1 + k_t) \left[\frac{w_Y(N + 1, t; \omega)}{w_Y(N, t; \omega)} - 1 \right]. \tag{43} \]

The wealth-weighted aggregate crash insurance positions \(\sum_Y w_Y(N, t; \omega) q_Y(t) \) appropriately sum to 0.

Figure 5 below graphs the individual crash insurance demands \((q_0, q_1) \) given crash aversions \(Y = 0 \) and 1, respectively, conditional upon the initial wealth allocation \(w_1 = W_1(0)/W(0) \) and its

![Figure 5. Equilibrium crash insurance positions and aggregate demand for crash insurance, as a function of \(w_1 = W_1(0)/W(0) \). Calibration is the same as in Figure 4.](image-url)
Campbell and Viceira (1999) and Campbell, Rodriguez and Viceira (2001) find substantial hedging against stochastic shifts in expected returns, while Chacko and Viceira (1999) find little hedging against stochastic volatility. The two approaches diverge in the specification and calibration of shifts in the investment opportunity set.

The aggregate demand for crash insurance $w_1 q_1$ is also graphed, using the same calibration as in Figure 4 above. At $w_1 = 0$, crash-tolerant investors ($Y = 0$) set a relatively low market-clearing price $\lambda^* = \lambda e^{-\gamma t}$ and sell little insurance. Crash-averse investors ($Y = 1$) insure heavily individually, but are a negligible fraction of the market. As w_1 increases, λ^* does as well (see Figure 4 above) and the crash insurance positions of both investors decline. Aggregate crash insurance volumes are heaviest in the central regions where both types of investors are well represented. As w_1 approaches 1, the high price of crash insurance induces crash-tolerant investors to write contracts that will cost them 60% of their wealth conditional upon a crash.

3.3.1 Optimality

The individual’s investment strategy yields a terminal wealth W_{YT}, and an associated terminal marginal utility of wealth $U_{\mu}(W_{YT}, N_T; Y)$ that (from equation (26)) is proportional to the Lagrangian multiplier η_T that prices all assets. Therefore, no investor has an incentive to perturb his investment strategy given equilibrium asset prices and price processes. Furthermore, as noted above, the markets for equity and crash insurance clear, so the markets are in equilibrium. Since all individual state-dependent marginal utilities are proportional at expiration, the market is effectively complete. All investors agree on the price of all Arrow-Debreu securities, so their introduction would not affect the equilibrium.

3.3.2 Comparison with myopic investment strategies

The equilibrium asset price evolution in Section 3.2 involves considerable and stochastic evolution over time of the instantaneous investment opportunity set. Since Merton (1973), hedging against such shifts has been identified as the key distinction between static and dynamic asset market equilibria. As there are conflicting results even in a diffusion setting as to the quantitative importance of such hedging,11 and as there has been little exploration of the issue in a jump-diffusion context, a comparison with the myopic investment strategies characteristic of static equilibria may

11Campbell and Viceira (1999) and Campbell, Rodriguez and Viceira (2001) find substantial hedging against stochastic shifts in expected returns, while Chacko and Viceira (1999) find little hedging against stochastic volatility. The two approaches diverge in the specification and calibration of shifts in the investment opportunity set.
be useful. Furthermore, myopic strategies are optimal when investors have unitary risk aversion ($R = 1$), or when returns are i.i.d. -- e.g., in the case of investor homogeneity.

The myopic portfolio allocation is defined as the position that maximizes terminal expected utility

$$J(W_t, N_t, t) = \max E_t e^{yN_t} \frac{W_t^{1-R} - 1}{1 - R}$$

conditional upon assuming instantaneous investment opportunities will remain unchanged at the current level over the investor’s lifetime. Those opportunities are summarized by the instantaneous cost of crash insurance λ^*, and the price process

$$dS/S = \mu dt + \sigma dZ + k(dN - \lambda dt).$$

No assumption are made at this stage regarding the values of (μ, k, λ^*).

It is shown in the appendix that the myopic investor will choose constant portfolio proportions

$$x_{\text{myopic}} = \frac{1}{R\sigma^2} \left[\mu + (\lambda^* - \lambda)k \right]$$

$$q_{\text{myopic}} = \left(\frac{\lambda e^y}{\lambda^*} \right)^{\frac{1}{\gamma}} - (1 + w^*k)$$

where $x = S_t X/W$ is the portfolio share in equity, and

$q = Q/W$ is the number of insurance contracts as a fraction of overall wealth.

If investors are homogeneous, the market-clearing conditions $(x_{\text{myopic}}, q_{\text{myopic}}) = (1, 0)$ yield the equilibrium and time-invariant (μ, λ^*) given above in equations (11) and (15). The above myopic portfolio weights are also optimal under time-varying $(\mu_t, k_t, \lambda_t^*)$ when $R = 1$, but not for general R.

The myopic portfolio allocation equations (46) indicate that equity and crash insurance are complements when jumps are negative ($k < 0$). An increase in the price of crash insurance λ^* lowers the demand for both equity and crash insurance, while an increase in the expected excess return μ on equity raises both. The equations also indicate that myopic crash insurance positions
but not equity positions are directly affected by the investor’s idiosyncratic crash aversion parameter Y. Furthermore, at the equilibrium equity premium (32), myopic investors duplicate the optimal investment strategy of holding 100% in equity, and diverge from that optimum only in their holdings of crash insurance.

Table 3 compares the optimal and myopic crash insurance strategies at the equilibrium values for (k_t, λ_t) resulting from various initial wealth allocations and risk aversion. The two strategies are broadly similar across different asset market equilibria, and are identical either when risk aversion $R = 1$, or when a preponderance of one type of individual ($W_1(t)/W(t) = 0$ or 1) yields a homogeneous-agent equilibrium with a time-invariant investment opportunity set.

The table indicates that a myopic strategy can be a poor approximation to the optimal strategy in other cases. The divergence is most pronounced for the large positions achieved under low levels of risk aversion ($R = \frac{1}{2}$), but is also present for larger R values. For instance, when crash-tolerant and crash-averse investors are equally represented ($W_1/W = \frac{1}{2}$) and $R = 2$, a 3% adverse dividend shock will induce a 17.8% stock market crash (from Table 2). The crash-averse buy crash insurance contracts from the crash-tolerant that pay off 36.5% of current wealth conditional on a crash. The myopic positions $(q_{0 \text{ myopic}}, q_{1 \text{ myopic}}) = (-16.9\%, 26.4\%)$ in Table 3 substantially understate the magnitude of those optimal insurance positions.
Table 3. Optimal and myopic crash insurance positions, at equilibrium asset prices determined by
idiosyncratic crash aversions $Y = 0, 1$, initial wealth allocation $w_1 = W_1(0) / W(0)$, and common risk
aversion R. Equilibrium values for $\ln(1 + k_T)$ and parameter values are in Table 2 above. Entries indicate
the payoff of insurance positions conditional on a crash, as a fraction of investor’s wealth.

<table>
<thead>
<tr>
<th>w_1</th>
<th>Crash aversion $Y = 0$; $R =$</th>
<th>Crash aversion $Y = 1$; $R =$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Optimal positions q_Y^\ast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.001</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.001</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>0.01</td>
<td>-0.017</td>
<td>-0.016</td>
</tr>
<tr>
<td>1.0</td>
<td>-1.128</td>
<td>-1.128</td>
</tr>
<tr>
<td>2.0</td>
<td>-2.215</td>
<td>-2.214</td>
</tr>
<tr>
<td>3.0</td>
<td>-2.85</td>
<td>-2.82</td>
</tr>
<tr>
<td>4.0</td>
<td>-3.47</td>
<td>-3.39</td>
</tr>
<tr>
<td>0.5</td>
<td>-4.02</td>
<td>-3.91</td>
</tr>
<tr>
<td>0.6</td>
<td>4.52</td>
<td>4.40</td>
</tr>
<tr>
<td>0.7</td>
<td>-4.99</td>
<td>-4.85</td>
</tr>
<tr>
<td>0.8</td>
<td>-5.42</td>
<td>-5.29</td>
</tr>
<tr>
<td>0.9</td>
<td>-5.84</td>
<td>-5.72</td>
</tr>
<tr>
<td>0.99</td>
<td>-6.29</td>
<td>-6.09</td>
</tr>
<tr>
<td>0.999</td>
<td>-6.51</td>
<td>-6.13</td>
</tr>
<tr>
<td>1.0</td>
<td>0.00</td>
<td>-0.00</td>
</tr>
</tbody>
</table>

Myopic positions q_Y^{myopic}

<table>
<thead>
<tr>
<th>w_1</th>
<th>Crash aversion $Y = 0$; $R =$</th>
<th>Crash aversion $Y = 1$; $R =$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.001</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.001</td>
<td>-0.004</td>
<td>-0.002</td>
</tr>
<tr>
<td>0.01</td>
<td>-0.041</td>
<td>-0.016</td>
</tr>
<tr>
<td>1.0</td>
<td>-2.84</td>
<td>-1.28</td>
</tr>
<tr>
<td>2.0</td>
<td>-4.29</td>
<td>-2.14</td>
</tr>
<tr>
<td>3.0</td>
<td>-5.22</td>
<td>-2.82</td>
</tr>
<tr>
<td>4.0</td>
<td>-5.92</td>
<td>-3.39</td>
</tr>
<tr>
<td>0.5</td>
<td>-6.48</td>
<td>-3.91</td>
</tr>
<tr>
<td>0.6</td>
<td>-6.95</td>
<td>-4.40</td>
</tr>
<tr>
<td>0.7</td>
<td>-7.37</td>
<td>-4.85</td>
</tr>
<tr>
<td>0.8</td>
<td>-7.74</td>
<td>-5.29</td>
</tr>
<tr>
<td>0.9</td>
<td>-8.08</td>
<td>-5.72</td>
</tr>
<tr>
<td>0.99</td>
<td>-8.36</td>
<td>-6.09</td>
</tr>
<tr>
<td>0.999</td>
<td>-8.39</td>
<td>-6.13</td>
</tr>
<tr>
<td>1.0</td>
<td>-8.39</td>
<td>-6.13</td>
</tr>
</tbody>
</table>
3.4 Option markets

3.4.1 Option prices

At time 0, European call options of maturity \(t \) are priced at expected terminal value weighted by the pricing kernel:

\[
c(S_0, t; X) = E_0 \left[\frac{\eta_t}{\eta_0} \max(S_t - X, 0) \right]
\]

(47)

\[
= E_0^* \left[\max(S_t - X, 0) \right].
\]

Conditional upon \(N_t \) jumps over \((0, t]\), \(\eta_t \) and \(S_t \) have a joint lognormal distribution that reflects their common dependency on \(D_t \) given above in equations (28) and (29). Consequently, it is shown in the appendix that the risk-neutral distribution for \(S_t \) is a weighted mixture of lognormals, implying European call option prices are a weighted average of Black-Scholes-Merton prices:

\[
c(S_0, t; X) = \sum_N w_N c_{BS}(S_0, t; X, b_N, r = 0)
\]

(48)

\[
= \sum_N w_N^* \left[S_0 e^{b_N t} N(d_{1N}) - X N(d_{2N}) \right]
\]

where \(\lambda' = \lambda e^{-R\gamma_d} \),

\[
w_N^* = \frac{e^{-\lambda'(\lambda' t)^N}}{N!} \frac{g(N, t; \lambda')}{g(0, 0; \lambda')},
\]

\[
b_N = \lambda'(e^{\gamma_d} - 1) + \left\{ n\gamma_d + \ln \left[m(N, t)/m(0, 0) \right] \right\} / t,
\]

\[
d_{1N} = \left[\ln(S_0/X) + b_N t + \frac{1}{2} \sigma_d^2 t \right] / \sigma_d \sqrt{t}
\]

and

\[
d_{2N} = d_{1N} - \sigma_d \sqrt{t}.
\]

Put prices can be computed from call prices using put-call parity:

\[
p(S_0, t, X) = c(S_0, t, X) + X - S_0.
\]

(49)

Since jumps are always negative, the distribution of log-differenced equity prices implicit in option prices is always negatively skewed. The maturity profile of implicit skewness is quite sensitive to the initial distribution of wealth, given the nonmonotonic dependency of \(\ln(1 + k_t) \) on wealth distribution shown above in Table 2 and Figure 4. For small values of \(w_1 \), a second jump will be larger than the first. The increasing probability of multiple jumps at longer maturities causes implicit skewness to fall slower than the \(1 / \sqrt{t} \) rate of i.i.d. returns, implying slower flattening out.
of the implicit volatility smirk. For larger values of w_1, the size of sequential jump sizes is reversed, and implicit skewness can fall faster than the $1/\sqrt{t}$ rate of i.i.d. returns; see Figure 6.

However, model-specific estimates from option prices such as in Table 1 above indicate that implicit $Skew[t]$ (rather than $Skew[t] \times \sqrt{t}$) is roughly flat across option maturities t. This stylized fact appears common to a broad array of futures options, as indicated in the Tompkins (2000) survey of volatility smiles and smirks.12 Thus, although Bates (2000) argues that stochastic implicit jump intensities λ_i are needed to match the volatility smirk at longer maturities, it does not appear that the stochastic variation of (λ_i^*, k_i) in this model generates the correct maturity profile of implicit skewness.

3.4.1 Option replication and dynamic completion of the markets

Options can be dynamically replicated using positions in equity and crash insurance. Instantaneously, each call option has a price $c(S_t, N_t, t)$, and can be viewed as an instantaneous bundle of c_S units of equity risk, and $[\Delta c - c_S \Delta S]_{dN_{t-1}} > 0$ units of crash insurance.

12Tompkins examines implicit volatility patterns from various countries’ futures options on currency, stock index, bonds and interest rates, with the moneyness dimension appropriately scaled by maturity-specific volatility estimates from at-the-money options. He finds some maturity variation in implicit volatility patterns, but not much by comparison with the strong inverse pattern predicted by i.i.d. returns.
This equivalence between options and crash insurance indicates how investors replicate the optimal positions of section 3.3 dynamically using the call and/or put options actually available. Crash-averse investors choose an equity/options bundle with unitary delta overall and positive gamma (e.g., hold 1½ stocks and buy one at-the-money put option), while crash-tolerant investors take offsetting positions that also possess unitary delta (e.g., hold ½ stock, and write 1 put option). Equity and option positions are adjusted in a mutually acceptable and offsetting fashion over time, conditional upon the arrival of dividend news.

A further implication is that the crash-tolerant investors who write options actively delta-hedge their exposure, which is consistent with the observed practice of option market makers. As λ_t^+ / λ increases (e.g., because of wealth transfers to the crash-averse from crashes), the market makers respond to the more favorable prices by writing more options as a proportion of their wealth. They simultaneously adjust their equity positions to maintain their overall target delta of 1. This strategy is equivalent to market makers putting their personal wealth in an index fund, and fully delta-hedging every index option they write.

3.5 Consistency with empirical option pricing anomalies

The heterogeneous-agent model explains unconditional deviations between risk-neutral and objective distributions analogously to the homogeneous-agent model. The divergence in the jump intensity λ_t^+ implicit in options and the true jump frequency λ can reconcile the average divergence between risk-neutral and objective variance, and between the predicted and observed frequency of jumps over 1988-98. The heterogeneous-agent model can also be somewhat more consistent with the maturity profile of implicit skewness than the homogeneous-agent model, although still appears inadequate relative to observed patterns.

The advantage of the heterogeneous-agent model is that it can explain some of the conditional divergences as well. First, the stochastic evolution of λ_t^+ is qualitatively consistent with the evolution of jump intensity proxy V1 shown above in Figure 2. λ_t^+ depends directly upon the

13As indicated above in Figure 4, the total volume (open interest) in crash insurance and therefore in options can either rise or fall as the wealth distribution varies.
relative wealth distribution, which in turn follows a pure jump process given above in (40) for the $R = 1$ case. Consequently, market jumps cause sharp increases in λ^*_t, while an absence of jumps generates geometric decay in λ^*_t towards the lower level of crash-tolerant investors.

Figure 7 below illustrates the resulting evolution of instantaneous risk-neutral variance $(R\sigma^2 + \lambda^*_t \gamma_t^2)$ conditional on the five major shocks over 1988-98, and conditional on starting with $w_1 = .1$ at end-1987. This behavior is qualitatively similar to the actual impact of jumps on overall variance and on jump risk shown above in Figure 2. However, the absence of major shocks over 1992-96 and the resulting wealth accumulation by crash-tolerant investors/option market makers implies that the shocks of 1997 and 1998 should not have had the major impact that was in fact observed.

It is possible the heterogeneous model can explain the results from ISD regressions as well. The analysis is complicated by the fact that instantaneous objective and risk-neutral variance are nonstationary, with a nonlinear cointegrating relationship from their common dependency on the nonstationary variable N_t:

\[\text{Figure 7. Simulated instantaneous risk-neutral variance } R\sigma^2 + \lambda^*_t \gamma_t^2 \text{ conditional upon jump timing matching that observed over 1988-98.} \]

Calibration: $w_1(0) = 10\%$; i.e., crash-averse investors own 10\% of total wealth at end-1987.
\[\text{Var}_t[d\ln S] = [\sigma^2 + \lambda \gamma_t^2] \, dt \]
\[\text{Var}_t^*[d\ln S] = [\sigma^2 + \lambda^* (N_t, t) \gamma_t^2] \, dt \]

(50)

for \(\gamma_t = \ln[1 + k(N_t, t)] \) and \(\lambda^* > \lambda \). It is not immediately clear whether regressing realized on implied volatility is meaningful under nonlinear cointegration. However, the fact that implicit variance does contain information for objective variance but is biased upwards suggests that running this sort of regression on post-'87 data would yield the usual informative-but-biased results reported above in equation (2), with estimated slope coefficients less than 1 in sample.

It does not appear that the heterogeneous-agent model can explain the implicit pricing kernel puzzle. Using the same projection as in (19) above, the projected pricing kernel is

\[M(S_t) = \frac{E_0[\eta_t | S_t]}{\eta_0} = \kappa S_t^{-R} \sum_{N=0}^{\infty} w_N^{**} \frac{p(S_t | N)}{p(S_t)} \text{ where} \]

\[w_N = e^{-\lambda t} \frac{(\lambda t)^N}{N!}, \quad w_N^{**} = \frac{w_N m(N, t)^R g(N, t, \lambda e^{(1-R)\gamma_t})}{\sum_{N=0}^{\infty} w_N m(N, t)^R g(N, t, \lambda e^{(1-R)\gamma_t})}. \]

(51)

As illustrated in Figure 8, this implicit pricing kernel appears to be a strictly decreasing function of \(S_t \) -- in contrast to the locally positive sections estimated in Jackwerth (2000) and Rosenberg and Engle (2000). However, the above implicit kernel can replicate those studies’ high implicit risk aversion.

\[\ln E_0[\eta_t | \Delta s_t] \]

\[\Delta s_t \]

\[\Delta s_t \]

\[\Delta s_t \]

Figure 8. Log of the implicit pricing kernel conditional upon realized asset returns.
 Calibration: \(w_1 = .3, t = 1/12 \).
for large negative returns, as indicated by the slope of the line in Figure 8 for Δs in the -10% to -20% ranges.

4. Summary and conclusions
This paper has proposed a modified utility specification, labeled “crash aversion,” to explain the observed tendency of post-’87 stock index options to overpredict realized volatility and jump risk. Furthermore, the paper has developed a complete-markets methodology that permits identification of asset market equilibria and associated investment strategies in the presence of jumps and investor heterogeneity. The assumption of heterogeneity appears to have stronger consequences than observed with diffusion models. Jumps can cause substantial reallocation of wealth, and the resulting shifts in the investment opportunity set can be substantial. Small announcement effects regarding the terminal value of the market can have substantially magnified instantaneous price impacts when investors are heterogeneous.

The model has been successful in explaining some of the stylized facts from stock index options markets. The specification of crash aversion is compatible with the tendency of option prices to overpredict volatility and jump risk, while heterogeneity of agents offers an explanation of the stochastic evolution of implicit jump risk and implicit volatilities. In this model, the two are higher immediately after market drops not because of higher objective risk of future jumps (as predicted by affine models), but because crash-related wealth redistribution has increased average crash aversion. Crash aversion is also consistent with the implicit pricing kernel approach’s assessment of high implicit risk aversion at low wealth levels, although the approach cannot replicate the locally risk-loving behavior reported in Jackwerth (2000) and Rosenberg and Engle (2000).

While motivated by empirical option price regularities, the model in the paper is not suitable for direct estimation. First, jump risk is not the only risk spanned in the options markets. Stochastic variations in conditional volatility occur more frequently, and are also important to option market makers. Second, the nonstationary equilibrium derived here and characteristic of most heterogeneous-agent models hinders estimation. The purpose of the paper is to provide a framework
for exploring the trading of jump risk through the options markets, as an initial model of the option market making process.

The framework in this paper can be expanded in various ways. For simplicity, this paper has focused on deterministic jumps and an “external” crash aversion specification insensitive to the impact of crashes upon individual wealth. Extending the model to random jumps and/or “internal” crash aversion should be relatively straightforward, although feedback effects in the latter case could require additional restrictions to achieve an equilibrium. A particularly interesting extension could be to explore the implications of portfolio constraints on positions in options and/or jump insurance. Selling crash insurance requires writing calls or puts -- a strategy that individual investors cannot easily pursue. Further research will examine the impact of such constraints upon equilibria in equity and options markets.
Appendix

Section A.1 of the appendix prices assets when agents are heterogeneous. Section A.2 derives the myopic investment strategies. Section A.3 derives the objective and risk-neutral probability density functions under heterogeneity. Section A.4 derives properties of the implicit pricing kernel under homogeneous and heterogeneous agents.

A.1 Asset market equilibrium in a heterogeneous-agent economy (Section 3.2)

Lemma: If the log-dividend $d_t = \ln D_t$ follows the jump-diffusion given above in equation (3) and $h(N_T)$ is an arbitrary function, then

$$E_t \left[D_T^m h(N_T) | \lambda \right] = D_t^m e^{(T-t)[\mu_d + \frac{1}{2}m^2\sigma_d^2 + \lambda(e^{m\gamma_d} - 1)]} E_t \left[h(N_T + \tilde{n}) | \lambda e^{m\gamma_d} \right]$$

(A.1)

where $E_t[\bullet | \lambda]$ denotes expectations conditional upon a jump intensity λ over $(t, T]$.

Proof:

$$E_t \left[D_T^m h(N_T) \right] = D_t^m E_t \left[e^{m\Delta_d h(N_T)} \right]$$

$$= D_t^m E_t \left[e^{m\Delta_d h(N_T + \tilde{n})} \right]$$

$$= D_t^m e^{\tau[m\mu_d + \frac{1}{2}m^2\sigma_d^2]} E_t \left[e^{m\tilde{n}\gamma_d} h(N_T + \tilde{n}) \right]$$

$$= D_t^m e^{(T-t)[m\mu_d + \frac{1}{2}m^2\sigma_d^2 + \lambda(e^{m\gamma_d} - 1)]} E_t \left[h(N_T + \tilde{n}) | \lambda e^{m\gamma_d} \right]$$

(A.2)

where $\tau = T - t$. ■

The asset pricing equations (28)-(30) follow directly from the lemma:

$$\eta_t = E_t \eta_T$$

$$= E_t \left[D_T^{\tau R} \tilde{f}(N_T) \right]$$

$$= D_t^{\tau R} e^{\kappa(t, \tau)} E_t \left[\tilde{f}(N_T) | \lambda e^{-R_d} \right]$$

$$= D_t^{\tau R} e^{\kappa(t, \tau)} E_t \left[g(N_t, t; \lambda e^{-R_d}) \right]$$

(A.3)
\[S_t = \frac{E_t[D_T \eta_t]}{\eta_t} \]
\[= \frac{E_t[D_T f(N_T)]^{1-R}}{E_t[f(N_T)]^{1-R}} \]
\[= D_t e^{\kappa_S(T-t)} \frac{E_t[f(N_T) \mid \lambda e^{-Rt}, N_t + 1]}{E_t[f(N_T) \mid \lambda e^{-Rt}, N_t]} \]
\[= D_t e^{\kappa_S(T-t)} \frac{g(N_t + 1, t; \lambda e^{-Rt})}{g(N_t, t; \lambda e^{-Rt})} \]

(A.4)

\[\lambda_t^* = \frac{\lambda \eta_t}{\eta_t} \]
\[= \frac{(D_t e^{\kappa_d})^{1-R} E_t[f(N_T) \mid \lambda e^{-Rt}, N_t + 1]}{D_t e^{\kappa_d} E_t[f(N_T) \mid \lambda e^{-Rt}, N_t]} \]
\[= e^{-Rt} \frac{g(N_t + 1, t; \lambda e^{-Rt})}{g(N_t, t; \lambda e^{-Rt})} \]

(A.5)

for \(\kappa_q = -R \mu_d + \frac{1}{2} R^2 \sigma^2 + \lambda (e^{-R} - 1) \) and \(\kappa_S = (\mu_d + \frac{1}{2} \sigma_d^2) - R \sigma^2 + \lambda e^{-R} (e^{-1} - 1) \).

In the special case \(R = 1 \) and for arbitrary \(\lambda' \),
\[g(N_t, t, \lambda') = E_t[f(N_T) \mid \lambda'] \]
\[= E_t[\sum_Y \omega_Y e^{YN_t} \mid \lambda'] \]
\[= \sum_Y \omega_Y \exp[YN_t + \lambda'(T-t)(e^{-} - 1)] \]

(A.6)

Define \(\lambda' = \lambda e^{-R_t} \) and \(\lambda'' = \lambda e^{(1-R)t} \), and define pseudo-probabilities
\[\pi_{yt} = \frac{\omega_y \exp[YN_t + \lambda'(T-t)(e^{-} - 1)]}{\sum_Y \omega_y \exp[YN_t + \lambda'(T-t)(e^{-} - 1)]} \]

(A.7)

Using (A.6) for \(g \), the equity pricing equation (A.4) becomes
\[
\frac{S_t}{D_t} = e^{\kappa_d(T-t)} \sum_y \omega_y \exp \left[YN_t + \lambda''(T-t)(e^y - 1) \right] \\
= e^{\kappa_d(T-t)} \sum_y \pi_y e^{(\lambda'' - \lambda')(T-t)(e^y - 1)} \\
= e^{\kappa_d(T-t)} E_{CS} \Phi(ex^y - 1)
\]

(A.8)

for the cross-sectional expectation \(E_{CS}(\bullet) \) defined with regard to probabilities (A.7), and for \(\Phi = (\lambda'' - \lambda')(T-t) = \lambda e^{\gamma_d}(e^{-Rt_d} - 1)(T-t) \). From (A.5), the jump risk premium has a similar representation:

\[
\lambda^*_t = e^{-Rt_d} \sum_y \omega_y \exp \left[Y(N_t + 1) + \lambda'(T-t)(e^y - 1) \right] \\
= e^{-Rt_d} \sum_y \pi_y e^y \\
= e^{-Rt_d} E_{CS} \Phi_e^y
\]

(A.9)

The approximation for the log jump size follows from the following approximations:

\[
\ln m(N_t, t) = \ln \left[\frac{g(N_t, t; \lambda'')}{g(N_t, t; \lambda')} \right] \\
= \frac{\partial \ln g(N_t, t; \lambda')}{\partial \lambda'} (\lambda'' - \lambda') \\
\ln (1 + k_t) = R_{\gamma_d} + \ln \left[\frac{m(N_t + 1, t)}{m(N_t, t)} \right] \\
= R_{\gamma_d} \frac{\partial \ln m(N_t; t)}{\partial N_t} \\
= R_{\gamma_d} \frac{\partial^2 \ln g(N_t; t; \lambda')}{\partial N_t \partial \lambda'} (\lambda'' - \lambda').
\]

(A.10)

(A.11)

For \(R = 1 \), the partial derivatives of \(\ln g \) are
\[
\frac{\partial \ln g(N_t, t; \lambda')}{\partial N_t} = \frac{\sum \omega_Y Y \exp \left[YN_t + \lambda' (T-t) (e^Y - 1) \right]}{\sum \omega_Y \exp \left[YN_t + \lambda' (T-t) (e^Y - 1) \right]} \]

\[= E_{CS} (Y) \tag{A.12} \]

\[
\frac{\partial \ln g(N_t, t; \lambda')}{\partial \lambda'} = \frac{\sum \omega_Y (T-t) (e^Y - 1) \exp \left[YN_t + \lambda' (T-t) (e^Y - 1) \right]}{\sum \omega_Y \exp \left[YN_t + \lambda' (T-t) (e^Y - 1) \right]} \]

\[= (T-t) E_{CS} (e^Y - 1) \tag{A.13} \]

while the cross-derivative is

\[
\frac{\partial^2 \ln g(N_t, t; \lambda')}{\partial N_t \partial \lambda'} = (T-t) \left\{ \sum \pi_{Yt} Y (e^Y - 1) - \sum \pi_{Yt} Y \sum \pi_{Yt} (e^Y - 1) \right\} \]

\[= (T-t) \text{Cov}_{CS} \{Y, e^Y\}. \tag{A.14} \]

Consequently (from (A.11)),

\[
\ln (1 + k_t) \approx R e^{\gamma_d} + (\lambda'' - \lambda')(T-t) \text{Cov}_{CS} \{Y, e^Y\} \]

\[\approx R e^{\gamma_d} + \lambda e^{\gamma_d} (e^{-R e^{\gamma_d}} - 1)(T-t) \text{Cov}_{CS} \{Y, e^Y\}. \tag{A.15} \]

Section 3.3, equation (39)

\[
V_t = E_{\tilde{\eta}_T} \left[\tilde{D}_T \left(\frac{e^{Y N_t}}{\hat{f}(N_T)} \right)^{1-R} \right] \]

\[= E_{\hat{f}} \left[D_T^{1-R} e^{Y N_t / R} \hat{f}(N_T)^{1-R} \right] \tag{A.16} \]

\[= \frac{D_t^{1-R} e^{\kappa_s (T-t)} E_{\hat{f}} \left[\hat{f}(N_T)^{1-R} \right]}{D_t R} \frac{E_{\hat{f}} \left[\hat{f}(N_T) \lambda e^{(1-R) \gamma_d} \right]}{E_{\hat{f}} \left[\hat{f}(N_T) \lambda e^{-\gamma_d} \right].} \]

Substituting in \(S_t = D_t e^{\kappa_s (T-t)} \left[\hat{f}(N_T) \frac{\lambda e^{(1-R) \gamma_d}}{\hat{f}(N_T) \lambda e^{-\gamma_d}} \right] \) from (A.4) yields (39).
A.2 Myopic portfolio choice (Section 3.3.2)

The myopic portfolio allocation strategy \((x, q)\) in equity and crash insurance maximizes the Hamilton-Jacobi-Bellman equation

\[
0 = \max_{\{x, q\}} E_t J_t(W_t, N_t, t) = \max_{\{x, q\}} E_t J_t + W J W[x(\mu - \lambda^* k) - \lambda^* q] + W^2 J_{WW} x^2 \sigma^2
\]

\[
+ \lambda \left[J(W(1 + xk + q), N_t + 1, t) - J \right]
\]

under the assumption of constant \((\mu, \sigma, \lambda, \lambda^*, k)\), and subject to the terminal boundary condition

\[
J(W_T, N_T, T) = e^{YN_T} \frac{W_T^{1-R} - 1}{1 - R}.
\]

The first-order conditions to (A.17) with respect to \(q\) and \(x\) are

\[
\lambda^* = \lambda \left(\frac{J_W[W(1 + xk + q), N + 1, t]}{J_W(W, N, t)} \right) = \lambda \left(\frac{J^*_W}{J_W} \right)
\]

\[
x = \left(\frac{-W J_{WW}}{J_W} \right)^{-1} \frac{\mu + (\lambda^* - \lambda)k}{\sigma^2}
\]

Given the terminal utility specification, it is straightforward to show that the value function \(J\) is of the form

\[
J(W_t, N_t, t) = g_1(T - t) \frac{W_t^{1-R} - 1}{1 - R} e^{YN_t} + \frac{e^{YN} g_2(T - t)}{1 - R}
\]

with an associated marginal utility function

\[
J_W(W_t, N_t, t) = g_1(T - t) W_t^{-R} e^{YN_t}.
\]

Since \((-W J_{WW}/J_W) = R\) and \(J^*_W/J_W = e^Y (1 + xk + q)^R\), this marginal utility function yields constant portfolio proportions that satisfy
\[x^{\text{myopic}} k + q^{\text{myopic}} = \left(\frac{\lambda e^Y}{\lambda^*} \right)^{1/R} - 1 \]
(A.22)

\[x^{\text{myopic}} = \frac{1}{R \sigma^2} \left[\mu + (\lambda^* - \lambda) k \right] \]

under a constant investment opportunity set. Furthermore, the value function and these portfolio proportions satisfies the Hamilton-Jacobi-Bellman equation for some functions \(g_1 \) and \(g_2 \) that appropriately converge to 1 as \(t \to T \).

If \(R = 1 \), myopic investment strategies are optimal even if investment opportunities \((\mu_t, \sigma_t, \lambda_t^*, k_t)\) are stochastic. Defining \(\tau = T - t \), the objective function becomes

\[
J(W_t, N_t, t) = \max E_t \left(e^{YN_t} \ln W_T \right)
= \max \sum e^{-\lambda t(N_t+n)} \frac{1}{n!} e^{\gamma(N_t+n)} E_t[\ln W_T | N_t + n \text{ jumps}]
= e^{YN_t} e^{\lambda \tau(e^Y-1)} \max E_t^* \left(\ln W_T | \lambda e^Y \right)
= e^{YN_t} e^{\lambda \tau(e^Y-1)} \left\{ \ln W_t + \int_{s=t}^{T} \max E_t^* \left(\ln W_s \right) \right\} \]

(A.23)

where \(E_t^* \) is a modified expectation conditional upon a jump intensity \(\lambda e^Y \) over \((t, T)\). Consequently, the marginal utility

\[
J^*_t(W_t, N_t, t) = \frac{e^{YN_t} e^{\lambda (T-t)(e^Y-1)}}{W_t} \]
(A.24)

is again of the form (A.21) above, and optimal portfolio proportions are given by (A.22) with \(R = 1 \).

A.3 Objective and risk-neutral distributions

Stock prices and pricing kernels are jump-dependent multiples of the dividend signal, which is in turn a draw from jump-dependent mixture of lognormals. From (29), gross stock returns are

\[
\frac{S_t}{S_0} = e^{-\kappa_s t} \frac{D_t}{D_0} \frac{m[N_t, t]}{m[0, 0]} \]
(A.25)

for \(\kappa_s = (\mu_d + \frac{1}{2} \sigma_d^2) - R \sigma^2 + \lambda e^{-Rt}(e^Y - 1) \). The density function for \(\Delta d = \ln[D_t/D_0] \) is...
\[
p_d(\Delta d) = \sum_{N=0}^{\infty} w_N n(\Delta d \mid \mu_d t + N \gamma_d, \sigma_d^2 t) \quad \text{for} \quad w_N = \frac{e^{\lambda t}(\lambda t)^N}{N!} \tag{A.26}
\]

for \(n(\Delta d \mid m, \sigma^2) \) equal to the normal density function with mean \(m \) and variance \(\sigma^2 \). Consequently, log-differenced stock prices \(\Delta s = \ln[S_t/S_0] \) are also drawn from a mixture of normals:

\[
p(\Delta s) = \sum_{N=0}^{\infty} w_N \left\{ \Delta s \mid (R - \frac{1}{2} \sigma^2_d) t + \lambda e^{-\gamma_d} (e^{\gamma_d} - 1) t + N \gamma_d + \ln[m(N, t)/m(0, 0)], \sigma^2_d t \right\}
\]

\[
= \sum_{N=0}^{\infty} w_N \left\{ \Delta s \mid \mu_N, \sigma^2_d t \right\}. \tag{A.27}
\]

Define \(1(\Delta s = z) \) as the delta function that takes on infinite value when \(\Delta s = z \), zero value elsewhere, and integrates to 1. The objective density function \(p(z) = E_0[1(\Delta \tilde{s} = z)] \), while the risk-neutral density function is

\[
p^*(z) = E_0^*[1(\Delta \tilde{s} = z)]
\]

\[
= E_0 \left[\frac{\eta}{\eta_0} 1(\Delta \tilde{s} = z) \right]
\]

\[
= \sum_{N=0}^{\infty} \frac{w_N E_0[\eta_t 1(\Delta \tilde{s} = z) \mid N \text{jumps}]}{\eta_0}. \tag{A.28}
\]

For any two normally distributed variables \(\tilde{x} \) and \(\tilde{y} \) and any arbitrary function \(h(y) \),

\[
E[e^{\tilde{x} h(y)}] = E[e^{\tilde{x}} E[h(y \mid \tilde{x})]] \tag{A.29}
\]

where \(y^* \) is also normally distributed with mean \(E(y) + \text{Cov}(x, y) \) and variance \(\text{Var}(y) \). Conditional upon \(n \) jumps, \(\ln \eta_t \) and \(\Delta s \) are both normally distributed with covariance \(-R \sigma^2_d \).

Consequently, (A.28) can be re-written as

\[
p^*(z) = \sum_{N=0}^{\infty} \frac{w_N E_0(\eta_t \mid N \text{jumps}) E_0[1(\Delta \tilde{s}^* = z) \mid N \text{jumps}]}{\eta_0}
\]

\[
= \sum_{N=0}^{\infty} \frac{w_N E_0(\eta_t \mid N \text{jumps}) n(\Delta s \mid \mu_N - R \sigma^2_d, \sigma^2_d)}{\eta_0}
\]

\[
= \sum_{N=0}^{\infty} w_N^* n(\Delta s \mid \mu_N - R \sigma^2_d, \sigma^2_d). \tag{A.30}
\]
Since \(\eta_0 = E_0 \eta_r = \sum_{N} w_N E_0[\eta_r | N \text{ ~jumps}] \), the weights \(w_n^* \) sum to 1. Furthermore, since
\[
\eta_r = e^{-\kappa_0(T - t)}D_0 e^{-R\tilde{t}} \exp[-R(\Delta \tilde{d} |_{N=0} + N \gamma_d)]g\{N, t, \lambda e^{-R_\gamma d}\},
\]
(A.31)

it is straightforward to show that
\[
w_N^* = \frac{w_N e^{-R_\gamma d N}g\{N, t, \lambda e^{-R_\gamma d}\}}{\sum_{N=0}^\infty w_N e^{-R_\gamma d N}g\{N, t, \lambda e^{-R_\gamma d}\}}
= \frac{e^{-\lambda t}(\lambda')^N}{N!} \frac{g(N, t; \lambda')}{g(0, 0; \lambda')}
\]
(A.32)

for \(\lambda' = \lambda e^{-R_\gamma d} \).

A.4 Implicit pricing kernels (equations (20) and (51))

Using equations (12) and (13), the projection of the pricing kernel upon the asset price in the homogeneous-agent case is
\[
M(S_t) = \frac{E_0[\eta_r | S_t]}{\eta_0}
= E_0\left[D_t^{-R} e^{YN \kappa_0(t)} | S_t\right]
= S_t^{-R} E_0\left[\left(\frac{S}{D_t}\right)^R e^{YN \kappa_0(t)} | S_t\right]
= \kappa_0(t) S_t^{-R} E_0\left[e^{YN} | S_t\right]
\]
(A.33)

where \(\kappa_0(t) \) and \(\kappa_1(t) \) capture time-dependent terms irrelevant to implicit risk aversion. The distribution of \(s_t = \ln S_t \) is an \(N_t \)-dependent mixture of normals:
\[
p(s_t | N_t) = p_{N_t}(s_t) \sim N(\mu_0 + N_t \gamma^2, \sigma^2 t) \text{ with probability } w_{N_t} = \frac{e^{-\lambda t}(\lambda t)^{N_t}}{N_t^!}.
\]
(A.34)

Consequently, the conditional expectation in (A.33) can be evaluated using Bayes’ rule to evaluate the conditional probabilities
\[
Prob[N_t = n | S_t] = \frac{w_n p(s_t | n)}{\sum_{n=0}^\infty w_n p(s_t | n)}.
\]
(A.35)
yielding an implicit pricing kernel

\[
M(S_t) = \kappa_1(t) S_t^{-R} \frac{\sum_{n=0}^\infty w_n p(s_t \mid n) e^{Y_n}}{\sum_{n=0}^\infty w_n p(s_t \mid n)}
\]

\[(A.36)\]

\[
= \kappa(t) S_t^{-R} \frac{p(s_t \mid \lambda e^Y)}{p(s_t \mid \lambda)}
\]

where \(p(s_t \mid \lambda)\) denotes the unconditional density of \(s_t\) given a jump intensity of \(\lambda\) over \((0, t]\). Taking partials with respect to \(s_t\) and using the fact that \(p_j(s_t \mid n) = -p(s_t \mid n) \frac{s_t - (\mu_0 + \kappa n \gamma_d)}{\sigma_d^2}\) yields (after some tedious calculations) an implicit risk aversion value

\[
\frac{\partial \ln M(S_t)}{\partial S_t} = R + \frac{-\gamma_d}{\sigma_d^2} \frac{Cov_{\tilde{Y}_n}^{**}(e^{Y_n}, \tilde{n})}{E_{0}^{**}[\tilde{Y}\tilde{n}]}
\]

\[(A.37)\]

where \(E_{0}^{**}\) and \(Cov_{0}^{**}\) are defined with regard to the probabilities in (A.35). Since \(e^{Y_n}\) and \(n\) are both increasing functions of \(n\), the covariance term is positive. Consequently, the implicit risk aversion is everywhere positive given \(\gamma_d < 0\).

The heterogeneous-agent case is similar. From (28) and (29), the Lagrange multiplier is

\[
\eta_t = e^{\kappa_1(T-t)} S_t^{-R} \left(\frac{S_t}{D_t} \right)^R g\left(N_t, t; \lambda e^{-R_T} \right)
\]

\[(A.38)\]

\[
= e^{(\kappa + R\kappa_1)(T-t)} S_t^{-R} m(N_t, t)^R g\left(N_t, t; \lambda e^{-R_T} \right).
\]

This is of the same form as (A.33), with \(m(N_t, t)^R g(N_t, \bullet)\) replacing \(e^{Y_n} \). Consequently, the implicit pricing kernel becomes
\[M(S_i) = \sum_{n=0}^{\infty} w_n p(s_i | n) m(n, t)^R \left\{ n, t, \lambda e^{-R t} \right\} \]

\[\sum_{n=0}^{\infty} w_n p(s_i | n) \]

(A.39)

\[= \kappa(t) S_i^R \sum_{n=0}^{\infty} w_n^{**} p(s_i | n) \]

\[\sum_{n=0}^{\infty} w_n p(s_i | n) \]

for \(w_n^{**} = \frac{w_n m(n, t)^R g(n, t; \lambda e^{-R t})}{\sum_{n=0}^{\infty} w_n m(n, t)^R g(n, t; \lambda e^{-R t})} \).
References

