On the value of Persuasion by Experts

Ricardo Alonso London School of Economics Odilon Câmara University of Southern California

Conference: The economics of strategic communication and persuasion Montreal, Canada October 28, 2017

- ▶ Spring 2014 First presentations of "Persuading Voters"
 - Big question during every single presentation:
 "what if the sender has private information?"
 - ▶ Very frustrating for us...

- ▶ Spring 2014 First presentations of "Persuading Voters"
 - Big question during every single presentation:
 "what if the sender has private information?"
 - ▶ Very frustrating for us...
- ▶ Summer 2014 Insight
 - ▶ In this particular game, there is an equilibrium in which each privately informed sender implements the same pooling experiment and obtains the same ex ante payoff as the uninformed sender

- ▶ Spring 2014 First presentations of "Persuading Voters"
 - Big question during every single presentation:
 "what if the sender has private information?"
 - ▶ Very frustrating for us...
- ▶ Summer 2014 Insight
 - ▶ In this particular game, there is an equilibrium in which each privately informed sender implements the same pooling experiment and obtains the same ex ante payoff as the uninformed sender
 - ▶ The privately informed sender cannot do better when the sender has access to a fully informative experiment, the replication argument is straightforward
 - ▶ We were very happy!

- ▶ Spring 2014 First presentations of "Persuading Voters"
 - Big question during every single presentation:
 "what if the sender has private information?"
 - ▶ Very frustrating for us...
- ▶ Summer 2014 Insight
 - ▶ In this particular game, there is an equilibrium in which each privately informed sender implements the same pooling experiment and obtains the same ex ante payoff as the uninformed sender
 - ► The privately informed sender cannot do better when the sender has access to a fully informative experiment, the replication argument is straightforward
 - ▶ We were very happy!
- Intriguing question: What if the sender does not have access to a fully informative signal?

How should we think about this question?

That is, what is an interesting and relevant setup to model and study this question?

How should we think about this question?

That is, what is an interesting and relevant setup to model and study this question?

Our Setup: the sender only has access to a finite set set of experiments

Examples of limited experimentation: prosecutor, central bank, tenure letters

- ▶ A retailer sells two types of cars, A and B. She receives payoff 1 if she sells either car, and zero otherwise.
- ▶ A consumer can choose to buy a car A, B, or choose not to buy a car.
- Players are uncertain regarding how much the consumer values each car.

- ▶ A retailer sells two types of cars, A and B. She receives payoff 1 if she sells either car, and zero otherwise.
- ▶ A consumer can choose to buy a car A, B, or choose not to buy a car.
- Players are uncertain regarding how much the consumer values each car.
- ► This uncertainty is captured by the unknown state $\theta \in \{AH, AL, BH, BL\}$, uniform prior belief.

- To persuade the consumer (receiver), the seller (sender) can design a public signal (test of the product or marketing campaign) that allows the consumer to learn about his true valuation of the product.
- ▶ Suppose the retailer has to choose one of two experiments:

▶ Without private information, the seller picks either experiment and sells the car with probability 25%

- ▶ Now suppose that the seller is an expert, and privately observes signal π_e .
- ▶ Note that π_e is strongly redundant: $\{\pi_e, \pi_A\} \preceq_B \pi_A$ and $\{\pi_e, \pi_B\} \preceq_B \pi_B$.

- ▶ Now suppose that the seller is an expert, and privately observes signal π_e .
- ▶ Note that π_e is strongly redundant: $\{\pi_e, \pi_A\} \leq_B \pi_A$ and $\{\pi_e, \pi_B\} \leq_B \pi_B$.
- ▶ Nevertheless, the expert seller can sell a car with probability 50%!
- What makes π_e valuable? There is no fully informative experiment, and here expertise helps in the choice of an experiment

In a Nutshell

Our Question

Does the sender benefit from becoming an expert (observing a private signal prior to selecting an experiment)?

Our Setup

The sender only has access to a finite set set of experiments

In a Nutshell

Our Question

Does the sender benefit from becoming an expert (observing a private signal prior to selecting an experiment)?

Our Setup

The sender only has access to a finite set set of experiments

Our Key Result

We define a condition (sequential redundancy) to formalize our intuition that "the informativeness of public experiments can substitute for the sender's expertise"

Other Results

Sufficient conditions for the sender to strictly benefit/lose from becoming an expert

Related Literature

Everybody in this conference!

- Sender (Information Designer) and Receiver (Decision Maker)
- ► Finite state space, $\theta \in \Theta$, Finite action set, $a \in A$.
- Utilities: $u_S(a, \theta), u_R(a, \theta)$.
- Experiment π : Z_{π} -valued random variable.
- Finite set Π of feasible experiments
- The sender can costlessly garble any experiment $\pi \in \Pi$.

- Sender (Information Designer) and Receiver (Decision Maker)
- ► Finite state space, $\theta \in \Theta$, Finite action set, $a \in A$.
- Utilities: $u_S(a, \theta), u_R(a, \theta)$.
- Experiment π : Z_{π} -valued random variable.
- ▶ Finite set Π of feasible experiments
- The sender can costlessly garble any experiment $\pi \in \Pi$.
- ► A mixture assigns probabilities of selecting different experiments (possibly garbled experiments)
- The sender supplies the receiver an experiment $\pi \in \Gamma(\Pi)$, where $\Gamma(\Pi)$ is the set of all possible mixtures of garblings of experiments in Π

Privately informed sender:

- Sender privately observes the outcome z_e of experiment π_e ; then she selects an experiment $\pi(z_e) \in \Gamma(\Pi)$.
- Receiver chooses action $\mathfrak{a}(\pi, z_{\pi})$.
- ▶ Perfect Bayesian Equilibrium.

Value to the Sender:

- \blacktriangleright V_U maximum expected utility of uninformed sender.
- \blacktriangleright $V_{\rm I}$ maximum ex-ante expected utility of informed sender.

When is V_I smaller/larger than V_U ?

Result: Sequential Redundancy

▶ Definition: Experiment π_e is sequentially redundant given $\Gamma(\Pi)$ if for every z_{π_e} -contingent selection of experiments $\pi(z_{\pi_e}) \in \Gamma(\Pi)$, where $\pi(z_{\pi_e})$ is selected whenever z_{π_e} occurs, there exists $\pi' \in \Gamma(\Pi)$ such that $\{\pi_e, \pi(z_{\pi_e})\} \leq_{\mathrm{B}} \pi'$.

Result: Sequential Redundancy

▶ Definition: Experiment π_e is sequentially redundant given $\Gamma(\Pi)$ if for every z_{π_e} -contingent selection of experiments $\pi(z_{\pi_e}) \in \Gamma(\Pi)$, where $\pi(z_{\pi_e})$ is selected whenever z_{π_e} occurs, there exists $\pi' \in \Gamma(\Pi)$ such that $\{\pi_e, \pi(z_{\pi_e})\} \leq_B \pi'$.

Proposition

We have that $V_{U} \ge V_{I}$ for all persuasion games — all $u_{S}(a, \theta)$ and $u_{R}(a, \theta)$ — if and only if π_{e} is sequentially redundant given $\Gamma(\Pi)$.

- ▶ Intuition: replication argument.
- Sequential redundancy: adapting experiment to sender's signal cannot generate more information.

Going Back to our Initial Example

General Rule : Consider partitional experiments π_A and π_B , and a partitional π_e . Then

- ► π_e is strongly redundant if and only if π_e is coarser than both π_A and π_B .
- ► For π_e to be sequentially redundant, it must be that there exists at most one realization z_{π_e} such that the restriction of experiments π_i to z_{π_e} are distinct.

- ▶ If expertise is sequentially redundant, then it has no value for the sender
- ▶ If expertise is not redundant, then private information can be beneficial if player's preferences are sufficiently aligned
- Our focus: when can the sender strictly benefit from redundant, but not sequentially redundant, information?

- Recall that V_I is the sender's payoff from privately observing π_e before choosing an experiment, while V_U is the payoff of an uninformed sender.
- \blacktriangleright V_I is typically hard to compute.

- Recall that V_I is the sender's payoff from privately observing π_e before choosing an experiment, while V_U is the payoff of an uninformed sender.
- \triangleright V_I is typically hard to compute.
- It is easier to compute the payoff V_{Pub} from an alternative game, in which all players first publicly observe π_e , and then the sender chooses an experiment.
- Useful insight: we provide conditions such that if the sender benefits from publicly observing π_e , $V_{Pub} > V_{U}$, then the sender also benefits from privately observing π_e , $V_I > V_U$.

Assumption (A1) (Monotone Preferences) Let $A \subset \mathbb{R}$ and $u_S(a', \theta) \ge u_S(a, \theta)$ for a' > a and $\theta \in \Theta$.

Assumption (A1) (Monotone Preferences) Let $A \subset \mathbb{R}$ and $u_{S}(a', \theta) \ge u_{S}(a, \theta)$ for a' > a and $\theta \in \Theta$.

Proposition

Suppose (A1) holds. If π_e and all signals in Π are partitional, with π_e coarser than each $\pi \in \Pi$, then $V_I \ge V_{Pub}$.

As in our Example 1.

Proposition

Suppose (A1) holds. If there exists a selection of public optimal signals $\pi^*(z_{\pi_e})$, $z_{\pi_e} \in Z_{\pi_e}$, such that π_e is strongly redundant given $\Pi^*_{\mathsf{Pub}} \equiv \{\pi^*(z_{\pi_e})\}_{z_{\pi_e} \in Z_{\pi_e}}$, then $V_I \ge V_{\mathsf{Pub}}$.

By offering experiments that make her private information strongly redundant, the sender is "letting the evidence speak for itself" — the receiver's interim belief after observing the choice of signal $\pi^* \in \Pi^*_{\mathsf{Pub}}$ does not affect his posterior belief after observing the realization z_{π^*} of π^* .

For instance, the conditions of the Proposition hold if π_e can be replicated by each $\pi \in \Pi$.

Strict Loss from Expertise

When does redundant expertise strictly hurt the sender, $V_{\rm U} > V_{\rm I}?$

Strict Loss from Expertise

When does redundant expertise strictly hurt the sender, $V_{\rm U}>V_{\rm I}?$

Assumption (A2) $\Pi = \{\hat{\pi}\}$ and π_e can be replicated with $\hat{\pi}$.

- (A2) implies that π_e is sequentially redundant and $V_U \ge V_I$.
- ▶ (A2) implies that one can without loss restrict attention to pooling equilibria.
- One important case that satisfies (A2) is the case of partitional experiments with π̂ a finer partition than π_e.

Strict Loss from Expertise

Proposition Suppose that (A1) and (A2) hold.

The informed sender is hurt by her expertise if and only, for every optimal uninformed sender experiment $\pi^*_{\mathfrak{U}}$, some informed sender type would prefer to offer an experiment that both "certifies" her type and is an optimal experiment when her type is public.

That is, $V_U > V_I$ if and only if

$$\min_{\pi_{\mathsf{U}}^* \in \Pi_{\mathsf{U}}^*} \max_{\mathsf{t} \in \mathsf{T}} \left[\mathsf{V}_{z_{\pi_e}(\mathsf{t})} - \mathsf{v}_{\pi_{\mathsf{U}}^*}^*(\mathsf{t}) \right] > 0.$$

- ▶ The consumer must choose which smartphone to buy: brand A, B or C, or the consumer can choose not to buy a phone.
- ▶ Brand C is a more expensive and advanced phone, while brands A and B are cheaper but have very distinctive features.
- ▶ The retailer's payoff from selling a C phone is 12, while her payoff from selling an A or B phone is 10. The retailer receives zero if she does not sell.

► The consumer is uncertain about which phone is the best match for his needs. This uncertainty is captured by the unknown state $\theta \in \{AH, AL, BH, BL, C\}$.

Case 1: Constrained retailer with no Private Information

The retailer only has access to experiments π_A and π_B :

This captures the natural assumption that a more specific experiment is needed to test the consumer's valuation of the distinctive features of each brand.

Case 1: Constrained retailer with no Private Information

Optimal experiment:

The retailer's expected payoff is 5. Note that this retailer does not find it optimal to sell the more expensive phone C. It is more profitable to bundle type C and type A consumers.

Case 2: Constrained retailer with Private Information

Suppose that the retailer can hire an expert salesperson that is trained to quickly identify the consumer's type.

> π_e is strongly redundant, but not sequentially redundant.

Case 2: Constrained retailer with Private Information

Optimal experiment:

The retailer's expected payoff goes up from 5 to 7.4. Expertise strictly benefits the constrained seller.

Case 3: Unconstrained retailer with no Private Information Suppose the retailer has access to a fully informative experiment, but no private information.

Optimal experiment:

The retailer's expected payoff is 7.5

Case 4: Unconstrained retailer with Private Information Suppose the retailer has access to a fully informative experiment, and she has access to the same private signal π_e as before.

Optimal experiment:

The retailer's expected payoff goes down from 7.5 to 7.4. The informed retailers cannot pool on the uninformed retailer signal.

Expertise Acquisition versus Strategic Ignorance:

A retailer with access to a fully informative experiment might prefer to hire uninformed salespeople, while a constrained retailer might prefer to hire expert salespeople.

Expertise Acquisition versus Strategic Ignorance:

A retailer with access to a fully informative experiment might prefer to hire uninformed salespeople, while a constrained retailer might prefer to hire expert salespeople.

Back to our key result:

We define a condition (sequential redundancy) to formalize our intuition that "the informativeness of public experiments can substitute for the sender's expertise"

Thanks!