Risk Aversion, Uninsurable Idiosyncratic Risk, and the Financial Accelerator

Giacomo Candian HEC Montréal Mikhail Dmitriev FSU

CIRANO - Montreal Macro Brownbag Workshop

December 1st, 2017

 Entrepreneurs are inevitably exposed to non-diversified risk and face extreme dispersion in equity returns (Gentry and Hubbard, 2004; Moskowitz and Vissing-Jorgensen, 2002)

> This risk affects entrepreneurs' willingness to borrow and invest

 Entrepreneurs are inevitably exposed to non-diversified risk and face extreme dispersion in equity returns (Gentry and Hubbard, 2004; Moskowitz and Vissing-Jorgensen, 2002)

> This risk affects entrepreneurs' willingness to borrow and invest

► GE financial friction literature has so far paid little attention to these issues:

 Entrepreneurs are inevitably exposed to non-diversified risk and face extreme dispersion in equity returns (Gentry and Hubbard, 2004; Moskowitz and Vissing-Jorgensen, 2002)

- > This risk affects entrepreneurs' willingness to borrow and invest
- ► GE financial friction literature has so far paid little attention to these issues:
 - Assume no idiosyncratic risk (Kiyotaki and Moore, 1997)

 Entrepreneurs are inevitably exposed to non-diversified risk and face extreme dispersion in equity returns (Gentry and Hubbard, 2004; Moskowitz and Vissing-Jorgensen, 2002)

- > This risk affects entrepreneurs' willingness to borrow and invest
- ► GE financial friction literature has so far paid little attention to these issues:
 - Assume no idiosyncratic risk (Kiyotaki and Moore, 1997)
 - Assume borrower risk neutrality (Bernanke, Gertler and Gilchirst, 1999)

Research question

When borrowers can't fully insure idiosyncratic risk, do financial frictions still amplify business cycles?

Research question

When borrowers can't fully insure idiosyncratic risk, do financial frictions still amplify business cycles?

Our contribution

- Develop tractable model to study macro effects of risk aversion and uninsurable risk in the presence of agency frictions.
 - Extend results from contract theory (Tamayo, 2014)
 - Embed in BGG-style NK framework
- Show that presence of uninsurable risk stabilizes the business cycle

Findings

- Risk aversion modifies the optimal contract and implies lower leverage in steady state
- With risk-averse entrepreneurs, leverage becomes more responsive to Δ in expected capital returns and to Δ in idiosyncratic volatility

Findings

- Risk aversion modifies the optimal contract and implies lower leverage in steady state
- \blacktriangleright With risk-averse entrepreneurs, leverage becomes more responsive to Δ in expected capital returns and to Δ in idiosyncratic volatility
- Financial shocks have substantially smaller effects (60% smaller effect on output)

Findings

- Risk aversion modifies the optimal contract and implies lower leverage in steady state
- \blacktriangleright With risk-averse entrepreneurs, leverage becomes more responsive to Δ in expected capital returns and to Δ in idiosyncratic volatility
- Financial shocks have substantially smaller effects (60% smaller effect on output)
- Firm-level evidence is consistent with our model:
 - firms with higher risk aversion display higher responsiveness of investment to future capital returns

Relation to the Literature

- Incomplete markets and investment risk
 - Angeletos and Calvet (2005), and Angeletos (2007), Covas (2006), Meh and Quadrini (2006)
 - These authors focus on steady state and/or abstract from aggregate shocks
- Aggregate risk sharing between lenders and borrowers
 - Dmitriev and Hoddenbagh(2017) and Carstrom, Fuerst and Paustian (2016)
 - Amplification decreases when lenders and borrowers are able to share aggregate risk
- We study the implications of uninsurable risk for the transmission of shocks over the cycle
- We show that self-insurance motive arising from uninsurable idiosyncratic risk also decreases amplification

Outline

The Financial Contract in Partial Equilibrium

General Equilibrium Implications

A Test Using Firm-Level Data

- Borrower invests QK
- ▶ Project returns $QKR^k\omega$, $\ln(\omega) \sim \mathcal{N}(-\frac{1}{2}\sigma^2, \sigma^2)$ and $E(\omega) = 1$.

- ► Borrower invests *QK*
- ▶ Project returns $QKR^k\omega$, $\ln(\omega) \sim \mathcal{N}(-\frac{1}{2}\sigma^2, \sigma^2)$ and $E(\omega) = 1$.
- Returns are perfectly observable by borrowers
- Lenders observe returns only upon payment of a fixed percentage (µ) of total assets

- ► Borrower invests *QK*
- ▶ Project returns $QKR^k\omega$, $\ln(\omega) \sim \mathcal{N}(-\frac{1}{2}\sigma^2, \sigma^2)$ and $E(\omega) = 1$.
- Returns are perfectly observable by borrowers
- Lenders observe returns only upon payment of a fixed percentage (µ) of total assets
- ▶ Borrower reports $s(\omega)$, which is verified by the lender if $\omega \in \Omega^V$.

- ► Borrower invests *QK*
- ▶ Project returns $QKR^k\omega$, $\ln(\omega) \sim \mathcal{N}(-\frac{1}{2}\sigma^2, \sigma^2)$ and $E(\omega) = 1$.
- Returns are perfectly observable by borrowers
- Lenders observe returns only upon payment of a fixed percentage (µ) of total assets
- Borrower reports $s(\omega)$, which is verified by the lender if $\omega \in \Omega^V$.
- ▶ We guess and verify that reports are truthful everywhere

The Contracting Problem

Definition

A contract under CSV is an amount of borrowed money B, a repayment function $R(\omega)$ in the state of nature ω and a verification set Ω^V , where the lender chooses to verify the state of the world.

The Contracting Problem

Definition

A contract under CSV is an amount of borrowed money B, a repayment function $R(\omega)$ in the state of nature ω and a verification set Ω^V , where the lender chooses to verify the state of the world.

Optimal contract solves

$$\max_{K,R(\omega)} \frac{1}{1-\rho} \int_0^\infty [QKR^k(\omega - R(\omega))]^{1-\rho} dF(\omega)$$
(1)

$$QKR^k \int_0^\infty R(\omega) dF(\omega) - \mu QKR^k \int_{\omega \in \Omega^V} \omega dF(\omega) \ge BR$$
 (PC)

$$QK = B + N \tag{CB}$$

$$0 \le R(\omega) \le \omega$$
 (RC)

The Static Financial Contract

The Static Financial Contract

The Static Financial Contract

Optimal contract features a self-insurance component in low states
 Borrowers optimally transfer risk to lenders in low states of the world

Contract Curve

Increase in Risk Aversion

Leverage, Risk Aversion, and Vol

Dynamic Problem with Aggregate Risk

- Entrepreneurs buy K in period t, returns R^k realized in t + 1
- Entrepreneurs survive with probability γ . They maximize

$$(1-\gamma)\sum_{s=1}^{\infty}\gamma^{s}\mathbb{E}_{t}\left\{\frac{(C_{t+s}^{e})^{1-\rho}}{1-\rho}\right\}$$

- Challenge: how do we aggregate? We assume:
 - Entrepreneurs consume when they die
 - Entrepreneur work only in the first period of their lives

Dynamic Problem with Aggregate Risk

- Entrepreneurs buy K in period t, returns R^k realized in t + 1
- Entrepreneurs survive with probability γ . They maximize

$$(1-\gamma)\sum_{s=1}^{\infty}\gamma^{s}\mathbb{E}_{t}\left\{\frac{(C_{t+s}^{e})^{1-\rho}}{1-\rho}\right\}$$

- Challenge: how do we aggregate? We assume:
 - Entrepreneurs consume when they die
 - Entrepreneur work only in the first period of their lives
- Lenders are competitive, diversify loans, and pay a predetermined interest rate to the household (as in BGG)
- Household's participation constraint is:

$$\beta \mathbb{E}_t \left\{ \frac{U_{c,t+1}}{U_{c,t}} \right\} R_t = 1$$

The Financial Contract with Aggregate Risk

Proposition

The log-linearized solution to the contract yields

$$\hat{\kappa}_t = \nu_{\rho} (\mathbb{E}_t \hat{R}_{t+1}^k - \hat{R}_t) + \nu_{\sigma} \hat{\sigma}_{\omega, t}$$

- Same equation as in financial accelerator model with risk shocks
- Risk aversion changes ν_p and ν_σ
- In our contract simulations we find that

$$\frac{\partial \nu_{p}}{\partial \rho} > 0 \qquad \qquad \left| \frac{\partial \nu_{\sigma}}{\partial \rho} \right| > 0.$$

 \rightarrow leverage is more sensitive to changes in expected returns and changes in idiosyncratic volatility when entrepreneurs are risk averse!

- ▶ There are three forces determining the strength of the financial accelerator:
 - 1. a **leverage effect**: the more leveraged you are the stronger the effects of fluctations in returns on your net worth

- ▶ There are three forces determining the strength of the financial accelerator:
 - 1. a **leverage effect**: the more leveraged you are the stronger the effects of fluctations in returns on your net worth
 - 2. a **supply-elasticity effect**: how does the **cost of funds** change with respect to leverage (or borrowing)

- ▶ There are three forces determining the strength of the financial accelerator:
 - 1. a **leverage effect**: the more leveraged you are the stronger the effects of fluctations in returns on your net worth
 - 2. a **supply-elasticity effect**: how does the **cost of funds** change with respect to leverage (or borrowing)
 - 3. a **demand-elasticity effect**: how does the **utility of investing** change with respect to leverage (or borrowing)

- There are three forces determining the strength of the financial accelerator:
 - 1. a **leverage effect**: the more leveraged you are the stronger the effects of fluctations in returns on your net worth
 - 2. a **supply-elasticity effect**: how does the **cost of funds** change with respect to leverage (or borrowing)
 - 3. a **demand-elasticity effect**: how does the **utility of investing** change with respect to leverage (or borrowing)
- > 2 and 3 both show up in the equilibrium in the market for funds

$$\hat{\kappa}_t = \frac{\nu_p}{\mathbb{E}_t \hat{R}_{t+1}^k - \hat{R}_t} + \nu_\sigma \hat{\sigma}_{\omega,t}$$

through ν_p

- ▶ There are three forces determining the strength of the financial accelerator:
 - 1. a **leverage effect**: the more leveraged you are the stronger the effects of fluctations in returns on your net worth
 - 2. a **supply-elasticity effect**: how does the **cost of funds** change with respect to leverage (or borrowing)
 - 3. a **demand-elasticity effect**: how does the **utility of investing** change with respect to leverage (or borrowing)
- > 2 and 3 both show up in the equilibrium in the market for funds

$$\hat{\kappa}_t = \nu_p (\mathbb{E}_t \hat{R}_{t+1}^k - \hat{R}_t) + \nu_\sigma \hat{\sigma}_{\omega,t}$$

through ν_p

- ▶ In a frictionless economy $\nu_p = \infty \implies \mathbb{E}_t \hat{R}_{t+1}^k = \hat{R}_t$ and leverage is irrelevant
- With agency frictions . . .

Start from risk-neutral case ...

- demand for funds is infinitely elastic because of CRS and because entrepreneurs care only about average returns
- ν_p depends only on the elasticity of supply of funds

... and increase risk-aversion

When risk aversion rises

- 1. **leverage effect**: Entrepreneurs borrow less ex ante, dampening net worth fluctuations \implies more stabilization
- 2. **supply-elasticity effect**: with lower leverage there are fewer agency frictions, and the supply of funds is more elastic ⇒ more stabilization
- 3. **demand-elasticity effect**: entrepreneurs are reluctant to increase leverage ex post, because this would increase the volatility of their returns ⇒ more amplification

Which forces dominate?

General Equilibrium NK model

- Entrepreneurs rent capital to perfectly-competitive wholesalers
- Wholesalers combine capital and labor in production
- Monopolistically competitive retailers buy goods from wholesalers, differentiate them and apply a mark-up

• The household maximizes
$$\mathbb{E}_t \left\{ \sum_{s=0}^{\infty} \beta^s \left[\frac{C_{t+s}^{1-\sigma}}{1-\sigma} - \chi \frac{H_{t+s}^{1+\eta}}{1+\eta} \right] \right\}$$

- Capital adjustment costs
- Nominal rigidities
- Taylor rule for monetary policy

Equations

Calibration - Case 1

We first explore quantitatively a pure increase in risk aversion

Symbol	Description	Neutral	Averse 1	
A. Calibrated parameters				
ho	Risk aversion	0.0	0.05	
σ_{ω}	Std. id. productivity	0.28	0.28	
γ	Survival probability	0.977	0.977	
μ	Monitoring costs	0.120	0.120	
B. Implied steady-state values				
κ	Leverage	2.00	1.63	
$\log(R^k/R)$	Premium (%)	2.5	2.8	
$\Phi(\bar{\omega})$	Default rate (%)	3.8	0.2	
C. Implied elasticities				
ν_{p}	Sensitivity to returns	21.7	73.4	
ν_{σ}	Sensitivity to id. risk	-0.69	-1.27	

$$\hat{\kappa}_t = \nu_{\rho} (\mathbb{E}_t \hat{R}_{t+1}^k - \hat{R}_t) + \nu_{\sigma} \hat{\sigma}_{\omega, t}$$

Impulse Responses - Technology Shock

Impulse Responses - Risk Shocks

Candian (HEC Montréal) and Dmitriev (FSU)

22 / 30

Calibration - Case 2

- ▶ Risk-neutrality: γ , σ_{ω} , μ calibrated to match ss defaults, leverage, and risk premium.
- Risk-aversion: we have an extra parameter (ρ) so we target an additional moment: firm-specific volatility.
- Firm-specific volatility of TFP: estimates between 0.04 0.12 Castro, Clementi and Lee (2010)
- Volatility of annual growth of sales: between 0.24 0.3
 Comin and Mulani (2006), Davis et al. (2006), Veirman and Levin (2014)
- From our model simulations, these numbers correspond to $\sigma_{\omega} \in (0.08, 0.1)$
- We pick $\sigma_{\omega} = 0.08$ and $\rho = 0.5$
- Results are robust to different choices of σ_ω as long as ρ is chosen to obtain a leverage of 2.

Calibration - Case 2

Symbol	Description	Neutral	Averse 2	
A. Calibrated parameters				
ho	Risk aversion	0.0	0.5	
σ_{ω}	Std. id. productivity	0.28	0.08	
γ	Survival probability	0.977	0.976	
μ	Monitoring costs	0.120	0.021	
B. Implied steady-state values				
κ	Leverage	2.00	2.03	
$\log(R^k/R)$	Premium (%)	2.5	2.5	
$\Phi(ar{\omega})$	Default rate (%)	3.8	3.8	
C. Implied elasticities				
ν_p	Sensitivity to returns	21.7	181.8	
ν_{σ}	Sensitivity to id. risk	-0.69	-1.99	

$$\hat{\kappa}_t = \nu_{\rho} (\mathbb{E}_t \hat{R}_{t+1}^k - \hat{R}_t) + \nu_{\sigma} \hat{\sigma}_{\omega, t}$$

More

Impulse Responses - Technology Shock

Impulse Responses - Risk Shocks

A Test Using Firm-Level Data

- Key theoretical result: leverage/investment of more risk-averse entreprenuers is more responsive to expected returns to capital
- ► We test this on Compustat data using a variant of standard investment regressions (Gilchrist, Sim, and Zakrajsek,2014)
- **Challenge**: how do we measure risk aversion?
- Follow Panousi and Papanikolaou (2012, JF) and proxy it with managerial insider ownership (Thomson Financial)
 - Yearly holdings of a firm's shares held by firm officers (as fraction of shares outstanding).

$$(I/K)_{i,t} = \beta_0 + \beta_1 X_{i,t} + \sum_{j \in \{2,3,4,5\}} \beta_j X_{i,t} \times INSD_{i,j,t} + Z_{i,t}\gamma' + \eta_i + g_t + v_{i,t}$$

$(I/K)_{i,t} = \beta_0 + \beta_1 X_{i,t} + $	$\sum \beta_j X_{i,i}$	$_t \times INSD_{i,j,j}$	$_t + Z_{i,t}\gamma' +$	$\eta_i + g_t + v_{i,i}$		
<i>j</i> ∈{2,3,4,5}						
Dependent variable: (I/K)	(1)	(2)	(3)	(4)		
$\frac{\log(Y/K)}{\log(Y/K)}$	***0 162	***0 154	***0 115	***0.086		
	(9.72)	(9.74)	(8.15)	(6.94)		
$\log(Y/K)_{i,t} \times INSD_2$	0.011	0.010	0.016	0.017		
	(0.50)	(0.47)	(0.75)	(0.90)		
$\log(Y/K)_{i,t} imes \textit{INSD}_3$	*0.049	*0.044	0.040	0.022		
	(1.85)	(1.72)	(1.60)	(0.94)		
$\log(Y/K)_{i,t} imes INSD_4$	***0.114	***0.109	***0.095	***0.075		
	(3.87)	(3.70)	(3.24)	(2.72)		
$\log(Y/K)_{i,t} \times INSD_5$	***0.104	***0.096	***0.085	**0.046		
	(3.83)	(3.57)	(3.22)	(1.99)		
Observations	32.444	32.444	32.444	32.444		
R^2	0.77	0.77	0.78	0.79		
Fixed effects	F	F, T	F, T	F, T		
Controls	No	No	Q	Q, K		

 Γ

Candian (HEC Montréal) and Dmitriev (FSU)

Risk Aversion, Uninsurable Idiosyncratic Risk, and the Financial Accelerator

28 / 30

Conclusions

- We study the propagation of aggregate shocks in a model of agency frictions and uninsurable idiosyncratic risk
- Self-insurance make leverage of risk-averse borrowers more responsive to changes in capital returns
- In GE, higher responsiveness significantly dampens the effect of financial shocks on key macro variables
- Our results suggest that risk-sharing across borrowers, by stripping away self-insurance motive, may undesirably increase economy's vulnerability to aggregate disturbances

Thank you!

$$-\sigma\left(\mathbb{E}_t \hat{C}_{t+1} - \hat{C}_t\right) + \mathbb{E}_t \hat{R}_{t+1} = 0,$$
(2)

$$\hat{R}_t^n = \mathbb{E}_t \hat{R}_{t+1} + \mathbb{E}_t \hat{\pi}_{t+1} \tag{3}$$

$$\hat{Y}_t - \hat{H}_t - \hat{\mathcal{X}}_t - \sigma \hat{C}_t = \eta \hat{H}_t, \tag{4}$$

$$\hat{\pi}_t = -\frac{(1-\theta)(1-\theta\beta)}{\theta}\hat{\mathcal{X}}_t + \beta \mathbb{E}_t \hat{\pi}_{t+1}.$$
(5)

$$\hat{Y}_t = \hat{A}_t + \alpha \hat{K}_{t-1} + (1-\alpha)(1-\Omega)\hat{H}_t.$$
(6)

$$\hat{K}_t = \delta \hat{I}_t + (1 - \delta) \hat{K}_{t-1},\tag{7}$$

$$\hat{Q}_t = \delta \phi_{\mathcal{K}} (\hat{I}_t - \hat{\mathcal{K}}_{t-1}), \tag{8}$$

$$\hat{R}_{t+1}^{k} = (1-\epsilon)(\hat{Y}_{t+1} - \hat{K}_{t} - \hat{X}_{t+1}) + \epsilon \hat{Q}_{t+1} - \hat{Q}_{t}$$
(9)

$$Y\hat{Y}_t = C\hat{C}_t + I\hat{I}_t + G\hat{G}_t + C^e\hat{C}_t^e,$$
(10)

▶ Go back

$$\hat{N}_{t+1} = \epsilon_N (\hat{N}_t + \hat{R}_{t+1} + \kappa (\hat{R}_{t+1}^k - \hat{R}_{t+1}) + \nu_\Psi \hat{\sigma}_{\omega,t}) + (1 - \epsilon_N) (\hat{Y}_t - \hat{\mathcal{X}}_t), \quad (11)$$

$$\hat{\kappa}_t = K_t + Q_t - N_t \tag{12}$$

$$\hat{C}_{t+1}^{e} = \hat{N}_{t} + \hat{R}_{t+1} + \kappa (\hat{R}_{t+1}^{k} - \hat{R}_{t+1}) + \nu_{\Psi} \hat{\sigma}_{\omega,t}$$
(13)

$$\mathbb{E}_t \hat{R}_{t+1}^k - \mathbb{E}_t \hat{R}_{t+1} = \nu_\kappa \hat{\kappa}_t + \nu_\sigma \hat{\sigma}_{\omega,t}$$
(14)

$$\hat{A} = \rho^A \hat{A}_{t-1} + \epsilon_t^A \tag{15}$$

$$\hat{R}_t^n = \rho^{R^n} \hat{R}_{t-1}^n + \xi \hat{\pi}_t + \rho^Y \hat{Y}_t + \epsilon_t^{R^n}$$
(16)

$$\hat{G}_t = \rho^G \hat{G}_{t-1} + \epsilon_t^G \tag{17}$$

$$\hat{\sigma}_{\omega,t} = \rho^{\sigma_{\omega}} \hat{\sigma}_{\omega,t-1} + \epsilon_t^{\sigma_{\omega}} \tag{18}$$

Go back

The Financial Contract with No Aggregate Risk

Theorem 1 allows us to reformulate the problem as

$$\mathcal{L} = \max_{\bar{\omega}, \underline{\omega}, \bar{R}, \kappa, \lambda} \frac{(\kappa R^k)^{1-\rho} g(\bar{\omega}, \underline{\omega}, \bar{R})}{1-\rho} + \lambda \left(\kappa R^k h(\bar{\omega}, \underline{\omega}, \bar{R}) - (\kappa - 1)R \right)$$

where $g(\bar{\omega}, \underline{\omega}, \bar{R})$ and $h(\bar{\omega}, \underline{\omega}, \bar{R})$ are correspondingly:

$$g(\bar{\omega},\underline{\omega},\bar{R}) \equiv \int_{0}^{\underline{\omega}} \omega^{1-\rho} dF(\omega) + \underline{\omega}^{1-\rho} \int_{\underline{\omega}}^{\bar{\omega}} dF(\omega) + \int_{\bar{\omega}}^{\infty} (\omega-\bar{R})^{1-\rho} dF(\omega)$$
$$h(\bar{\omega},\underline{\omega},\bar{R}) \equiv (1-\mu) \int_{\underline{\omega}}^{\bar{\omega}} \omega dF(\omega) - \underline{\omega} \int_{\underline{\omega}}^{\bar{\omega}} dF(\omega) + \bar{R}[1-F(\bar{\omega})]$$
$$-\mu \int_{0}^{\underline{\omega}} \omega dF(\omega)$$

▶ Go back

Technical Optimization Problem for Entrepreneurs

Entrepreneurs maximize

$$\max_{\kappa_t,\bar{\omega}_{t+1},\bar{\omega}_{t+1},\bar{R}_{t+1}} \frac{1-\gamma}{1-\rho} \kappa_t^{1-\rho} \sum_{s=1}^{\infty} \gamma^s \mathbb{E}_t \left\{ (R_{t+1}^k)^{1-\rho} g(\bar{\omega}_{t+1},\underline{\omega}_{t+1},\bar{R}_{t+1}) \right\}$$
(19)

s.t.

$$\mathbb{E}_t\left(\beta U_{c,t+1}\kappa_t R_{t+1}^k h(\bar{\omega}_{t+1},\underline{\omega}_{t+1},\bar{R}_{t+1})\right) = (\kappa_t - 1)U_{c,t}$$
(20)

🕨 Go back

Leverage, Risk Aversion and Volatility

Back

Calibrating σ_{ω} From Cross-Sectional Data

- Castro, Clementi and Lee (2010) obtain a value firm specific volatility of TFP between 0.04 and 0.12
- Comin and Mulani (2006), Davis, Haltiwanger, Jarmin and Miranda (2006), Veirman and Levin (2014) report the volatility for the annual growth of sales between 0.24 and 0.3
- \blacktriangleright From our model simulations, these numbers correspond to $\sigma_\omega=0.08$ and $\sigma_\omega=0.1$
- So we pick $\sigma_{\omega} = 0.085$ and $\rho = 0.5$
- Results are robust to different choices of σ_{ω} as long as ρ is chosen to obtain a leverage of 2.

Calibration

Parameter	Value	Description
β	0.99	Household Discount Factor
σ	1	Household Risk Aversion Parameter
η	1/3	Inverse Elasticity of Labor Supply
α	0.35	Share of Capital in Cobb-Douglas Production
ϕ_{K}	10	Investment Adjustment Costs
δ	0.025	Quarterly Capital Depreciation
Ω	0.99	Share of Household Labor in Production
θ	0.75	Calvo Pricing Parameter
ξ	1.1	Taylor Rule Inflation Response
ρ^{R^n}	0.9	Interest Rate Smoothing
ρ_{A}	0.99	Persistence of Technology Shock
$ ho_{\sigma_\omega}$	0.93	Persistence of Risk Shock

Back

Impulse Responses - Wealth Shock

Go back

Impulse Responses - Monetary Shock

Go back