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1 Introduction

Over the last three decades there has been an increasing interest in mod-

elling seasonality. Progressing from the traditional view that the seasonal

pattern is a nuisance which needed to be removed, it is now considered

to be an informative feature of economic time series which should be

modelled explicitly (see for instance Ghysels (1994) for a review).

Since the seminal work by Box and Jenkins (1970), the stochastic

properties of seasonality have been a major focus of research. In partic-

ular, the recognition that the seasonal behaviour of economic time series

may be varying and changing over time due to the presence of seasonal

unit roots (see for example Hylleberg (1994), Hylleberg, J�rgensen and

S�rensen (1993) and Osborn (1990)), has led to the development of a con-

siderable number of testing procedures (inter alia, Canova and Hansen

(1995), Dickey, Hasza and Fuller (1984), Franses (1994), Hylleberg, En-

gle, Granger and Yoo (1990) and Osborn, Chui, Smith and Birchenhall

(1988)).

In this paper, we review the properties of stochastic seasonal non-

stationary processes, as well as the properties of several seasonal unit

root tests. More speci�cally, in Section 2 we analyze the characteristics

of the seasonal random walk and generalize our discussion for season-

ally integrated ARMA processes. Furthermore, we also illustrate the

implications that can emerge when nonstationary stochastic seasonal-

ity is posited as deterministic. In Section 3 we consider the asymptotic

properties of the seasonal unit root test procedures proposed by Dickey,

Hasza and Fuller (1984) and Hylleberg, Engle, Granger and Yoo (1990).

Section 4 generalizes most of the results of Section 3 by considering the

behavior of the test procedures in a near seasonally integrated frame-

work. Finally, Section 5 concludes the paper.

2 Properties of Seasonal Unit Root Pro-

cesses

The case of primary interest in the context of seasonal unit roots occurs

when the process yt is nonstationary and annual di�erencing is required

to induce stationarity. This is often referred to as seasonal integration.

More formally:

De�nition 2.1: The nonstationary stochastic process yt, ob-
served at S equally spaced time intervals per year, is said
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to be seasonally integrated of order d, denoted yt � SI(d), if
�d
S
yt = (1�LS)dyt is a stationary, invertible ARMA process.

Therefore, if �rst order annual di�erencing renders yt a stationary

and invertible process, then yt � SI(1). The simplest case of such a

process is the seasonal random walk, which will be the focus of analysis

throughout most of this paper. We refer to S as the number of seasons

per year for yt.

2.1 The Seasonal Random Walk

The seasonal random walk is a seasonal autoregressive process of order

1, or SAR(1), such that

yt = yt�S+ "t; t = 1; 2; :::; T (1)

with "t � iid(0; �2). Denoting the season in which observation t falls as
st, with st = 1 + (t � 1)modS, backward substitution for lagged yt in
this process implies that

yt = yst�S+

nt�1X
j=0

"t�Sj (2)

where nt = 1 + [(t� 1) =S] and [.] represents the greatest integer less

or equal to (t� 1) =S: As noted by Dickey, Hasza and Fuller (1984) and

emphasized by Osborn (1993), the random walk in this case is de�ned

in terms of the disturbances for the speci�c season st only, with the

summation over the current disturbance "t and the disturbance for this

season in the nt � 1 previous years of the observation period. The term

yst�S= yt�ntS, refers to the appropriate starting value for the process.

Equation (1) is, of course, a generalization of the conventional nonsea-

sonal random walk.

Note that the unconditional mean of yt from (2) is

E(yt) = E(yst�S): (3)

Thus, although the process (1) does not explicitly contain deterministic

seasonal e�ects, these are implicitly included when E(yst�S) is nonzero
and varies over st = 1; :::;S.

In their analysis of seasonal unit roots, Dickey et al. (1984) sepa-

rate the yt corresponding to each of the S seasons into distinct series.

Notationally, this is conveniently achieved using two subscripts, the �rst

referring to the season and the second to the year. Then

yt = ys+S(n�1) = ysn (4)
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where st and nt are here written as s and n for simplicity of notation.

Correspondingly S disturbance series can be de�ned as

"t = "st+S(nt�1) = "sn: (5)

Using these de�nitions, and assuming that observations are available for

precisely N (N = T=S) complete years, then (1) can be written as

ysn = ys;0 +

nX
j=1

"sj s = 1; :::;S and n = 1; :::; N (6)

which simply de�nes a random walk for each season s = 1; :::;S.
Because the disturbances "t of (1) are uncorrelated, the random walks

de�ned by (6) for the S seasons of the year are also uncorrelated. Thus,

any linear combination of these processes can itself be represented as a

random walk. The accumulation of disturbances allows the di�erences

to wander far from the mean over time, giving rise to the phenomenon

that \summer may become winter".

2.2 More General Processes

To generalize the above discussion, weakly stationary autocorrelations

can be permitted in the SI(1) process. That is, (1) can be generalized

to the seasonally integrated ARMA process:

�(L)�Syt = �(L)"t; t = 1; 2; :::; T (7)

where, as before, "t � iid(0; �2), while the polynomials �(L) and �(L) in
the lag operator L have all roots outside the unit circle. It is, of course,

permissible that these polynomials take the multiplicative form of the

seasonal ARMA model of Box and Jenkins (1970).

Inverting the stationary autoregressive polynomial and de�ning zt =
�(L)�1�(L) "t, we can write (7) as:

�Syt = zt; t = 1; :::; T: (8)

The process super�cially looks like the seasonal random walk, namely

(1). There is, however, a crucial di�erence in that zt here is a stationary,
invertible ARMA process. Nevertheless, performing the same substitu-

tion for lagged yt as above leads to the corresponding result, which can

be written as

ysn = ys;0 +

nX
j=1

zsj s = 1; :::;S and n = 1; :::; N (9)
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As in (6), (9) implies that there are S distinct unit root processes,

one corresponding to each of the seasons. The important distinction is

that these processes in (9) may be autocorrelated and cross-correlated.

Nevertheless, it is only the stationary components which are correlated.

De�ning the observation and (weakly stationary) disturbance vectors

for year n as Yn = (y1n; :::; ySn)
0 and Zn = (z1n; :::; zSn)

0 respectively, the

vector representation of (9) is:

�Yn = Zn; n = 1; :::; N: (10)

The disturbances here follow a stationary vector ARMA process

�(L)Zn = �(L)En: (11)

It is su�cient to note that �(L) and �(L) are appropriately de�ned

S�S polynomial matrices in L with all roots outside the unit circle and

En = ("1n; :::; "Sn)
0. The seasonal di�erence of (7) is converted to a �rst

di�erence in (10) because �Yn = Yn � Yn�1 de�nes an annual (that is,

seasonal) di�erence of the vector Yt.
Now, in (10) we have a vector ARMA process in �Yn, which is a

vector ARIMA process in Yn. In the terminology of Engle and Granger

(1987), the S processes in the vector Yt cannot be cointegrated if this is

the data generating process (DGP). Expressed in a slightly di�erent way,

if the process is written in terms of the level Yn, the vector process will
contain S unit roots due to the presence of the factor � = 1�L in each

of the equations. Therefore, the implication drawn from the seasonal

random walk of (1) that any linear combination of the separate seasonal

series is itself an I(1) process carries over to this case too.

For the purpose of this paper, only the simple seasonal random walk

case will be considered in the subsequent analysis. It should, however,

be recognized that the key results extend to more general seasonally

integrated processes.

2.3 Asymptotic Properties

Consider the DGP of the seasonal randomwalk with initial values y�S+s =
::: = y0 = 0: Using the notation of (6), the following S independent par-

tial sum processes (PSPs) can be obtained:

Ssn =

nX
j=1

"sj s = 1; :::;S; n= 1; :::; N (12)
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where n represents the number of years of observations to time t: From
the Functional Central Limit Theorem (FCLT) and the Continuous Map-

ping Theorem (CMT) the appropriately scaled PSPs in (12) converge as

N !1 to
1p
N
Ssn ) �Ws(r) (13)

where ) indicates convergence in distribution, while Ws(r); s = 1; :::;S
are independent standard Brownian motions.

Furthermore, the following Lemma collecting the relevant conver-

gence results for seasonal unit root processes of periodicity S can be

stated:

Lemma 1 Assuming that the DGP is the seasonal random walk in (1)

with initial values equal to zero, "t s iid(0; �2) and T = SN; then from

the CMT, as T !1,

a) T�1=2yt�k ) S�1=2�LkWs

b) T�3=2
TP
t=1

yt�k ) S�3=2�
SP

s=1

R 1
0
Wsdr

c) T�2
TP
t=1

yt�iyt�k ) S
�2�2

SP
s=1

R 1
0
Ws(L

k�iWs)dr k � i

d) T�1
TP
t=1

yt�k"t ) S�1�2
SP

s=1

R 1
0
(LkWs)dWs

where k = 1; :::;S; Ws(r) (s = tmodS and s = S when tmodS=0)
are independent standard Brownian motions, L is the lag operator which

shifts the Brownian motions between seasons (LkWs =Ws�k withWs�k =

WS+s�k for s� k � 0) and Ws = Ws(r) for simplicity of notation.

It is important to note the circular property regarding the rotation

of the Wk, so that after S lags of yt the same sum of S integrals emerges.

The Lemma is established in Osborn and Rodrigues (1998).

2.4 Deterministic Seasonality

A common practice is to attempt the removal of seasonal patterns via

seasonal dummy variables (see, for example, Barsky and Miron (1989),

Beaulieu and Miron (1991), Osborn (1990)). The interpretation of the

seasonal dummy approach is that seasonality is essentially deterministic

so that the series is stationary around seasonally varying means. The

simplest deterministic seasonal model is

yt =

SX
s=1

�stms + "t (14)
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where �st is the seasonal dummy variable which takes the value 1 when

t falls in season s and "t � iid(0; �2): Typically, yt is a �rst di�erence

series in order to account for the zero frequency unit root commonly

found in economic time series.

When a model like (14) is used, the coe�cient of determination (R2)

is often computed as a measure of the strength of the seasonal pattern.

However, as Abeysingh (1991, 1994) and Franses, Hylleberg and Lee

(1995) indicate, the presence of seasonal unit roots in the DGP will have

important consequences for R2.

To illustrate this issue, take the seasonal random walk of (1) as the

DGP and assume that (14) is used to model the seasonal pattern. As is

well known, the OLS estimates of ms; s = 1; :::;S are simply the mean

values of yt in each season. Thus, using the notation of (4),

bms =
1

N

TX
t=1

�styt =
1

N

NX
t=1

ysn (15)

where (as before) T and N are the total number of observations and the

total number of complete years of observations available, respectively

and it is again assumed for simplicity that T = SN:As noted by Franses
et al:; the estimated seasonal intercepts diverge under the seasonal ran-

dom walk DGP. In particular, the appropriately scaled bms converge to

a normal random variable

N�1=2 bms = N�3=2
TX
t=1

�styt ) �

Z 1

0

Ws(r)dr = N
�
0; �2=3

�
; s = 1; :::;S:

(16)

where the latter follows from Banerjee et al. (1993, pp. 43-45) who show

that
R 1
0
W (r)dr = N(0; 1=3):

For this DGP, the R2 from (14) has a non-degenerate asymptotic

distribution. As shown in the Appendix,

R2 =

TP
t=1

(byt � y)
2

TP
t=1

(yt � y)
2

)

SP
s=1

�R 1
0
Ws(r)dr

�2
� 1
S

�R 1
0

�
SP

s=1

Ws(r)

�
dr

�2
SP

s=1

R 1
0
W 2

s (r)dr � 1
S

�R 1
0

�
SP

s=1

Ws(r)

�
dr

�2 :

(17)

Consequently, high values for this statistic are to be anticipated, as con-

cluded by Franses et al: These are spurious in the sense that the DGP

contains no deterministic seasonality since E(yt) = 0 when the starting
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values for (1) are zero. Hence high a value of R2 when (14) is estimated

does not constitute evidence in favour of deterministic seasonality.

3 Testing the Seasonal Unit Root Null Hy-

pothesis

In this section we discuss the test procedures proposed by Dickey, Hasza

and Fuller (1984) and Hylleberg, Engle, Granger and Yoo [HEGY] (1990)

to test the null hypothesis of seasonal integration. It should be noted

that while there are a large number of seasonal unit root tests available

(see, for example, Rodrigues (1998a) for an extensive survey), casual

observation of the literature shows that the HEGY test is the most fre-

quently used procedure in empirical work.

For simplicity of presentation, throughout this section we assume

that augmentation of the test regression to account for autocorrelation

is unnecessary and that pre-sample starting values for the DGP are equal

to zero.

3.1 The Dickey-Hasza-Fuller Test

The �rst test of the null hypothesis yt � SI(1) was proposed by Dickey,

Hasza and Fuller [DHF] (1984), as a direct generalization of the test

proposed by Dickey and Fuller (1979) for a nonseasonal AR(1) process.

Assuming that the process is known to be a SAR(1), then the DHF test

can be parameterized as

�Syt = �Syt�S+ "t: (18)

The null hypothesis of seasonal integration corresponds to �S= 0, while

the alternative of a stationary stochastic seasonal process implies �S< 0.

The appropriately scaled least squares bias obtained from the estimation

of �S under the null hypothesis is

T b�S=
1
T

TP
t=1

yt�S"t

1
T 2

TP
t=1

y2t�S

(19)
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and the associated t-statistic is

t
b�S=

1
T

TP
t=1

yt�S"t

e� � 1
T 2

TP
t=1

y2t�S

� 1

2

(20)

where e� is the usual degrees of freedom corrected estimator of �. Sim-
ilarly to the usual Dickey-Fuller approach, the test is typically imple-

mented using (20).

Using the results in c) and d) of Lemma 1, it is straightforward to

establish that (19) and (20) converge to

T

S
b�S)

SP
s=1

R 1
0
Ws(r)dWs(r)

SP
s=1

R 1
0
W 2

s (r)dr

(21)

and

t
b�S )

SP
s=1

R 1
0
Ws(r)dWs(r)

�
SP

s=1

R 1
0
W 2

s (r)dr

� 1

2

; (22)

respectively. Note that e�2 p! �2:
The asymptotic distribution of the DHF statistic given by (22) is

non-standard, but is of similar type to the Dickey-Fuller t-distribution.
Indeed, it is precisely the Dickey-Fuller t-distribution in the special case

S = 1, when the test regression (18) is the usual Dickey-Fuller test

regression for a conventional random walk. It can also be seen from (22)

that the distribution for the DHF t-statistic depends on S, that is on the
frequency with which observations are made within each year. On the

basis of Monte Carlo simulations, DHF tabulated critical values of T
S
b�S

and t
b�Sfor various T and S. Note that the limit distributions presented

as functions of Brownian motions can also be found in Chan (1989),

Boswijk and Franses (1996) and more recently in Osborn and Rodrigues

(1998).

To explore the dependence on S a little further, note �rst thatZ 1

0

Ws(r)dWs(r) =
1
2

�
[Ws(1)]

2 � 1
	

(23)
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where [Ws(1)]
2 is �2(1) (see, for example, Banerjee et al., 1993, p.91).

The numerator of (22) involves the sum of S such terms which are mu-

tually independent and hence

SX
s=1

Z 1

0

Ws(r)dWs(r) = 1
2

SX
s=1

�
[Ws(1)]

2 � 1
	

= 1
2
f�2(S)� Sg (24)

which is half the di�erence between a �2(S) statistic and its mean of S.

It is well known that the Dickey-Fuller t-statistic is not symmetric

about zero. Indeed, Fuller (1976, p.370) comments that asymptotically

the probability of (in our notation) b�1 < 0 is 0.68 for the nonseasonal

random walk because Pr[�2(1) < 1] = 0:68. In terms of (22), the denom-
inator is always positive and hence Pr[�2(S)< S] dictates the probability

that t
b�Sis negative. With a seasonal random walk and quarterly data,

Pr[�2(4) < 4] = 0:59, while in the monthly case Pr[�2(12) < 12] = 0:55.
Therefore, the preponderance of negative test statistics is expected to

decrease as S increases. As seen from the percentiles tabulated by DHF,

the dispersion of t
b�Sis e�ectively invariant to S, so that the principal

e�ect of an increasing frequency of observation is a reduction in the

asymmetry of this test statistic around zero.

3.2 Testing Complex Unit Roots

Before proceeding to the examination of the procedure proposed by

Hylleberg et al: (1990) it will be useful to consider some of the issues

related to testing complex unit roots, because these are an intrinsic part

of any SI(1) process.
The simplest process which contains a pair of complex unit roots is

yt = �yt�2 + ut (25)

with ut � iid(o; �2). This process has S = 2 and, using the notation

identifying the season s and year n, it can be equivalently written as

ysn = �ys;n�1 + usn s = 1; 2 (26)

Notice that the seasonal patterns reverse each year. Due to this alter-

nating pattern, and assuming y0 = y�1 = 0, it can be seen that

yt = S�sn =

n�1X
i=0

(�1)ius;n�i = �S�s;n�1 + usn (27)
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where, in this case, n =
�
t+1
2

�
). Note that S�sn (s = 1; 2) are independent

processes, one corresponding to each of the two seasons of the year.

Nevertheless, the nature of the seasonality implied by (25) is not of

the conventional type in that S�sj (for given s) tends to oscillate as j
increases. Moreover, it can be observed from (27) that aggregation of

the process over full cycles of two years annihilates the nonstationarity

as S�s;n�1+S�sn = usn. To relate these S
�
sn to the S independent random

walks of (6), let "sj = (�1)jusj which (providing the distribution of ut
is symmetric) has identical properties. Then

S�sn =

nP
j=1

(�1)j+1usj = �
nP

j=1

"sj = �Sjn n odd

nP
j=1

(�1)jusj =
nP

j=1

"sj = Sjn n even
(28)

where Sjn is de�ned in (12).

Analogously to the DHF test, the unit root process (25) may be

tested through the t-ratio for b��2 in
(1 + L2)yt = ��2yt�2 + ut: (29)

The null hypothesis is ��2 = 0 with the alternative of stationarity imply-

ing ��2 > 0. Then, assuming T = 2N , under the null hypothesis

T b��2 =
T�1

TP
t=1

yt�2ut

T�2
TP
t=1

y2t�2

=

(2N)
�1

2P
s=1

NP
j=1

S�s;j�1(S
�
s;j + S�s;j�1)

(2N)
�2

2P
s=1

NP
j=1

(S�s;j�1)
2

: (30)

and

t(b��2) =
TP
t=1

yt�2ut

e� � TP
t=1

y2t�2

� 1

2

=

(2N)
�1

2P
s=1

NP
j=1

S�s;j�1(S
�
s;j + S�s;j�1)

e�
"
(2N)�2

2P
s=1

NP
j=1

(S�s;j�1)
2

# 1

2

: (31)

If, for further expositional clarity, we assume that N is even, then using

(28), we have
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NX
j=1

S�s;j�1(S
�
s;j + S�s;j�1) =

N=2X
i=1

�
S�s;2i�2(S

�
s;2i�1

+S�s;2i�2) + S�s;2i�1(S
�
s;2i + S�s;2i�1)

�
=

N=2X
i=1

[Ss;2i�2(�Ss;2i�1 + Ss;2i�2)

�Ss;2i�1(Ss;2i � Ss;2i�1)]

= �
NX
j=1

Ss;j�1(Ss;j � Ss;j�1)

Thus, there is a "mirror image" relationship between the numerator of

(30) and (31) compared with that of (19) and (20) with S = 2: The
corresponding denominators are identical as (S�sj)

2 = S2
sj . Thus, by

applying similar arguments as in the proof of Lemma 1,

T

2
b��2 ) �

2P
s=1

R 1
0
Ws(r)dWs(r)

2P
s=1

R 1
0
[Ws(r)]2dr

(32)

and

t
b��
2
) �

2P
s=1

R 1
0
Ws(r)dWs(r)

�
2P

s=1

R 1
0
[Ws(r)]2dr

� 1

2

(33)

which can be compared with (21) and (22) respectively. This mirror

image property of these test statistics has also been shown by Fuller

(1976, pp.370-372) and Chan and Wei (1988). One important practical

consequence of (33) is that with a simple change of sign, the DHF tables

with S = 2 apply to the case of testing ��2 = 0 in (29).

Under the assumed DGP (25), we may also consider testing the null

hypothesis ��1 = 0 against the alternative ��1 6= 0 in

(1 + L2)yt = ��1yt�1 + ut: (34)

The test here is not, strictly speaking, a unit root test, since the unit

coe�cient on L2 in (34) implies that the process contains two roots of

modulus one, irrespective of the value of ��1. Rather, the test of �
�
1 = 0 is

11



a test of the null hypothesis that the process contains a half-cycle every

S= 2 periods, and hence a full cycle every four periods. The appropriate

alternative hypothesis is, therefore, two-sided.

For this test regression,

T b��1 =
T�1

TP
t=1

yt�1ut

T�2
TP
t=1

y2t�1

:

Again referring to (27) and (28), we can see that

T b��1 =
(2N)

�1
NP
j=1

[�S2;j�1(S1;j � S1;j�1) + S1;j(S2;j � S2;j�1)]

(2N)
�2

NP
j=1

�
S2
1;j�1 + S2

2;j

� : (35)

Thus, (35) converges to,

T

2
b��1 )

R 1
0
W1(r)dW2(r) �

R 1
0
W2(r)dW1(r)

2P
s=1

R 1
0
[Ws(r)]2dr

(36)

and consequently,

t
b��
1
)
R 1
0
W1(r)dW2(r) �

R 1
0
W2(r)dW1(r)�

2P
s=1

R 1
0
[Ws(r)]2dr

� 1

2

: (37)

Indeed, the results for the distributions associated with the test

statistics in (29) and (34) continue to apply for the test regression

(1 + L2)yt = ��1yt�1 + ��2yt�2 + "t (38)

because the regressors yt�1 and yt�2 can be shown to be asymptotically

orthogonal (see for instance, Ahtola and Tiao (1987) or Chan and Wei

(1988) for more details).

3.3 The Hylleberg-Engle-Granger-Yoo Test

It is well known, that the seasonal di�erence operator �S= 1� LS can
always be factorized as

1� LS= (1� L)(1 + L+ L2 + :::+ LS�1): (39)

12



Hence, (39) indicates that an SI(1) process always contains a conven-

tional unit root and a set of S�1 seasonal unit roots. The approach sug-
gested by Hylleberg, Engle, Granger and Yoo (1990), commonly known

as HEGY, examines the validity of �S through exploiting (39) by testing

the unit root of 1 and the S�1 separate nonstationary roots on the unit

circle implied by 1 + L+ :::+ LS�1.
To see the implications of this factorization, consider the case of

quarterly data (S= 4) where

1� L4 = (1� L)(1 + L+ L2 + L3)

= (1� L)(1 + L)(1 + L2): (40)

Thus, �4 = 1 � L4 has four roots on the unit circle1, namely 1 and -1

which occur at the 0 and � frequencies respectively, and the complex pair

�i at the frequencies �
2
and 3�

2
. Hence, in addition to the conventional

unit root, the quarterly case implies three seasonal unit roots, which are

-1 and the complex pair �i: Corresponding to each of the three factors

of (40), using a Lagrange approximation, HEGY suggest the following

linear transformations:

y(1);t = (1 + L)(1 + L2)yt = yt + yt�1 + yt�2 + yt�3 (41)

y(2);t = �(1� L)(1 + L2)yt = �yt + yt�1 � yt�2 + yt�3 (42)

y(3);t = �(1� L)(1 + L)yt = �yt + yt�2 (43)

By construction, each of the variables in (41) to (43) accepts all the

factors of �4 except one. That is, y(1);t assumes the factors (1 +L) and
(1+L2), y(2);t assumes (1�L) and (1+L2), while y(3);t assumes (1�L)
and (1 + L).

The test regression for quarterly data suggested by HEGY has the

form:

�4yt = �1y(1);t�1+�2y(2);t�1+�3y(3);t�2+�4y(3);t�1+"t; t = 1; 2; :::; T
(44)

1Notice that the unit roots of a monthly seasonal random walk are:

1;�1;�i;� 1

2
(1�

p
3i); 1

2
(1�

p
3i);� 1

2
(
p
3� i); 1

2
(
p
3� i):

The �rst is, once again, the conventional nonseasonal, or zero frequency, unit root.

The remaining 11 seasonal unit roots arise from the seasonal summation operator

1+L+L2 + :::+L11 and result in nonstationary cycles with a maximum duration of

one year. As can be observed, this monthly case implies �ve pairs of complex roots

on the unit circle.

13



where y(1);t; y(2);t and y(3);t are de�ned in (41), (42) and (43), respec-

tively. Note that these regressors are asymptotically orthogonal by con-

struction. The two lags of y(3);t arise because the pair of complex roots

�i imply two restrictions on a second order polynomial 1+�1L+�2L
2,

namely �1 = 0 and �2 = 1 (see Section 3.2). The overall null hypothesis

yt � SI(1) implies �1 = �2 = �3 = �4 = 0 and hence �4yt = "t as for
the DHF test.

The HEGY regression (44) and the associated asymptotic distri-

butions can be motivated by considering the three factors of �4 =

(1 � L)(1 + L)(1 + L2) one by one. Through the variable y(1);t, we
may consider the DGP

y(1);t = y(1);t�1 + "t: (45)

which is the seasonal random walk of (1) with S= 4 after applying the

linear transformation (41). Therefore, when yt � SI(1), y(1);t has the
properties of a conventional random walk process and hence, with initial

values equal to zero,

y(1);t =

t�1X
j=0

"t�j : (46)

Since �1y(1);t = �4yt, the Dickey-Fuller test regression for the DGP

(45) is

�4yt = �1y(1);t�1 + "t (47)

where we test �1 = 0 against �1 < 0. Considering

T b�1 =
T�1

TP
t=1

y(1);t�1"t

T�2
TP
t=1

y2
(1);t�1

=

T�1
TP
t=1

(yt�1 + yt�2 + yt�3 + yt�4) "t

T�2
TP
t=1

(yt�1 + yt�2 + yt�3 + yt�4)
2

(48)

then from Lemma 1 and (13) it can be observed that under the seasonal

integration null hypothesis

T�1
TX
t=1

(yt�1 + yt�2 + yt�3 + yt�4) "t )
�2

4

�Z 1

0

W(1)(r)dW(1)(r)

�
(49)

and

T�2
TX
t=1

(yt�1 + yt�2 + yt�3 + yt�4)
2 ) �2

16

Z 1

0

4W 2
(1)(r)dr (50)
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where W(1)(r) =
4P

s=1

Ws(r): Substituting (49) and (50) into (48) gives,

T b�1 )
R 1
0
W(1)(r)dW(1)(r)R 1
0

�
W(1)(r)

�2
dr

(51)

The associated t-statistic, which is commonly used to test for the zero

frequency unit root, can be expressed as

t
b�1 )

R 1
0
W �

1 (r)dW
�
1 (r)nR 1

0
[W �

1 (r)]
2
dr
o 1

2

: (52)

where W �
1 (r) = W(1)(r)=2. Division by 2 is undertaken here so that

W �
1 (r) is standard Brownian motion, whereas W(1)(r) is not. Therefore,

(52) is the conventional Dickey-Fuller t-distribution, tabulated by Fuller

(1976).

Similarly, based on (42) it can be seen that the seasonal random walk

(1) implies

�(1 + L)y(2);t = "t: (53)

Notice the "bounce back" e�ect in (53) which implies a half cycle for

y(2);t every period and hence a full cycle every two periods. Also note

that (53) e�ectively has the same form as (26). Testing the root of �1
implied by (53) leads to a test of �2 = 1 against �2 < 1 in

�(1 + �2L)y(2);t = "t:

Equivalently, de�ning �2 = �2 � 1 and again using (42) yields

�4yt = �2y(2);t�1 + "t (54)

with null and alternative hypotheses �2 = 0 and �2 < 0; respectively.
Under the null hypothesis, and using analogous reasoning to Section

3.2 combined with Lemma 1, we obtain

T b�2 )
R 1
0
W(2)(r)dW(2)(r)R 1
0

�
W(2)(r)

�2
dr

(55)

and

t
b�2 )

R 1
0
W �

2 (r)dW
�
2 (r)nR 1

0
[W �

2 (r)]
2
dr
o 1

2

(56)
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where the Brownian motionW(2)(r) =W1(r)�W2(r)+W3(r)�W4(r) is
standardized as W �

2 (r) = W(2)(r)=2. Like (52), (56) is the conventional
Dickey-Fuller distribution tabulated by Fuller (1976). It is important

to note that, as indicated by Fuller (1976) and Chan and Wei (1988),

the distributions of the least squares bias and corresponding t-statistic
when the DGP is an AR(1) with a �1 root are the "mirror image" of

those obtained when testing the conventional random walk. However, in

(55) and (56), this mirror image is incorporated through the design of

the HEGY test regression in that the linear transformation of y(2);t is
de�ned with a minus sign as �(1� L)(1 + L2).

Finally, from (43) it follows that yt � SI(1) implies

�(1 + L2)y(3);t = "t: (57)

This process implies a "bounce back" after two periods and a full cycle

after four. This process has the complex root form identical to (25).

Hence, the results presented for that process carry over directly for this

case. Noting again that �(1 + L2)y(3);t = �4yt, we can test �3 = 1 and

�4 = 0 in

�(1 + �4L+ �3L
2)y(3);t = "t

through the regression

�4yt = �3y(3);t�2 + �4y(3);t�1 + "t (58)

with �3 = �3�1 and �4 = ��4: Testing against stationarity implies null
and alternative hypotheses of �3 = 0 and �3 < 0. However, while �4 = 0

is also indicated under the null hypothesis, the alternative here is �4 6= 0.

The reasoning for this two-sided alternative is precisely that for the test

regression (34) and (58) has the same form as (38). Therefore, using

similar arguments to Section 3.2, and noting that the "mirror image"

property discussed there is incorporated through the minus sign in the

de�nition of y(3);t, it can be seen that

t
b�3 )

R 1
0
W �

3 (r)dW
�
3 (r) +

R 1
0
W �

4 (r)dW
�
4 (r)nR 1

0
[W �

3 (r)]
2
dr +

R 1
0
[W �

4 (r)]
2
dr
o 1

2

: (59)

and

t
b�4 )

R 1
0
W �

4 (r)dW
�
3 (r)�

R 1
0
W �

3 (r)dW
�
4 (r)nR 1

0
[W �

3 (r)]
2
dr +

R 1
0
[W �

4 (r)]
2
dr
o 1

2

(60)

whereW �
3 (r) = [W1(r) �W3(r)] =

p
2 andW �

4 (r) = [W2(r) �W4(r)] =
p
2

are independent standard Brownian motions: Note that the least squares
bias T b�3 and T b�4 can also be obtained from (32) and (36).
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HEGY suggest that �3 and �4 might be jointly tested, since they

are both associated with the pair of nonstationary complex roots �i.
Such joint testing might be accomplished by computing F (b�3 \ b�4) as
for a standard F -test, although the distribution will not, of course, be

the standard F -distribution. Due to the asymptotic independence ofb�3 and b�4, Engle et al. (1993) show that the limiting distribution of

F (b�3\ b�4) is identical to that of 1
2
[t2

b�3 + t2
b�4 ], where the two individual

components are given in (59) and (60). More details can be found in

Smith and Taylor (1996) or Osborn and Rodrigues (1998).

Due to the asymptotic orthogonality of the regressors in (47), (54)

and (58), these can be combined into the single test regression (44) with-

out any e�ect on the asymptotic properties of the coe�cient estimators.

3.4 Extensions to the HEGY Approach

Ghysels, Lee and Noh (1994), or GLN, consider further the asymptotic
distribution of the HEGY test statistics for quarterly data and present
some extensions. In particular, they propose the joint test statistics
F (b�1\b�2\b�3\b�4) and F (b�2\b�3\b�4), the former being an overall test
of the null hypothesis yt � SI(1) and the latter a joint test of the seasonal
unit roots implied by the summation operator 1 + L+ L2 + L3. Due to
the two-sided nature of all F -tests, the alternative hypothesis in each
case is that one or more of the unit root restrictions is not valid. Thus,
in particular, these tests should not be interpreted as testing seasonal
integration against stationarity for the process. From the asymptotic
independence of t

b�i ; i = 1; :::; 4; it follows that F (b�1 \ b�2 \ b�3 \ b�4)
has the same asymptotic distribution as 1

4

P4

i=1 (tb�i)
2
. Thus, from (52),

(56), (59) and (60), we have

F (b�1 \ b�2 \ b�3 \ b�4) )

1

4

8><
>:
hR

1

0
W

�

1 (r)dW
�

1 (r)
i2

R
1

0
[W �

1
(r)]2dr

+

hR
1

0
W

�

2 (r)dW
�

2 (r)
i2

R
1

0
[W �

2
(r)]2dr

+

hR
1

0
W

�

3 (r)dW
�

3 (r) +
R
1

0
W

�

4 (r)dW
�

4 (r)
i
2

R
1

0
[W �

3
(r)]2dr+

R
1

0
[W �

4
(r)]2dr

+

hR
1

0
W

�

4 (r)dW
�

3 (r)�
R
1

0
W

�

3 (r)dW
�

4 (r)
i
2

R
1

0
[W �

3
(r)]2dr +

R
1

0
[W �

4
(r)]2dr

9>=
>; :(61)

Hence, F (b�1 \ b�2 \ b�3 \ b�4) is asymptotically distributed as the simple

average of the squares of each of two Dickey-Fuller distributions, a DHF

distribution with S = 2 and (60). It is straightforward to see that a

similar expression results for F (b�2 \ b�3 \ b�4), which is a simple average
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of the squares of a Dickey-Fuller distribution, a DHF distribution with

S= 2 and (60).

GLN also observe that the usual test procedure of Dickey and Fuller

[DF] (1979) can validly be applied in the presence of seasonal unit roots.

However, this validity only applies if the regression contains su�cient

augmentation. The essential reason derives from (39), so that the SI(1)
process �Syy = "t can be written as

�1yt = �1yt�1 + �1�1yt�1 + :::+ �S�1�1yt�S+1+ "t (62)

with �1 = 0 and �1 = ::: = �S�1 = �1. With (62) applied as a unit root

test regression, t
b�1 asymptotically follows the usual DF distribution, as

given in (52). See Ghysels, Lee and Siklos (1993), Ghysels, Lee and Noh

(1994) and Rodrigues (1998b) for a more detailed discussion.

Beaulieu and Miron (1993) and Franses (1991) develop the HEGY

approach for the case of monthly data.2 This requires the construc-

tion of at least seven transformed variables, analogous to y(1);t, y(2);t
and y(3);t used in (41) to (43), and the estimation of twelve coe�cients

�i (i = 1; :::; 12). Beaulieu and Miron present the asymptotic distribu-

tions, noting that the t-type statistics corresponding to the two real roots
of +1 and -1 each have the usual Dickey-Fuller form, while the remaining

coe�cients correspond to pairs of complex roots. In the Beaulieu and

Miron parameterization, each of the �ve pairs of complex roots leads to

a t
b�i with a DHF distribution (again with S = 2) and a t

b�i with the

distribution (60).

Although both Beaulieu and Miron (1993) and Franses (1991) discuss

the use of joint F -type statistics for the two coe�cients corresponding

to a pair of complex roots, neither considers the use of the F -tests as in
Ghysels et al. (1994) to test the overall �12 �lter or the eleven seasonal

unit roots. Taylor (1998) supplies critical values for these overall joint

tests in the monthly case.

3.5 Multiple Tests and Levels of Signi�cance

It is notable that many tests of the seasonal unit root null hypothesis

involve tests on multiple coe�cients. In particular, for the application

of the HEGY test (44), Hylleberg et al. (1990) recommend that one-

sided tests of �1 and �2 should be applied, with (�3; �4) either tested
sequentially or jointly. The rationale for applying one-sided tests for

2The reparameterization of the regressors proposed for monthly data by Beaulieu

and Miron (1993) is typically preferred because, in contrast to that of Franses (1991),

the constructed variables are asymptotically orthogonal.
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�1; �2 and �3 is that it permits a test against stationarity, which is not

the case when a joint F -type test is applied. Thus, the null hypothesis
is rejected against stationarity only if the null hypothesis is rejected

for each of these three tests. Many applied researchers have followed

HEGY's advice, apparently failing to recognise the implications of this

strategy for the overall level of signi�cance for the implied joint test of

�1 = �2 = �3 = �4 = 0.

Let us assume that separate tests are applied to �1 and �2, with a

joint test applied to (�3; �4), with each of these three tests applied at

the same level of signi�cance, �. Conveniently, these tests are mutually
independent, due to the asymptotic orthogonality of the regressors, as

discussed in Section 3.3. Therefore, the overall probability of rejecting

the SI(1) null hypothesis when it is true is

(1� �)3 � 1� 3�

for � small; see, for example Gourieroux and Monfort (1995). Thus,

with � = :05, the implied level of signi�cance for the overall test is

1� :953 = :14, or approximately three times that of each individual test.
With monthly data, the issue is even more important. If separate tests

are applied to �1, �2, and each of the pairs (�i; �i+1) (i = 3; 5; 7; 9; 11),
each of these at the level of signi�cance �, then the implied overall test

of the SI(1) null hypothesis is

1� (1� �)7 � 7�:

In this case, � = :05 implies an overall level of signi�cance of .30 and � =

:01 an overall level of .07. If the overall level of � is desired, then a simple

way to (approximately) achieve this would be to use a level of �=k for

each individual test, where k is the number of independent tests applied.
This preserves the overall level of signi�cance as (approximately) � while

taking advantage of the one-sided tests available through direct use of

the t-statistics.

In conclusion, the impact of multiple tests must be borne in mind

when applying seasonal unit root tests. To date, however, these issues

have received relatively little attention in this literature.

4 Near Seasonal Integration

As noted in Section 3.1 for the DHF test, Pr[t
b�s < 0] = Pr[�2(S) < S]

seems to be converging to 1=2 as S increases. However, for the peri-

odicities typically considered this probability always exceeds 1=2: This
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phenomenon indicates that a standard normal distribution may not be a

satisfactory approximation when the characteristic root is close to 1 and

the sample size is moderate, as Chan and Wei (1987) point out. It is

also a well established fact that the power of unit root tests is quite poor

when the parameter of interest is in the neighborhood of unity (see, for

example, Evans and Savin (1981, 1984) and Perron (1989)). This sug-

gests a distributional gap between the standard distribution typically

assumed under stationarity and the function of Brownian motions ob-

tained when the DGP is a random walk. To close this gap, a new class

of models have been proposed, which allow the characteristic root of a

process to be in the neighborhood of unity. This type of process is of-

ten called near integrated. Important work concerning near integration

in a conventional AR(1) process includes Bobkoski (1983), Cavanagh

(1985), Phillips (1987, 1988), Chan and Wei (1987), Chan (1988, 1989)

and Nabeya and Perron (1994).

In the exposition of the preceding sections, it has been assumed that

the DGP is a special case of

yt = �Syt�S+ "t (63)

with �S= 1 and y�S+1 = ::: = y0 = 0: In this section we generalize the

results by considering a class of processes characterized by an autore-

gressive parameter �S close to 1. Analogously to the conventional near

integrated AR(1), a noncentrality parameter c can be considered such

that

�S= ec=N ' 1 +
c

N
: (64)

This characterizes a near seasonally integrated process, which can be

locally stationary (c < 0), locally explosive (c > 0) or a conventional

seasonal random walk (c = 0). This type of near seasonally integrated

processes has been considered by Chan (1988, 1989), Perron (1992) and

Rodrigues (1998c).

Similarly to the seasonal randomwalk, when the DGP is given by (63)

and (64), and assuming that the observations are available for exactly

N (N = T=S) complete years, then

Ssn =

n�1X
j=0

e
jc

N "s;n�j =

nX
j=1

e(n�j)
c
N "s;j s = 1; :::;S (65)

This indicates that each season represents a near integrated process with

a common noncentrality parameter c across seasons.
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One of the main features of a process like (63) with �
S
= ec=N ; is

that the FCLT and the CMT imply that

1

N1=2
ysn =

1

N1=2
Ssn ) �2Jsc(r); s = 1; :::;S (66)

where Ssn is the PSP corresponding to season s and Jsc(r) is a Ornstein-
Uhlenbeck processes and not a Brownian motion as in the seasonal ran-

dom walk case. Note that, as indicated by for example, Phillips (1987)

or Perron (1992), this di�usion process is generated by the stochastic

di�erential equation

dJsc(r) = cJsc(r)dr + dWs(r) (67)

so that

Jsc(r) =Ws(r) + c

Z 1

0

e(r�v)cWs(v)dv (68)

and Jsc(0) = 0:

4.1 Power Functions for the DHF Test

The normalized least squares bias obtained from a DHF test regression

when the DGP is (63) can be given by

T (b�S� �S) =

T�1
TP
t=1

yt�S"t

T�2
TP
t=1

y2t�S

(69)

which can be written as a function of S independent processes

T (b�S� �S) =

(SN)
�1

SP
s=1

NP
n=1

Ss;n�1(Ss;n � Ss;n�1)

(SN)
�2

SP
s=1

NP
n=1

S2
s;n�1

: (70)

Recognizing that these PSPs are now of di�erent nature than those ob-

tained for the seasonal random walk case, and applying the results given

by Phillips (1987, p.539), it can be shown that,

(SN)
�1

SX
s=1

NX
n=1

Ss;n�1(Ss;n � Ss;n�1))
�2

S

SX
s=1

Z 1

0

Jsc(r)dWs(r) (71)
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and

(SN)
�2

SX
s=1

NX
n=1

S2
s;n�1 )

�2

S2

SX
s=1

Z 1

0

J2sc(r)dr (72)

where Jsc(r) and Ws(r), s = 1; :::;S are independent standard Ornstein-

Uhlenbeck processes and independent standard Brownian motions, re-

spectively.

Consequently, substituting (71) and (72) into (70) yields,

T

S
(b�S� �S) =

SP
s=1

R 1
0
Jsc(r)dWs(r)

SP
s=1

R 1
0
J2sc(r)dr

: (73)

It is also easy to see that the respective t-statistic converges to

t
(b�
S
��
S
)
=

SP
s=1

R 1
0
Jsc(r)dWs(r)

�
SP

s=1

R 1
0
J2sc(r)dr

� 1

2

: (74)

The result in (74) is the asymptotic power function for the DHF t-test. It

is straightforward to observe that the distribution in (20) is a particular

case of (74) with c = 0: A more detailed analysis appears in Chan (1988,

1989), Perron (1992) and Rodrigues (1998c).

4.2 Power Functions for the HEGY Test

The examination of the HEGY procedure in a near seasonally integrated

framework is slightly more involved. As indicated by Rodrigues (1998c),

(1� (1 + c
N
)L4) can be approximated by,

h
1�

�
1 +

c

4N
+O

�
N�2

��
L
i h
1 +

�
1 +

c

4N
+O

�
N�2

��
L
i
�h

1 +
�
1 +

c

2N
+O

�
N�2

��
L2
i

(75)

The results provided by Jeganathan (1991), together with the orthogo-

nality of the regressors in the HEGY test regression, yield the distribu-

tions of the HEGY statistics in the context of a near seasonally integrated

process. In a similar way to the seasonal random walk case, the limiting
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behavior of the HEGY test statistics can be obtained from the following

models:

z(1);t = �1z(1);t�1 + "t (76)

z(2);t = ��2z(2);t�1 + "t (77)

z(3);t = �4z(3);t�1 + �3z(3);t�2 + "t (78)

where �1 = e
c
T ' (1 + c

T
); �2 = e

c
T ' (1 + c

T
), �3 = e

c
T ' (1 + c

2T
) and

�4 = 0:
Rodrigues (1998c) establishes the following limit results for the HEGY

test regression:

T (b�i � �i) )
R 1
0
J(i)c(r)dW(i)(r)R 1
0

�
J(i)c(r)

�2
dr

; i = 1; 2 (79)

T (b�3 � �3) )
2
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o (80)

T (b�4 � �4) )
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nR 1
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and

t
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�
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; i = 1; 2 (82)
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where

J(1)c(r) = W(1)(r) + c

Z 1

0

e(r�v)cW(1)(v)dv
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J(2)c(r) = W(2)(r) + c

Z 1

0

e(r�v)cW(2)(v)dv

J(3)c(r) = R(3)(r) + c

Z 1

0

e(r�v)cR(3)(v)dv

J(4)c(r) = R(4)(r) + c

Z 1

0

e(r�v)cR(4)(v)dv

W(1)(r) = W1(r) +W2(r) +W3(r) +W4(r)

W(2)(r) = W1(r) �W2(r) +W3(r) �W4(r)

R(3)(r) = W1(r) �W3(r)

R(4)(r) = W2(r) �W4(r)

and where J�(i)c(r) =
1
2
J(i)c(r); i = 1; 2 and J�(j)c(r) =

1p
2
J(j)c(r); j =

3; 4:
Note that, since the joint tests computed from the HEGY test re-

gression are averages of squared t-statistics (as indicated in Section 3.4),

the distributions for the F-type tests typically considered can easily be

obtained from (82) to (84).

One important result also put forward by Rodrigues (1998c) is that

the distributions in (82) to (84) are still valid when we allow di�erent

noncentrality parameters for each factor in (4.13).

5 Conclusion

We have considered only the simple seasonal random walk case, which

was used to present the general properties of seasonally integrated pro-

cesses. It should be noted, however, that the e�ect of nonzero initial val-

ues and drifts on the distributions of the seasonal unit root test statistics

can easily be handled substituting the standard Brownian motions by

demeaned or detrended independent Brownian motions.

Among other issues not considered are the implications of autocorre-

lation and mean shifts for unit root tests. The �rst is discussed in detail

in Ghysels et al. (1994), Hylleberg (1995) and Rodrigues and Osborn

(1997). It is known that strong MA components can distort the power of

these procedures. To a certain extend, however, these distortions can be

corrected by augmenting the test regression with lags of the dependent

variable.

The negative impact of mean shifts on the unit root test procedures,

was noted by Ghysels (1991). Recently, Smith and Otero (1997) and

Franses and Vogelsang (1998) have shown, using arti�cial data, that

the HEGY test is strongly a�ected by seasonal mean shifts. This lead
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Franses and Vogelsang to adapt the HEGY test so as to allow for de-

terministic mean shifts (Smith and Otero also present relevant critical

values for the HEGY procedure in this context).
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7 Appendix

The coe�cient of determination (R2) obtained from a regression like (14)

is often used as a measure of the strength of the seasonal pattern. For

the seasonal random walk DGP,

R2 =

TP
t=1

(byt � y)
2

TP
t=1

(yt � y)
2

=

TP
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by2t � Ty2
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(85)
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Proof: It is a standard result for any regression containing an inter-

cept (or a full set of seasonal dummy variables) that

TX
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2
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by2t � Ty2: (86)

Similar arguments apply for the denominator of (86). Now,
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The convergence result for 1
T 2

TP
t=1

y2t follows directly from part d) of

Lemma 2.1, so that
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The �nal result required is for T�1y2:

T�1y2 = T�1
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Equations (87), (88) and (89) together yield (86).
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