The Colocation Friction:

Dual-Earner Job Search and Labor Market Outcomes

Hanno Foerster (BC) Robert Ulbricht (BC) CIRANO, April 2024

Motivation

- >60% of U.S. workers are part of a couple, ≈50% have a working partner (source: ACS 2010-2019)
- Dual-earner households need to find two jobs in one location
- How does this affect matching of workers to jobs?
 - » Goal: formalize, characterize, and quantify unique frictions dual-earner couples face
- How do "colocation frictions" affect
 - » gender inequality?
 - » internal migration?
 - » welfare?

Standard matching friction (~> not every application generates a match)

+

"Colocation problem"

(couples need to find two jobs in one location)

dual-earners only

all workers

"Colocation friction"

~~ Mismatched job offers across spouses

Consider two couples, assume they have identical productivities

Two people need to move into unemployment

Thought experiment: compare to coordinated matching

(= either couple receives 2 job offers with 50% chance)

Thought experiment: compare to coordinated matching

(= either couple receives 2 job offers with 50% chance)

Thought experiment: compare to coordinated matching

(= either couple receives 2 job offers with 50% chance)

 \blacksquare Colocation friction \Leftrightarrow Welfare loss from lacking coordination

Thought experiment: compare to coordinated matching

(= either couple receives 2 job offers with 50% chance)

■ Colocation friction ⇔ Welfare loss from lacking coordination

Consequences for employment, migration, wages, gender inequality...?

This Paper

- Develop a spatial dual-earner directed search model of the labor market
 - $\,\,{}^{\,\,}$ general setting: formalize/characterize colocation friction
- Quantitative version, calibrate using rich U.S. micro data (ACS, CPS, PSID, Opportunity Atlas, web scraped data...)
- Use calibrated model to study consequences of colocation frictions:
 - \ast women severely affected, friction accounts for 93% of gender gap in migration-gains
 - » discourages migration (\downarrow 30%), especially by power couples
 - » overall welfare cost \triangleq 1.4% lifetime earnings

Literature

Labor misallocation:

- Hosios (1990), Galenianos et al. (2011), Rabinovich and Wolthoff (2022), Jarosch et al. (2023), Şahin et al. (2014), Findeisen et al. (2021), and Jovanovic (1979, 1984)
- Our paper: explore how being tied to a spouse adds to misallocation

Joint job search:

- Flinn et al. (2017), Flabbi and Mabli (2018), Pilossoph and Wee (2019, 2021), Bacher et al. (2023), and Fernández-Blanco (2022)
- Our paper: relevance of spatial wage differentials for gender inequality

Dual-earner migration:

- Mincer (1978), Costa and Kahn (2000), Guler et al. (2012), Burke and Miller (2018), Venator (2021), Jayachandran et al. (2023), and Gemici (2011)
- Our paper: characterize/quantify inefficiency + directed search

General Framework

General Framework, Overview

- Ctd. time, effective discount rate p [includes retirement rate]
- Finite set of commuting zones $r \in \mathcal{R}$ [amenities, rents, occupation-specific productivities...]
- Households choose:
 - » location specific search efforts $\{\kappa_{i,q}\}_{q\in\mathcal{R},i\in\mathcal{I}}$ [budgets allocated across locations]
 - » submarkets: location specific target wages [trade-off: wage vs. job finding rate]
- Within-submarkets, ψ , job finding rate: $f_{i,q} = \kappa_{i,q}\lambda(\theta_{\psi})$
- State vector $s \in \mathcal{S}_1 imes \dots imes \mathcal{S}_{n_s}$ [occupations, human capital, children...]
- New job may entail migration (q ≠ r) → mig. cost χ(q|s, r) > 0, trailing spouse e_{-i} = 0 (employment status: e = (e_f, e_m) ∈ {0,1}²)

▶ long-distance ▶ more

Job search and migration

Joint value function:

$$\rho V(\boldsymbol{e}, \boldsymbol{s}, r) = u(\boldsymbol{e}, \boldsymbol{s}, r) + \max_{\{\kappa, y\}} \sum_{i, q} \kappa_{i, q} \lambda(\theta_{i, q}) \underbrace{(V(\boldsymbol{e}^{\text{new}, i}, \boldsymbol{s}, q) - \widehat{y_{i, q}} - \chi(q|\boldsymbol{s}, r) - V(\boldsymbol{e}, \boldsymbol{s}, r))}_{\text{new job}} + \sum_{\boldsymbol{e}', \boldsymbol{s}', r'} \pi(\boldsymbol{e}', \boldsymbol{s}', r'| \boldsymbol{e}, \boldsymbol{s}, r) \underbrace{(V(\boldsymbol{e}', \boldsymbol{s}', r') - V(\boldsymbol{e}, \boldsymbol{s}, r))}_{\text{exogenous transitions}} + \lim_{\boldsymbol{\epsilon} \to \infty} \boldsymbol{\epsilon} \sum_{i} \underbrace{\max\{0, V(\boldsymbol{e}^{\text{sep}, i}, \boldsymbol{s}, q) - V(\boldsymbol{e}, \boldsymbol{s}, q)\}}_{\text{endogenous quits}}$$

subject to:

$$\underbrace{c}_{\text{vacancy posting cost}} = \frac{\lambda(\theta_{i,q})}{\theta_{i,q}} \max \{y_{i,q}, 0\} \text{ for all } i, q \text{ (free-entry)}$$

The Colocation Friction: Formal Characterization

- Colocation friction ⇔ Welfare loss relative to coordinated matching
- Coordinated matching, formally:

correlated matching rate: $\omega_q \in [0, \min_i f_{i,q}]$ s.t. $\lambda(\cdot), c, \bar{\kappa}_i(e, s)$ individual matching rates: $f_{i,q} - \omega_q$ no change in std.
matching friction!

- Couples find two jobs at rate ω_q
- Prob. of finding **one** job drops: $f_{1,q} + f_{2,q} 2\omega_q$
- Expected no. of matches per couple stays the same!
- No. of matches in the economy stays the same!

Proposition: Colocation friction $\iff V(e, s, r)$ satisifies a convexity property

In a toy version of our model show:

- Colocation friction ↑: Both employed, unemployment scar, migration costs, option value of search
- Colocation friction \downarrow : Both nonemployed, child care costs

Quantitative Model

Households and Shocks

• Households: $\boldsymbol{s} = (o_f, o_m, h_f, h_m, k)$

- » occupation $o_f, o_m \in \{1, \dots, 3\} \times \{1, \dots, 6\}$ (top A-D occ. groups, 93.5% of ACS) » human capital $h_f, h_m \in \{\underline{h}, \overline{h}\}$
- » kids yes/no $k \in \{0,1\}$
- Shocks:
 - » exogenous separations $\delta_i(\boldsymbol{o})$
 - » kids arrival/departure $\pi_{k\uparrow}({m o})$ and $\pi_{k\downarrow}({m o})$
 - » human capital appreciation/depreciation $\pi_{h\uparrow|e}(o)$ and $\pi_{h\downarrow|u}(o)$
 - » location taste shocks $\pi_{q|r}(o)$

Preferences, Migration costs, Matching function

Preferences:

$$u(\boldsymbol{e},\boldsymbol{s},r) = \sum_{i} \underbrace{\left\{ h_{i} z_{i}(\boldsymbol{o}_{i},r) \cdot \mathbb{1}_{e_{i}=1} + b_{i} z_{i}(\boldsymbol{o}_{i},r) \cdot \mathbb{1}_{e_{i}=0} \right\}}_{\text{labor prod. + home production}} + \underbrace{a(k,r) - p(r)}_{\text{amenities - rent}} - \underbrace{\xi(r) \cdot \mathbb{1}_{k=e_{1}=e_{2}=1}}_{\text{child care cost}}$$

Migration costs depend on geo-distance and population gap:

$$\chi(q|oldsymbol{o},r) = \sum_{k\in \{ ext{geo,pop}\}} \sum_{j\in \{1,...,4\}} \chi_j^k(oldsymbol{o}) \cdot \mathbbm{1}_{d^k(r,q)\in ext{Bin}_j^k}$$

Matching function, constant returns to scale:

$$\lambda(\theta) = \theta^{\gamma}$$

Geography

- Geography: $r \in \{1, \dots, 517\}$ commuting zones, merged by similarity
- Amenities:
 - » web-scraped + Opportunity Atlas [Chetty et al. 2018] data on: crime rates, climate, walkability, beaches, hospital/school quality, local government expenditures, ...
 - \ast assume income & "income-equivalent amenities" have same pass-through to rents
 - » back out income-equivalent amenity value

Geography II

Assigned parameters

Parameter	Value	Source
Time preference rate, annualized	.05	literature
Retirement rate, annualized	.021	avg. working life of 47 years
Home production, b_m , b_f	.4, .625	Shimer (2005) + ACS
High human capital, \overline{h}	1.0	normalization
Low human capital, <u>h</u>	.4	same as b_m
Search elasticity across locations, η	.0	literature
Matching elasticity, γ	.2	Lange and Papageorgiou (2020
Child arrival rate $\pi_{k\uparrow}$, annualized	.075	ACS
Child departure rate $\pi_{k\downarrow}$, annualized	.038	ACS
Job separation rates, $\{\delta_i(\boldsymbol{o})\}$	from data	CPS
Rents, $p(r)$	from data	ACS
(Local) labor products, $z_i(o_i, r)$	med. wage by gender/occ/CZ	ACS
Child care costs, $\xi(r)$	$8.5\% \cdot \bar{w}_r$	Guner et al. (2020)

Estimated parameters

Moment	Level	No. of moments	Source	pprox maps to
Job finding rate	$o_f imes o_m imes$ gender	36	CPS	$\bar{\kappa}_i(o)$
Wage scar, 1 & 3 yrs	$o_f imes o_m imes$ year	36	Huckfeldt (2022)	$\pi_{h\uparrow}(o)$, $\pi_{h\downarrow}(o)$
Migration rate, by bin	$o_f imes o_m imes$ bin	144	ACS	$\chi(q o,r)$
Distribution over CZs	$o_f \times o_m imes r$	9306	ACS	$\pi_{q r}(o)$

Model fit: Targeted moments (1/2)

Model fit: Targeted moments (2/2)

	Steady State	Steady State	<i>t</i> =	= 0	t = 3 r	nonths
Moment	Model	Data	Model	Data	Model	Data
Earnings gap	.55	.55	.17	n/a	.37	.32
Wage gap	.68	.66	.67	n/a	.56	.51
Employment gap	.81	.83	.25	n/a	.66	.65
Dual earner share	.70	.65	.00	n/a	.47	.52

- Migration widens employment gap (model matches untargeted data)
- Migration initiated by job offer to men in 80% of cases (model)

▶ emp. levels

Direct Effect on Post-Migration Employment (log-differences to no migration control group)

■ Unequal distrib. of migration gains (3yr NPV earnings gains: women 16%, men 77%)

Direct Effect on Post-Migration Employment (log-differences to no migration control group)

- Unequal distrib. of migration gains (3yr NPV earnings gains: women 16%, men 77%)
- Colocation friction accounts for 93% of the gender gap in gains from migration

Discouraged Migration (aka the "Mincer Hypothesis")

	Migrating	Discouraged	Pop. avg.
Both employed	.34	.84	.70
Both nonemployed	.23	.01	.02
Household income	1.18	2.11	2.00
Employment rate			
women	.51	.91	.75
men	.60	.92	.93
Human capital			
women	.76	1.00	.76
men	.90	.98	.87

- Removing colocation friction: short-run migration ↑ 38% (long-run ↑ 14%)
- Lifetime earnings among additional migrants $\uparrow 11\%$
- Most discouraged by friction are high human capital, dual- employed couples

Discouraged Migration (aka the "Mincer Hypothesis")

	Migrating	Discouraged	Pop. avg.
Both employed	.34	.84	.70
Both nonemployed	.23	.01	.02
Household income	1.18	2.11	2.00
Employment rate			
women	.51	.91	.75
men	.60	.92	.93
Human capital			
women	.76	1.00	.76
men	.90	.98	.87

- Removing colocation friction: short-run migration ↑ 38% (long-run ↑ 14%)
- Lifetime earnings among additional migrants $\uparrow 11\%$
- Most discouraged by friction are high human capital, dual- employed couples

Long-Run Impact on Earnings and Welfare

Long-run effects of removing colocation frition:

	Women	Men
Earnings	2.18 %	.60 %
Employment	1.12%	.16 %
Local productivity	.36 %	.34 %
Human capital	1.02 %	.17 %

- Steady-state earnings of women \uparrow 2.2%, men \uparrow 0.6%
- Welfare loss from colocation frictions \triangleq 1.4% lifetime earnings

Conclusions

- Novel framework of dual-earner's *directed* job search and migration
- 1. Are there distinct frictions dual-earner households are faced with?
 - » Key mechanism: lack of coordination in $\ensuremath{\text{hiring}}$
 - » Characterize what contributes to welfare loss from frictions [e.g., unemployment scar, migration costs, option value of search...]
- 2. Do they matter quantitatively?
 - » Yes!
 - » Reduced migration gains for women, discouraged migrants: power couples, overall welfare loss

References

References i

- Bacher, Annika, Philipp Grübener, and Lukas Nord (2023). "Joint search over the life cycle".
- Burke, Jeremy and Amalia R. Miller (2018). "THE EFFECTS OF JOB
 RELOCATION ON SPOUSAL CAREERS: EVIDENCE FROM MILITARY
 CHANGE OF STATION MOVES". Economic Inquiry 56 (2), pp. 1261–1277.
- Chetty, Raj et al. (2018). *The opportunity atlas: Mapping the childhood roots of social mobility.* Tech. rep. National Bureau of Economic Research.
- Costa, Dora L. and Matthew E. Kahn (Nov. 1, 2000). "Power Couples: Changes in the Locational Choice of the College Educated, 1940–1990". *The Quarterly Journal of Economics* 115 (4), pp. 1287–1315.

References ii

- Fernández-Blanco, Javier (2022). "Unemployment risks and intra-household insurance". *Journal of Economic Theory* 203, p. 105477.
- Findeisen, Sebastian et al. (2021). "Transforming Institutions: Labor Reallocation and Wage Growth in a Reunified Germany". Working Paper.
- Flabbi, Luca and James Mabli (Jan. 2018). "Household Search or Individual Search: Does It Matter?" *Journal of Labor Economics* 36 (1), pp. 1–46.
- Flinn, Christopher, Ahu Gemici, and Steven Laufer (2017). "Search, matching and training". *Review of Economic Dynamics* 25. Special Issue on Human Capital and Inequality, pp. 260–297.
- Galenianos, Manolis, Philipp Kircher, and Gábor Virág (2011). "Market Power and Efficiency in a Search Model". International Economic Review 52 (1), pp. 85–103.
References iii

- Gemici, Ahu (2011). "Family Migration and Labor Market Outcomes".
- Guler, Bulent, Fatih Guvenen, and Giovanni L. Violante (May 2012).

"Joint-Search Theory: New Opportunities and New Frictions". Journal of Monetary Economics 59 (4), pp. 352–369.

- Guner, Nezih, Remzi Kaygusuz, and Gustavo Ventura (2020). "Child-Related Transfers, Household Labor Supply and Welfare". *Working Paper.*
- Hosios, Arthur J. (Apr. 1990). "On the Efficiency of Matching and Related Models of Search and Unemployment". The Review of Economic Studies 57 (2), p. 279.
- Huckfeldt, Christopher (2022). "Understanding the Scarring Effect of **Recessions**". American Economic Review, forthcoming.

References iv

- Jarosch, Gregor, Jan S. Nimczik, and Isaac Sorkin (2023). "Granular Search, Market Structure, and Wages". *Review of Economic Studies*.
- Jayachandran, Seema et al. (2023). "Moving to Opportunity, Together".
- Jovanovic, Boyan (1979). "Job Matching and the Theory of Turnover". Journal of Political Economy 87 (5), pp. 972–990.
- (1984). "Matching, Turnover, and Unemployment". Journal of Political Economy 92 (1), pp. 108–122.
- Lange, Fabian and Theodore Papageorgiou (Apr. 2020). Beyond Cobb-Douglas: Flexibly Estimating Matching Functions with Unobserved Matching
 Efficiency. w26972. Cambridge, MA: National Bureau of Economic Research.
- Mincer, Jacob (1978). "Family Migration Decisions". *Journal of Political Economy* 86 (5), pp. 749–773.

References v

- Pilossoph, Laura and Shu Lin Wee (2019). "Assortative matching and household income inequality: A structural approach". Unpublished manuscript. [1433].
- Oct. 1, 2021). "Household Search and the Marital Wage Premium". American Economic Journal: Macroeconomics 13 (4), pp. 55–109.
- Rabinovich, Stanislav and Ronald Wolthoff (2022). "Misallocation inefficiency in partially directed search". Journal of Economic Theory 206, p. 105559.
- Sahin, Ayşegül et al. (Nov. 1, 2014). "Mismatch Unemployment". American Economic Review 104 (11), pp. 3529–3564.
- Shimer, Robert (2005). "The Cyclical Behavior of Equilibrium Unemployment and Vacancies". American Economic Review 95 (1), pp. 25–49.

Venator, Joanna (2021). "Dual-Earner Migration Decisions, Earnings, and Unemployment Insurance".

• endogenous search efforts $\{\kappa_{f,q}, \kappa_{m,q}\}_{q \in \mathcal{R}}$, allocated across locations

$$\left(\sum_{\boldsymbol{q}\in\mathcal{R}}\kappa_{i,\boldsymbol{q}}^{rac{1+\eta}{\eta}}
ight)^{rac{\eta}{1+\eta}}\leqar\kappa_i(\boldsymbol{e},\boldsymbol{s})$$
 (search-tech)

• $\eta = \text{EOS}$ by bound locations, single location search for $\eta \to \infty$, free diversification for $\eta = 0$.

Post-Migration employment dynamics

- Majority of trailing spouses find jobs within first 12 months
- Indirect inference on employment gap after 3m: 0.66 (model) vs 0.65 (data)

Long-distance households and migration

The Colocation Friction: Characterization (consider small $\Delta t > 0$)

mass of couples with $\kappa_{1,q} > 0 \kappa_{2,q} > 0$

mass of couples with $\kappa_{1,q} > 0 \kappa_{2,q} > 0$

The Colocation Friction: Characterization (consider small $\Delta t > 0$) mass of couples with $\kappa_{1,q} > 0 \kappa_{2,q} > 0$ i = 1 receives job offer from q i = 2 receives job offer from qno spouse has a job offer in qone spouse has a job offer in qboth spouses have job offers in q

- Would couples benefit from coordinated matching?
- Coordinated matching, formally:

correlated matching rate: $\omega_{q} \in [0, \min_{i} f_{i,q}]$ s.t. $\lambda(\cdot), c, \bar{\kappa}_{i}(e, s)$ individual matching rates: $f_{i,q} - \omega_q$

no change in std. matching friction!

- Couples receive **two** job offers at rate ω_{q}
- But the chance of receiving at least one job offer is reduced!