Is it possible to attain large stable IEAs: Insights from other sources of interdependencies

Nahid Masoudi

Department of Economics Memorial University of Newfoundland

IEAS – Bridging the Gap CIRANO and CIREQ, Sep 21, 2018

Motivation

- Climate Change and Global Warming
 - Reality or Hoax

Motivation

- Climate Change and Global Warming
 - Reality or Hoax

- Levels of CO2 in the atmosphere have surged past an important threshold and may not dip below it for "many generations". (WMO, Oct. 2016)
- April of 2018 average concentration of atmospheric carbon dioxide was the highest value in at least 800,000 years! (Frobs and Bloomberg)

Motivation

- Climate Change and Global Warming
 - Reality or Hoax

- Levels of CO2 in the atmosphere have surged past an important threshold and may not dip below it for "many generations". (WMO, Oct. 2016)
- April of 2018 average concentration of atmospheric carbon dioxide was the highest value in at least 800,000 years! (Frobs and Bloomberg)

- Urge for a collective action
- Failure of past attempts
- The Paris Agreement?
- Entered into force on November 4, 2016
 - U.S. withdrew on June 1, 2017, representing 17% of global emissions
 - Because of "the draconian financial and economic burdens the agreement imposes on our country"

- Urge for a collective action
- Failure of past attempts
- The Paris Agreement?
- Entered into force on November 4, 2016
 - U.S. withdrew on June 1, 2017, representing 17% of global emissions.
 - Because of "the draconian financial and economic burdens the agreement imposes on our country"

- Urge for a collective action
- Failure of past attempts
- The Paris Agreement?
- Entered into force on November 4, 2016
 - U.S. withdrew on June 1, 2017, representing 17% of global emissions.
 - Because of "the draconian financial and economic burdens the agreement imposes on our country"

- Urge for a collective action
- Failure of past attempts
- The Paris Agreement?
- Entered into force on November 4, 2016
 - U.S. withdrew on June 1, 2017, representing 17% of global emissions.
 - Because of "the draconian financial and economic burdens the agreement imposes on our country"

- Urge for a collective action
- Failure of past attempts
- The Paris Agreement?
- Entered into force on November 4, 2016
 - U.S. withdrew on June 1, 2017, representing 17% of global emissions.
 - Because of "the draconian financial and economic burdens the agreement imposes on our country"

Cont'd

- The E.P.A. proposals in 2018:
 - July- weakening a rule on carbon dioxide pollution from vehicle tailpipes.
 - August- replacing the rule on carbon dioxide pollution from coal-fired power plants with a weaker one.
 - Sept- Make it easier to release methane into air.

IEAs Prospect - Theory

- Game Theory
- Selfenforcing and stable
- Barrett (1994), Diamantoudi and Sartzetakis (2006), Finus (2003) and (2008)....

More Optimistic Cases

- Improvement in design:
 - Transfers: e.g. Carraro and Siniscalco (1993)
 - Ratification threshold (a minimum clause): e.g. Rubio and Casino (2005), Courtois and Haeringer (2005), Carraro et al. (2009)
 - Open versus Exclusive Membership Single versus Multiple Coalitions: e.g. Finus (2003 and 2008)
- Other routes:
 - Barrett (2013) and (2016): If the threshold that triggers climate catastrophe is known with certainty, and the benefits of avoiding catastrophe are high relative to the costs
 - Experiments and Tipping points (e.g. Barrett and Geoff Heal)

More Optimistic Cases

- Improvement in design:
 - Transfers: e.g. Carraro and Siniscalco (1993)
 - Ratification threshold (a minimum clause): e.g. Rubio and Casino (2005), Courtois and Haeringer (2005), Carraro et al. (2009)
 - Open versus Exclusive Membership Single versus Multiple Coalitions: e.g. Finus (2003 and 2008)
- Other routes:
 - Barrett (2013) and (2016): If the threshold that triggers climate catastrophe is known with certainty, and the benefits of avoiding catastrophe are high relative to the costs
 - Experiments and Tipping points (e.g. Barrett and Geoff Heal)

...

More Optimistic Cases, Cont'd

- Masoudi and Zaccour (2018): Adaptation and international environmental agreements
- Masoudi and Zaccour (2017): Adapting to climate change: Is cooperation good for the environment?
- Masoudi and Zaccour (2013): Evolving environmental cost for developing countries
- IEAs and two layers of interdependence among countries

More Optimistic Cases, Cont'd

- Masoudi and Zaccour (2018): Adaptation and international environmental agreements
- Masoudi and Zaccour (2017): Adapting to climate change: Is cooperation good for the environment?
- Masoudi and Zaccour (2013): Evolving environmental cost for developing countries
- IEAs and two layers of interdependence among countries

More Optimistic Cases, Cont'd

- Masoudi and Zaccour (2018): Adaptation and international environmental agreements
- Masoudi and Zaccour (2017): Adapting to climate change: Is cooperation good for the environment?
- Masoudi and Zaccour (2013): Evolving environmental cost for developing countries
- IEAs and two layers of interdependence among countries

Evolving (Perceived) Environmental Cost

- 'As incomes rise, the demand for improvements in environmental quality will increase, as will the resources available for investment' (World Bank, 1992: 39).
- Standard Two-Player Differential Game
- Developing countries need a period of time [0, T] to accomplish a desired level of development. Or equivalently needs to achieve \bar{Y}_2 the threshold value of cumulative revenues before fully accounting for the environmental damage

Evolving (Perceived) Environmental Cost

- 'As incomes rise, the demand for improvements in environmental quality will increase, as will the resources available for investment' (World Bank, 1992: 39).
- Standard Two-Player Differential Game
- Developing countries need a period of time [0, T] to accomplish a desired level of development. Or equivalently needs to achieve \bar{Y}_2 the threshold value of cumulative revenues before fully accounting for the environmental damage

Evolving environmental cost, Cont'd

■ The "perceived" damage-cost function of the developing country (player 2)

$$D_2(S(t), Y_2(t)) = \left\{ egin{array}{ll} d_2(S(t), Y_2(t)), & orall Y_2(t) < ar{Y}_2, \ D_2(S(t)) & orall Y_2(t) \geq ar{Y}_2, \end{array}
ight.$$

■ S(t): Pollution stock at time t, $Y_2(t)$: Cumulative income of Developing country at time t.

Model

Damage

$$D_1(S) = \beta_1 S, \tag{1}$$

$$D_2(S(t), Y_2(t)) = \begin{cases} \frac{t}{T} \gamma \beta_2 S, & \forall Y_2(t) < \bar{Y}_2, \\ \beta_2 S, & \forall Y_2(t) \ge \bar{Y}_2. \end{cases}$$
(2)

• $\gamma \in \{0,1\}$. A value $\gamma = 0$ means that player 2 completely ignores the environmental damage before reaching T.

Results

Cooperative (C) vs. non-cooperative (N) solutions

- Claim
 - $T^N < T^C$.
- Global welfare could be higher if developing countries are given time to achieve \bar{Y}_2 .

Policy Recommendation

Asking developing countries to take environmental cost into account sooner is not necessarily the best course of action.

Results

Cooperative (C) vs. non-cooperative (N) solutions

- Claim
 - $T^N < T^C$.
- Global welfare could be higher if developing countries are given time to achieve \bar{Y}_2 .

Policy Recommendation

Asking developing countries to take environmental cost into account sooner is not necessarily the best course of action.

Income interdependence

IEAs and two layers of interdependence among countries

Income interdependence

- Two projects:
 - 1 Interdependencies over income generation.
 - 2 Competition over resources and IEA

Model

M-player static game, players (countries), indexed by i = 1,...,M R_i : Revenue - e_i : emission

$$R_{i}\left(e_{i}\right)=e_{i}\left(lpha-rac{1}{2}e_{i}-\gamma\sum_{j
eq i}e_{j}
ight)$$

$$\mathscr{E} = \sum_{i=1}^{M} e_i.$$

Environmental Damage

$$D_{i}\left(\mathcal{E}\right)=\beta\left(\mathcal{E}\right)$$

Interpretation of γ

$$R_i(e_i) = e_i \left(\alpha - \frac{1}{2} e_i - \gamma \sum_{j \neq i} e_j \right)$$

$$\gamma \begin{cases} > 0 & \text{substitutes} \\ = 0 & \text{none} \\ < 0 & \text{complements} \end{cases}$$

Income interdependence

Solution

A two-stage game

- Stage I Membership.
- Stage II Emission (production) choice

Solution

Stage II

- Assumptions
 - S countries cooperated (signed the treaty) during stage I, N = M S didn't.
 - Cournot non-cooperative game: non-signatories act as singleton, signatories maximize their joint welfare.

Solution

IEA

 W^S the joint welfare of signatory countries, and by W_j^N the welfare of a non-signatory, the optimization problems are as follows:

$$\max_{e_i^S} W^S = \sum_{i \in C} W_i^S = \sum_{i \in C} (R(e_i) - D_i(\mathscr{E})), \qquad (3)$$

$$\max_{e_j^N} W_j^N = R(e_j) - D_i(\mathscr{E}), \quad j \notin C, \tag{4}$$

Solution

Solution

Under symmetry assumption

$$\begin{split} e^{N} &= \frac{\alpha - \beta + \gamma \left(\alpha \left(S-2\right) + \beta \left(2-2S+S^{2}\right)\right)}{\left(2\gamma \left(S-1\right) + 1\right) \left(\gamma \left(N-1\right) + 1\right) - \gamma^{2} S N} \\ e^{S} &= \frac{\alpha - S \beta - \gamma N e^{NS}}{\left(1 + 2\gamma \left(S-1\right)\right)} \end{split}$$

Income interdependence

Solution

Stage I - Membership game

Membership

- Open-membership: stability check
- Exclusive-membership: optimal size of the treaty

Stability Check

Stability of IEA

D'Aspremont et. al (1983)

Internal stability :
$$W_i^S(S; \mathscr{E}) \ge W_i^N(S-1; \mathscr{E})$$
, (5)

External stability :
$$W_i^S(S+1;\mathscr{E}) \leq W_i^N(S;\mathscr{E})$$
. (6)

Income interdependence

Stability Check

Numerical Illustrations

- Model parameters: M, α , β and γ .
- The most interesting parameter here is γ .

Stability Check

$$M = 50$$
, $\beta = 0.015$

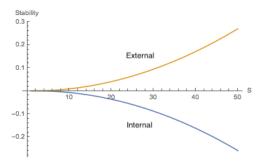


Figure: $\gamma = 0$

$$M = 50$$
, $\beta = 0.015$

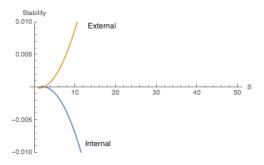


Figure: $\gamma = 0$

Stability Check

$$M = 50$$
, $\beta = 0.015$

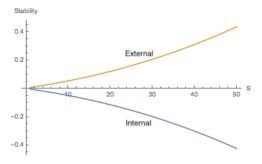


Figure: $\gamma < 0$

Income interdependence

Stability Check

$$M = 50$$
, $\beta = 0.015$

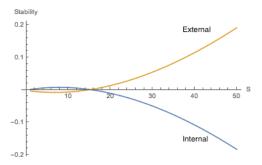


Figure: $\gamma > 0$

Stability Check

$$M = 50$$
, $\beta = 0.015$

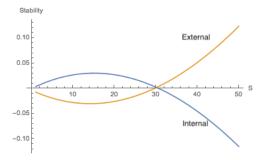


Figure: $\gamma > 0$

Stability Check

$$M = 50$$
, $\beta = 0.015$

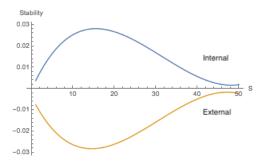


Figure: $\gamma > 0$

Outlook

■ Heterogeneity is a fundamental fact

$$R_{i}\left(e_{i}\right)=e_{i}\left(lpha-rac{1}{2}e_{i}-\gamma_{i}\sum_{j
eq i}e_{j}
ight)$$

Introducing two groups

Income interdependence

Stability Check

Co₂ emission

Concluding remarks

- Understanding and embedding other sources of interdependencies in the discussion of IEAs is crucial.
- In many cases these could reduce the free riding incentives and make countries more willing to cooperate.

Thankş for Your Attention