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On Periodic Structures and Testing
for Seasonal Unit Roots*

Eric Ghysels’, Alastair Hall’, Hahn S. Lee™

Abstract / Résumé

The standard testing procedures for seasonal unit roots developed so
Jfar have been based mainly on time invariant ARMA processes with AR
polynomials involving seasonal differencing. One attractive alternative is to
employ periodic ARMA models in which the coefficients are allowed to vary with
the season. In this paper, we present convenient procedures for testing for the
presence of unit roots at the zero and seasonal frequencies in periodic time
series. The limiting distributions of these statistics are derived and tabulated.
Simulation evidence illustrates the advantages of allowing for periodicity in this
context when it is present. The tests are illusirated via applications to
macroeconomic and ozone level data.

Les procédures standards pour tester la présence de racines unitaires aux
fréquences saisonniéres sont basées sur une représentation invariante ARIMA. Une
classe alternative de processus est celle des modéles & variations périodiques des
paramétres. Dans cette étude nous présentons des tests de racines unitaires qui
prennent explicitement en compte une structure périodique. Les distributions
asymptotiques sont dérivées. Une étude Monte Carlo démontre les avantages de nos
tests par rapport aux procédures standards.

Key Words: periodic models, seasonal unit roots
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1. INTRODUCTION

Two types of model specifications are most often considered for seasonal time
series. One consists of time-invariant autoregressive integrated moving average
(ARIMA) processes with AR polynomials involving first and/or seasonal differencing.
This class of models, popularized through the work of Box and Jenkins (1976), has
become standard textbook material.! A celebrated example of this class is the
so-called airline model named after the passenger data set to which it was originally
fitted. The second class has gained considerable interest in recent years, though it is
still a distant second in terms of applications. Its original source of inspiration was the
work of Gladysev (1961) on periodic autocorrelations and was later refined by Tiao and
Grupe (1980). The models are usually referred to as periodic ARIMA models because
they are characterized by deterministic seasonal variation in the parameters. Several
papers explored the estimation and testing of periodic models, including Jones and
Brelsford (1967), Pagano (1978), Troutman (1979), Tiao and Guttman (1980),
Andél (1983), Cipra (1983), Vecchia (1985a), And&l (1987), Andél (1989), Hurd and
Gerr (1991), Liitkepohl (1991), Sakai (1991), Vecchia and Ballerini (1991), Anderson
and Vecchia (1993), Boswijk and Franses (1993), Ghysels and Hall (1993),
McLeod (1993), Bentarzi and Hallin (1994), Franses (1994), among others. In addition,
these models found successful applications in economics, environmental studies,
hydrology and meteorology, see inter alia., Bhuiya (1971), Noakes etal. (1985),
Vecchia (1985b), Vecchia etal. (1985), Osborn (1988), Birchenhall et al. (1989),
Jiménez et al. (1989), Osborn and Smith (1989), Todd (1990), Ghysels and Hall (1992),
McLeod (1993).

To date, tests of whether first or seasonal differencing is appropriate have been
developed within the framework of time invariant ARIMA models; see inter alia, Hasza
and Fuller (1982), Dickey, Hasza and Fuller (1984), Hylleberg et al. (1990). However,
scasonal unit roots characterize the nonstationarity of periodic patterns in time series
and so it is natural to test for these roots in the context of periodic models. In this
paper, we propose a number of statistics which allow a researcher to test for the
presence of zero and seasonal frequency unit roots in periodic AR models. We derive
and tabulate the limiting distributions of our statistics.  Simulation evidence

Besides textbooks, it is also worth mentioning survey papers on the subject such as Bell and
Hillmer (1984) or Ghysels (1994). While the majority of the literature focuses on univariate
models, some authors have studied multivariate extensions. Recent examples include Lee (1993)
and Ahn and Reinsel (1994).



demonstrates that there can be considerable gains in power from taking account of the
presence of periodicily when it is present.

An outline of the paper is as follows: in section 2, we examine the issue of
testing for the presence of certain roots in the autoregressive polynomial of a periodic
time series. Section 3 extends this analysis by introducing joint tests for the presence
of these roots; one of these tests examines whether seasonal differencing is appropriate.
Section 4 contains the results from a simulation study and an investigation of two
empirical examples. All proofs are relegated to a mathematical appendix.

2. TESING FOR THE PRESENCE OF INDIVIDUAL ROOTS

Let the seasonal differencing operator to be defined as As = (1 - B®) where B is

the backshift operator and S is the seasonal sampling frequency. In the cases of annual,
biannual, quarterly and monthly data, S takes the values 1, 2, 4, and 12, respectively.
Following Box and Jenkins (1976), the seasonal differencing operator is applied to a
series because it is believed to render a series stationary around, potentially, some
deterministic level. However, although this transformation is a very natural choice, it
actually amounts to an assumption about the values of roots of the autoregressive
polynomial. For example:

A =1-B

A

) A(l + B)

B 2
A4 -—A2(1+B)

Al2=A4(1+B+B2)(1—B+B2)(1+J§B+B2)(1—J§B+B2).

Therefore, as is well-known, the use of A corresponds to the assumption of a real
autoregressive root of 1; A2 corresponds to real roots of 1; A 4 contains these two real

roots plus the complex roots i; A12 contains the roots of A 4 plus four additional pairs

of complex conjugate roots. These roots imply different types of behavior.
For example, the root of -1 corresponds to a component exhibiling two cycles per year
and the roots of 1i correspond to a component exhibiting four cycles per year. From
this perspective, it may be of interest to test for the presence of these individual effects.
In this section, we develop test procedures that allow this in the context of periodic



time series. In the next section, we extend this to joint tests which allow one,
for instance, to test whether seasonal differencing is appropriate.

However, first we must address a matter of notation. In our presentation, it is
necessary to distinguish the periodic function which determines a parameter value in a
given period and the arguments of this function. All parameters are repiesented by

S

“lower case" greek letters and we use Z,‘l, say, to denote the periodic function % D, éjs
s=1

where DSl is an indicator variable which takes the value 1 if s = t modS. Similarly, §jl

S
denotes % Dsl §Sj. Tt will always be clear from the context whether we refer to the
s=1

function &t or to the values it takes {és; s=1, .., S}.

It is most convenient to introduce the tests in the context of a zero mean periodic
autoregressive model and then extend the results to models with an intercept and time
trend. Consider the model:

y, :jg Py Y 2.1)

Without loss of generality, we assume t=(n - 1)S+s for n=1,2, ..., N and
s=1,2,..,8S; this gives a sample of size T=NS. To facilitate our analysis, we

impose the following condition:

C.1: {ut} is a sequence of i.i.d. random variables with E(ul) =), E(u%) = o2 and

sup, E]ut|y< e for some y> 2.

Our inference is based on the regression models given in equations (2.2)
and (2.3). First, consider the model:

U (2.2)

where z‘{’t =(1 - (pB)yt. If y, possesses a unit root at the zero frequency, then it has

the representation in (2.2) with o = I,s=1,2,..,Sand ¢=1. If Y, has the root -1,



then it has the representation in (2.2) with o = -1, s=1,2,..S, and ¢=-1.

Therefore, to test for the presence of either of these roots, one can estimate (2.2) with
¢ =c and test whether o =c for ¢ =+1. These two null hypotheses can be written

compactly as:

R, .. _ _
HY@: o =¢,8=1,2,.., S

for ¢ = -1 or 1; here the R superscript stands for "real” roots. The alternative denoted
Hl: (¢), is that at least one o # Q.

We now turn to inference about the complex roots. Consider the regression
model:

p—2 )
Y =Y YD)ty Yt jzl 6,255t (2.3)

where z‘zp (= (1-¢B+ B2)y‘. Note that for notational convenience, the coefficients on

z‘f”[_j and zg”t_j in equations (2.2) and (2.3) are both denoted Gjl; however, the values
taken by 6}.[ are different in cach case. This will not cause any ambiguity since none of
the tests explicitly depend on Ojt. If y, Possesses the complex conjugate pair of roots
associated with (1 - ¢z + 22), then it has the representation in (2.3) with Y = ¢,
Yo = 1fors=1,2, .. S. Consequently, one can test for the presence of these roots by
estimating (2.3) with the appropriate choice of ¢ in zg"l and testing if Vi = ¢, Yo = 1.
This null hypothesis can be written compactly as:

Croven) = em
HO@: ¥, =0 Ty = 1s=12,..,8

for ¢ = 0, £1, +/3. Here, the C superscript stands for "complex™ roots. The alternative,
denoted H(i(l[)), is that at least one Vs # ¢ or one Y, # 1 in which case the series does

not possess the roots associated with (1 - ¢z + 7,2).

All our inference procedures are based on the Wald statistic for testing linear
restrictions on the parameters of a linear regression model estimated by ordinary



least squares. The generic formula for the statistic is as follows. Suppose the
regression model is:

y=XB+u

where y, u are T x 1 vectors of observations on the dependent variable and error
respectively; X is the T x k matrix of observations on the regressors. The Wald
statistic for testing Rff = r is:

W= ®p - 0 [RX X)'RT' Rp - 1)/ 0 (2.4)
where B= (X' X)' X'y and o = y[I - XX X)Xy / T.

Let W§(¢) denote the Wald statistic for testing H%(q‘») based on (2.2) and let
Wg(()) denote the Wald statistic for testing Hg(lp) based on (2.3). To present the

limiting distribution of these statistics, we must introduce the following relation: let
Bs(r) denote an S-dimensional standard Brownian motion, G(r) denofe the (4 X 1)

standard Brownian motion given by:
G =152 6, 0.5 6, o, " 6,0, 527" 6,01

S S . S/2 o1
where Gl(r)=S£1 B (@), G,() = Y (-1 B, (1), G,(0) = )2] -D""' B

s=1 §= Sisy

S/2

j(s) =2s-1,G 4(r) = 3 (—‘1)S BSk(s)’ k(s) = 2s. The distributions of these test statistics
s=1

are as follows:

THEOREM 2.1: Let Y, be generated by (2.1) and assume C.1 and A.1 defined in the
appendix hold, then: (i) under HY(¢), Wh(4) 3 w5, ¢ % 1; (i) under H{(4), W(9) 4
Wi p=1, k1,43



S
R 1 2, ¢l 2
where Y = sEI[IOGI(r) aBg I°/ [ G, (" dr,
-1 .
-;{ trace {IO G, (1) dG() [IO G, (1) Gy (1) dr] IO G, () dG()'},
and G3 4(r) is the (2 x 1) subvector of G(r) containing its 3rd and 4th elements.

The limiting distributions only depend on the known parameter S. Percentiles are
presented in Table 2.1 for S = 4,12.2 The table covers the case without intercept and
linear trend. The intercept case, as well as intercept plus trend cases, are discussed
next.

In many cases, it may indeed be appropriate to include an intercept or time trend
in the model. Accordingly, consider the models:

-1
_ ¢
=0 Yyt H ]): 9 g T 2.5)
S
y =0yt j + ﬁl(n - N/2) + E OJl Lt + U, (2.6)
_ P2 p
Yo = Yll(—yt-l) Y Yo TR E 6 ¢ Loy T U 2.7)
P2 0
l( Y, 1) + Yy Vo tH ﬁ(n - N/2) + JZ 6 Z) 0 +ou, (2.8)

Let Wy “(qs) Wy (¢) be the Wald statistics for testing HY($) based on (2.5)
and (2.6), respectively. Likewise, let W(S:u(‘p)' Wg T((,b) be the Wald statistics for testing
H():(qb) based on (2.7) and (2.8), respectively. The limiting distributions of these

statistics are as follows:

2 All computations were performed using the RATS, Version 4.01, package of ESTIMA, Inc. To
calculate the critical values, we used 10,000 iterations. For S.= 12 and N = 20, we only report
the case of no intercept and trend since (he other cases yiclded essentially similar critical values.



THEOREM 2.2: Lel Y, be generated by (2.1) assume C.1 and assumption A.1 defined

in the appendix hold, then: (i) under H};(fp), WIS{} L(q)) 3 ; v WI; t(q;) 3 u}g v for ¢ =11,
. C, . wC C wC C _ +

(ii) under HO(¢)‘ WSH(¢) 3 WSN’ wSr(¢) * Yoo for $ =0, %1,

For brevity, these limiting distributions are defined in the appendix; again, they
only depend on S and percentiles are presented in Table 2.1 as noted before.

Finally, we observe that the statistics W?((j}) are asymptotically equivalent to the
sum over s =1, 2, ..., S of the squared t-statistics for HO: o = ¢ from the appropriate

regression model.  This provides a convenient method of calculation from standard
regression computer output.

3. TESTING FOR SEASONAL DIFFERENCING

We now turn (o the question of testing the hypothesis that seasonal differencing
would yield a stationary series. From the previous section, it is clear that this amounts
to testing a joint hypothesis about the roots of the autoregressive polynomial. To
illustrate the structure of these joint tests, we concentrate on the case where S =4. The
procedures easily cxtend to the case where S = 12 and 1his is discussed in the appendix

Let yl-(1+B+B +BYy, ¥y =-(-B+B =By, vy = (1 +BYy, 7=

(1-B8 )y[ and consider the regression model:

4

p-:3 4
L= T Y e + Y 0.2 .+u. (31

g o Yo Ty Yaer R Va2 T2y Tt T

4

In the context of aperiodic time series, Hylleberg et al. (1990) showed that
various paramelter restrictions among the m coefficients correspond to the existence of
the roots discussed in the previous section. Ghysels, Lee and Noh (1994) showed that
this procedure can be extended to test for seasonal differencing. In this section, we
generalize this framework to periodic time series.

If y, possesses all the roots +1, H, then it has the representation in (3.1) with

nisz(), i s=1,2,3,4. This corresponds to the case where seasonal differencing

yields stationarity.
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We denote this null hypothesis by:

A, _ Qe
H()(4)‘ T = 0 foralli,s=1,2,..4

where the A superscript stands for "all roots" and the 4 refers to the quarterly data. The
alternative, H‘;‘ (4) is that at least one . # 0.

A related hypothesis is whether all the “seasonal roots" -1, 1 are present. If this
is the case, then Y, has the representation in (3.1) with = 0 for i=2,3,4,

s=1,..,4. Note that this representation is valid irrespective of whether Y, Dossesses

the root 1, i.e., a unit root at the zero frequency. We denote this null hypothesis by:

Sy 7 = . =
H()(4)‘ T = 0 i=2,3,4s=12,.,4

where the S superscript stands for "seasonal roots"; again the alternative is that T # 0

for at least one i > 1 and one s.

Let W W with S = 4 denote the Wald statistics for testing H (4) and H0(4)

respectively. The limiting distributions of these statistics are derived in the appendix.
The notation for these distributions is presented in Table 3.1 and the percentiles are
given in Table 3.2. One may also wish to include an intercept or a time trend in the
model and so estimate either:

4 3 p-3

4 = _2_1 Ty Yier ¥ By Y3 T AT JE] g L R G2
or

4 3

Z, = i.)—i] Ty Yier © Tgy Yoo T H T ﬂ(n - NI2) + 2 9 Lt. +u. (3.3)

j=1

The presence of the deterministic terms in (3.2) and (3.3) does not alter the
arguments above, although it does change the limiting distributions. Let Ws i W

with S =4 be the Wald statistics for testing }1‘8‘(4) based on (3.2) and (3.3),

respectively. Similarly, let WS i W be the Wald statistics for testing H?)‘(4) based on

(3.2) and (3.3). The limiting distributions are summarized in Table 3.1 and described
in the appendix.



11

For the case where S = 12, one must modify the regression models in the fashion
shown in the appendix. The notation for these tests is analogous to the quarterly case:

A, . .
HO(12). A12 y, is stationary
H(S)( 12): y, Possesses the roots of A12 /A,

and W":‘z is the Wald test of Hg(12) based on the monthly analogs of (3.1)

(equation (A.21) in the appendix), etc. The limiting distributions are summarized in
Table 3.1 and the percentiles presented in Table 3.2.

We conclude this section by noting that all the limiting distributions presented in
this section are free of nuisance parameters.

Table 3.1: Test Statistics and Their Limiting Distributions

Null hypothesis Regression model Limiting distributions
of Wald statistics
Hﬁ(4) (3.1) \,/2
(3.2) w’;‘l l
(3.3) "’ﬁ‘r
S
Ho (4) 3.1 A
(3‘2) Wi}l
(3.3) v,
A

HA(12) (A.21) \4/1‘2
A

(A.22) Yiau
A

(A.23) Yy e

1S ,

H3(12) (A.21) u/?z
S

(A.22) Yiou
(A.23) S
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4. SIMULATION EVIDENCE OF FINITE SAMPLE PROPERTIES AND
EMPIRICAL APPLICATIONS

In this final section, we report results of a Monte Carlo study of the finite sample
properties of the statistics presented in the previous two sections and then two empirical
applications.

The design of the experiments was based on the following data generating
process:

(1-aB)(1+B)1 - asB2) y, =1, | 4.1)

where u is ii.d. N(0,1) and t=(n - 1) 4 +s. Notice, we focus exclusively on a

quarterly model where periodic behavior may appear at the zero and seasonal
frequencies; the values of a  are given in Table 4.1. It should be noted that a, was

selected to control both types of roots simultaneously in order to keep the number of
cases limited. A total of six test statistics were considered, three of which are
commonly used and do not explicitly exploit the periodic features in the DGP, and
three statistics introduced in sections 2 and 3. The first set of statistics includes:
(a) the Dickey-Fuller t statistics, denoted DF; (b) the joint test proposed by Ghysels,
Lee and Noh (1994) for the presence of unit roots at all the seasonal frequencies,
denoted GLN; and (c) the joint test for the (1 - B4) operator proposed by Hylleberg
et al. (1990), denoted HEGY. In each case, the auxiliary regression models did not
include a trend nor seasonal dummies or a constant. The sample size selected was
20 years, or 80 observations. The second set of three statistics includes: (a) the WE(])

statistic described in Theorem 2.1, (b) the Wi statistic, and (c) the WZ\ statistic both

appearing in section 3. Hence, the first and second set of test statistics cover similar
hypotheses regarding the presence unit roots at the zero and seasonal frequencies.

Table 4.1 reports simulation results based on 10,000 Monte Carlo simulation
using the RNDN function of the GAUSS package. The top line of Table 4.1 shows that
none of the statistics show any noticable size distortion. The next line in Table 4.1
stresses an interesting feature as it relates to a case where the product of the ot

coefficients equals one, yet with the 0t differing dramatically. Let us first focus on the

first set of three statistics. First, we notice that the DF statistic has its power equal to
its size while the two joint statistics GLN and HEGY reject the null outright.
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This first case stresses the advantage of taking periodicity into account as is done in the
second block of three statistics. Indeed, with the product of the a_ coefficients equal to

one, the DF statistic is “tricked" by the fact that, on average across all four seasons,

there is a unit root. The GLN and HEGY statistics are not affected by the fact that
4 4

M a= 1, instead they would be affected by for instance Il (as)”2 = 1. Looking at
s=1 s=1

the three statistics together, DF, GLN and HEGY, one would conclude in most
circumstances that one should take a first difference of the data. Instead, the periodic
tests, WI:(I), Wi and W‘:, show good power properties in rejecting unit root behavior

at all the frequencies. The next case is also particularly interesting. The product of the
a coefficients now equals -1, because all but one coefficient equal 1.0 and the fourth

is -1. Let us first discuss what impact this has on the data generaling process
appearing in (4.1). Since the polynomial on the left-hand side equals (1 - asB) (1+B)

(1+ as’Bz), one finds for the three seasons (1 - B) (1 +B) (1 + Bz) while for the fourth

season, the polynomial equals (1 + B)3 (1 - B). Hence, in each of the four seasons, the
polynomial contains the (1 - B) unit root. Yet, looking at the results in Table 4.1, we

notice that the DF statistic strongly rejects the zero frequency unit root hypothesis,
4
simply because T

a = -1 and no unit root behavior is detected on average.
s=1 :

In contrast, the Wli(l) statistic correctly identifies the zero frequency unit root while
the Wi and Wi‘ also strongly reject the presence of unit roots at all seasonal

frequencies. The final case appearing in Table 4.1 stresses the fact that the nonperiodic
tests may be powerful, nevertheless. Here, the product of the a coefficients equals

0.64 which is far from the unit circle yet two coefficients equal (o 1.0 while the two
others equal 0.8. Comparing DF, GLN and HEGY with the periodic tests reveals that
the former group of tests is more powerful in these circumstances. Such a DGP is
probably uncommon in practice yet it is useful here to point out situations where
traditional tests arc more powerful.

To conclude, we consider some empirical applications which draw upon
Osborn (1988), Osborn and Smith (1989) and Bloomfield, Hurd and Lund (1994). The
former two applied periodic models to economic time series while the latter studied
stratospheric ozone data with similar models. Using the data from the original articles,
we apply our tests as well as the three nonperiodic tests considered in the Monte Carlo
simulations. Osborn and Smith (1989) examine U.K. quarterly consumers' expenditures
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and assess the benefits that may accrue from the use of periodic models. Nondurable
consumer goods are available in a number of categories: alcoholic drink and tobacco;
clothing, footwear; and energy products. To this set of series, we also add the total of
nondurable consumption as well as disposable income and prices [the latter are studied
in Osborn (1988)]. All data cover a sample from 1955:1 until 1984:2. The results
appearing in the top panel, covering the quarterly data series, underline the benefits of
allowing for periodicity in testing for unit roots in seasonal data. With the GLN and
HEGY test statistics, one would accept the presence of unit roots at seasonal
frequencies in several cases. In contrast, for none of the eight senes is there supportmg
evidence of unit roots at seasonal frequencies according (o the W and W statistics.

For the zero frequency unit root, the results are more mixed, often finding agrecment
between the DF and ng(l) statistics.

Table 4.2: Empirical Results of Tests for Unit Roots in Periodic Time Series

Data DF GLN HEGY Wg(l) WS Wg

Quarterly S = 4

UK. Income 3.76%* 14.28** 14.09+* 18.69** 83.02**  100.63**
U.K. Nondurables 2.68* 0.29 2.00 20.33** 40.50** 50.71%*
Prices 1.65 23.88%* 18.38** 8.48 195.33**  199.36%*
Food 3.34%* 2.59* 4.95%* 18.06** 50.54** 64,77
Alcohol 3.35%* 0.27 3.03%* 11.90 49.56*+* 63.26%*
Footwear 2.19 1.30 223 19.73%+* 62.77%* 72.02%*
Clothing 2.85 0.14 2,11 8.63 42.98** 55.46**
Energy 4.73** 5.70+* 10.06** 6.31 34.70* 64.60**
Monthly S = 12

Arosa Stratospheric

Ozonc Data 5.81%* 31.81+* 31,93+ 20.06 085.88** 1007 4**

Notes: For description test  statistics, see Table 4.1.  The quarterly data are taken from

Osborn (1988) and Osborn and Smith (1989). The monthly data are from Bloomfield,
Hurd and Lund (1994).

A second and final data set contains 50 years of monthly observations of
stratospheric ozone data from Arosa, Switzerland. Bloomfield, Hurd and Lund show
that the correlation structure of such data displays strong periodic features and suggests
an ARMA model with periodically varying coefficients to fit the data. According to
the results appearing in Table 4.2, we find one significant difference between the left
and right panels, respectively, covering tests based on nonperiodic and periodic models.
Indeed we find that the zero frequency unit root hypothesis cannot be rejected with the
wi (1) test. This appears to contradict the evidence based on a standard DF test.
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APPENDIX A

We first present some useful notations and results which will be used below to
develop the asymptotic distribution theory for the statistics proposed in the text.

Define;
n S

. Y X ek.l(s) fork=1,2,3,4, ' (A.1)

w
kno ooy s=1

1

where

_ — (. S
ei® =04 g O =CD 06y g0

= ainZ 1 -
e3i(s) = sin [GG-1)S +5] “(i—l) Sis and

= cos (i -
e4(8) =cosy [(i ~ 1) S + 5] UGi-1) S+s°

Note that (A.1) implies that:

gS nS .
w, =% u, w, =% (-Du
1n =1 { 2n (=1 t
‘ QS o nS .
Wy, = E sinGzt) v, and w, = E cos(zt) u .
=1 t=1
Note also that:
n
Win = wk,n-l Vi T =1 Vi (A2)

S
where Vig = szl ekn(s).

Let Uk“ denote S X 1 vectors such that;

Ukn = lvekn(l), Ckn(Z), ey 6kn(S)]' fork=1, 2,3, 4. (A.3)



19

From Phillips and Durlauf (1986, Theorem 2.1), we have:

ap 1T
N ) Uln -+ O'Bl(r) =oW([) (A4.1)
n=1

where B l(r) = W(r) is an S-dimensional standard Brownian motion with s‘h element Ws(r).

Similarly, we can show that:

i [N
nﬁl U, - o B0 (A42)

N

where B2(r) is an S-dimensional standard Brownian motion with sm element st(r) = (~1)S

Ws(r) fors=1, .., S.

Noting that:
e3n(s) =0 forS=2k+2andk=0,1, ..
fors=4k+1

e3n(s) = u(n— DS+s

egn(s) =(-1) Y- 1)S+s fors=4k+3

. A INT]
it can be shown that N Y U, - 0B,(r), where
n=1 3n 3
B3(r) = [Wl(r), 0, - W3(r), 0,..]. (A.4.3)
- 1 [N
From the definition of e 4“(s), we can similarly show that N Yy U e B 4(1'), where
n=1

B4(r) = [0, - Wz(r), 0, W4(r), el ‘ (Ad44)
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Using (A.2), we have:

where 1 is an S-dimensional vector of ones. From the relations in (A.4), it follows that:

i [N | |
N Y Vi, © Gk(r) . (A.5)
n=1
S
where Gk(r) = 3 Bkj(r). Note here that from the relations (A.4.1)-(A.4.4), we have
S =
S S : s/2 | S/2
G, @)= W), G.M=3 D'W@, Go= % DWW, (), and G,(r) = ¥
1 i=1 j 2 i=1 j 3 j=1 2j-1 4 j=1

(-1 W2j(r).

Finally, let Vit (k =1, 2,3) denote the time series processes generated by the

following equations:

p—l i
Y=Yt jE] G . (A.6.1)
[)"1 -1
Y= Yot iE—l Blj 2y 4 +u (A.6.2)
P2 o
Y3, = Yyt jﬁl 052005+ Y (A.6.3)

The processes z‘lfl are defined following equations (2.2) and (2.3) for k=1 and

k = 2, respectively. Furthermore, we shall assume the following:
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Assumption A.1: The z?:t processes have an infinite order moving average representation

CB)u =X Cu ,where ¥ i|C | <« (A
Lo 1ot oo

The following relations are useful in deriving the asymptotic distribution of the test
statistics in Theorem 2.1.

Lemma A.1: As T - « (and thus N - «), we have:

T
& N3 Dy +ca?d G dr (A8.1)
=1 ’ ,
N‘zg D v2 ac-1 et (A8.2)
24 st 12,141 o St dr S
T

2 2 W a2 2 (1 2
NT X Dy o sing s - n? o [C [, G, dr

1,2 : .
+ c’;‘ 5 G, dr-C, € f (1) G,) G, (@) dr + [cos?2E s - )]? o [CI?i f (1) G3(r)2 dr

+ c% f (‘) G 4(r)2 dr+C, C, | (‘) G, G, dr]  fori=0,1 (A.8.3)
N‘2§ D S et - am?6,md
=1 st y3,1—l y3,(—2 R 770 “'3 r ’4 rdr
1 2
+C €I, G0" -G 4(r)2) dr] (A.8.4)
. 7T 1
(i) N 151 Dy, - Co f, G, a8, (©) (A9.1)

T
N L Dy u o CCD ol L6, a8, (0 (A92)
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T
-1 1 1
N 121 Dsl(—y3,t_1) u - cos(% s) o[Cp J 0 G3(r) dB 48(r) + CI ] 0 G 4(r) dB 4S(r)]
- sin(3 s) o [Cy | (1) G,® B, ® - C; | (1, G, (1) dB, ()] (A.9.3)

g

22 sinGs) o 1Cy Ié G, dB, (0 + C; [ G0 dB 0]

-1 T
N tzl Pyl
- COS(—12£ s) o [CR I (1) G 4(r) dB 4s(r) - CI I(l) G3(r) dB 4s(r)] (A94)

where CR and CI, respectively, denote the real and imaginary part of C(i).

Proof.

(i) When zi[= Yo~ Vi has a moving average representation as in (A.7), we can

show that [see, e.g., Lee (1992, p. 34)]

Yiu= [}] Ci] LZ lli] + [2 C, 1 uj] - [iEO C, j=l§i+[ uj] (A.10.1)

i=0 =1 i=0 ! j=-i+l

’

Using (A.1), it follows that:

2
T T t-1
2 2 a2 a2
N tzl Dslyu_l—C(l) N* % Dst [El uj]

t=1

+o (1) =C?N? I):I w. . +0(l)
P n=1 -1 p

The relation (A.8.1) now follows from (A.5) and the continuous mapping theorem.

Using similar arguments, it can be shown that:
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(-Dly,, = [): -1 C} Lz (- 1)'u]+[20< e z 1o,

1 .
[): -1y c, I (—1)‘"u]. (A.10.2)
=0 'i=t-it] J

From (A.1) for k = 2, we can show that;

2
T o
2 2 e 2 N2 X
N tE]Dstyz,(-l—C( "N E]YD LE‘:]( 1) uj} +0p(1)

2

= C(-1EN? I)\:I w: 4o ()
n=1 2,n-1 p 7

Using (A.5) for k = 2, the relation (A.8.2) can be obtained. When Z(2)t =(1+ B2) 2

has a moving average representation th = C(B)u[, we can rewrite Yy, 28 [see Lee (1992,

p. 34)]
Y3, = Cr I, sin) - S cosGol - CIC sinG + S sin(ol + op('r”z) (A.10.3)

t-1 t-1
where C, = ) cos(2 i) U and S = ) sm(2 i) uj-

=1 =1

Using (A.10.3), we can write:

T
N2y D

1 =N?2 2 D, (c (c (sin% 02 +s cos§ 02+ C,%[cf cos(gt)2
t=

st y3,t 1

+ sf sin(} 0% +C, ClC S(ms2 0% - C S(sm 021 +0, ()

N
= [sin(§ s)’] N2 Zl[Clz{wi“JrC% w§“ Cp €y Wy Wy ]
n: ¥ ¥

N

2 2 2.2
+ [cos(2 s)] N2 ¥ 1[C At CI Wit CR CI Wil w4,n] + op(l).



24

Using (A.1) and (A.5) fork = 3.4, the relation (A.8.3) can be obtained fori=1. A
-, T

similar expression can be derived for N2 ¥ DSt yg 2 which leads to the result in (A.8.4).
{= ’

1
Similarly, we can write:

T

T
-2 a2 2 w2 T2
N lzl Dy Y301 Y302 =N él D (CRlS, C, j(cosy 0" = C, S, (sing 1]

2, v T2y ' v T 2
+ CIISl Cc—l (sm2 1) Ct St-l (cos2 )] + CR CI[C( C‘_l(sm2 t) Sl S[_l(cos2 1)7]
T 2 s T N2
+ CR CI [Cl Ct_l(cos—z- )" - St S[_l(sm—2— 7] + op(l).
When S is an even number, the above expression reduces (o:

T
2 2 2 .
N él DICR S, €y = Cr €S + Cr & Cry - S, Sk

Combining (A.1) and (A.5), the relation (A.8.4) follows from the continuous
mapping theorem. The same argument applies to the case when S is an odd number. Note

that while N2 ) DSt Yg g Y30 CORVEIgES to a nondegenerate asymptotic distribution
=1 e

in (A.8.4), the two series y, and Yy AT asymptotically uncorrelated in the sense that

S . T

) N2 Y Dy, .Yy =op(1). This property is useful in deriving the asym totic
1 prop ymp

s=1 (=] 873t 3,62

distribution (A.11.3) below.

(i)  Using (A.1) and (A.10), we obtain:

-1 T 1 N
N tzl DS‘yl,vl lltz'.C(l)N n_z_:lwl,n-len,n(s)Jf‘)p(l)

N { D (- u)=N"! % D (-n*! (-D'u
(=1 st y2,t-l v =1 st y2,t~1 t

N
=C(-nHN! ¥

n w2,n-1 (‘,2,"(8) + Op(l)

1
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N“{ D )"N'1 I‘ZI D {-C, [C, .sinX(t-1i)-S cos(t - 1))
21 Y3 W =N 2 sl “Cr [Cy; 8107 1i ©0%2

T, Y P
+ CI [Ctui cosi(t -1i) + Sl‘i smi(t - D} u + op(l).

)(t—2)/2

Noting that u = (—1)(“1)/2 cos({,zE t) u + (-1 sin(-gt) u, we can write:

_1T
N Y D

T
el _ . T2 o (D2
=1 sl(—y3,t-2 “t) =N E‘__l Dst{( CR Ct—l + CI St-l) [COS(ZL)] u[( D

N N SRPEBN (%/)17)
+(Cy S, +C,C, ) [sinGG 017 u-D5) +0 (D).

T
A similar expression can be derived for N'1 ¥ DSt (-y3l | ut). Combining (A.1)
=1 -

and (A.5), the relations (A.9) can be obtained by using the continuous mapping theorem.
Proof of Theorem 2.1.

(i)  Using standard arguments, it can be shown that:

S . R T — 11
Wiy = T (@ - »? 1 o [2 D, X X
s=1 =1

B

S T 9
tzl Dst Yoal + op(l).

= %

s=1

T
)
t=1

2
Dst yt-l ut} / 02

For the zero frequency case where the null hypothesis is that HI;(I): o = 1 for all

s=1,.., S, the rclations (A.8.1) and (A.9.1) can be used to derive

s
Vi) = 3 (i3 G, d B, OF /1] G, drl. (A1L1)
§= ’
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Similarly, for testing HI;(—I): o = -1 for all s, the relations (A.8.2) and (A.9.2) can be

used to show:

s
y(-1) = L 116, a B, 17 [] G, arl. (A.112)
S§=

Noting that G](r) and G2(r) are independent and BZS(r) = (-1)° Bls(r), it follows that
u);(l) and I,L}S{(—l) have the same distribution denoted \;fl; Thus, we can use the same

critical values when we are interested in testing for real unit roots, either - 1 or 1.

(i) To prove \;f(s‘(s) for complex unit roots, we first consider the test statistics under
Hg(()): Y = 0, Yy = 1 for all s=1,..,S. In this case, the Wald statistic can be
written as:

T

CO _ % A A 1 ,
Ws@= 2 Mg Y- ) tzl Dy X3 X3

-1
A A A
} (g Ty~ 11/ 0
12,12

I W

s=1 |t t=1

T 10T !
El D, (yH Up Yo ul) t ) D, X5 XSt
‘ . 1:2,1:2
T 1 02
él Dy 01 ¥ Vi u) o+ Op(])

. . .0 0 '
Wh(,[C X3( - ( y‘_l yt_zr LZ,t—l’ veey 1‘2,[_p+2) M
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2 Dl((yt~1 ul’ yt—2 ulﬂ

. -1
YD (y  u,y W [T
2071 e T2 ,
; tEI Doy Y0 Y| %

tr

Il

L _2 DSl(yl-l Y Yia ut)~

17

2D (v, U Y ,0)

YD, (y ,u,y, ,u)
20761 0 Te2 ) | op(l)

LZ DSt(yH Y Ye2 ut)_ ]

where Dt = diag(D“, th’ e DSl)'

Using the relations (A.8.3) - (A.8.4) and (A.9.3) - (A.9.4), we can show that:
weo (L aw G, 6) Jr @, 61! I @G, G,) daw') (A.11.3)
S 0 3 4 0" 73 4 073 74 o

where W(r) is as defined in (A.4.1). The derivation is tedious as the limiting distributions
in (A.8.3) - (A.8.4) and (A.9.3) - (A.9.4) depend on the value of S. In the simple case,
when CR:l and Cl =0, ie., (1 +B2) y, = U however, the relation (A.11.3) can be

obtained by straightforward application of the results in Lemma A.1 and the continuous
mapping theorem.

S/2 . S/2 .
Noting that G3(r) = (—I)HWZ. @andG. ()= ¥ (-1)'W_ (1), it is convenient
j=1 -1 4 j=1 2j
to rewrite (A.11.3) as:
C C 1 vl -1 ¢l )
W (0) - w0 ([ (46) G,/ Tl Gy GOT | Gy (4G (A.12)

where G(r) is an S-dimensional standard Brownian motion, the first four elements of

which are G ., = [(,/S)" G,(9" G, 268" G, S G 4] | and Gy (M isa2xl

vector with the third and fourth elements of G(r).3

3 G(r) can be obtained from W(r) by multiplying an orthogonal matrix. Its first four columns are:

(JS_)'I(I, L., b, (JS‘)"(—I, 1 o 1), ﬁ(ﬁ)‘l(l, 0, -1, ..., 0)' and ﬁ(ﬁ)“(o, -1, 0, .., 1.
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Next, we show that the limiting distributions for testing the unit roots associated
with the polynomial (1 + ¢B + B2) do not depend on the value of ¢ =2cos6. When the
hypothesis of interest in the regression model (2.3) is given by H((;(tp): Vs = o, Yy = I for

all s =1, ..., S, it can be shown that testing Hg(q)) in (2.3) is equivalent to testing whether
y‘fs =0 and )/2*s = | hold in the regression:

p-2 ¢
Y =YD i)t .21 Lot

) o X _ ¢ _ 2 "
where y’:_l = sinf Yor Yia=VYia 2cos6 Y1 and zy, = (1+¢B+B )yt. Notice first
that when 6 = -275 the above regression model reduces to (2.3) and, hence, that the hypothesis
Hg*: YI*S=O, y{s———l reduces in this case to Hg(()): ylsz(), Yog = 1. In general, the
hypothesis Hg* in the above regression can be shown to be equivalent to Y= Vé‘s =1 and

Yy, = Vi sin8 + ¥4 (2c0s6) = 2c0s0 = ¢.

Now, consider:

T

-1
A A A
=1 1:2,1:2

S
W (‘P) = (Yl » Y2 1) [

ot

|92]

S ([T T -1
SZI{ 2] D (v% >0, y¥, u)] )_Z D (vt » ¥ OF . YT )] X
T
[El D, (y¥ u.v%, ul)} /o + ()p(l)

) and X* = (-y* (I) Z‘P )

where X, =(-y ., - _
(] (yl—l y M -1 yl2’ 2,417 77 T2 epe2”

o 0
27 72,t-1 2t p+2
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Using the relations:

T T

1 ] ~
N~ ¥ Dsl(—y’;‘_1 ut)-—smf)N )} Dst( Y1 u()
t=1 t=1
¥ Ly a
X . o ~ B _
N tzl D (-y¥,u)=N tzl D (-y ,u) - 2c0s8 N 121 D -y, 1)
T T
2 2 2nay2 2
N*- X Ds[ —y’:_l—sm 6N E Dstyt_l
t=1 t=1
T T T
-1 2 _ N2 2 20 -2 2
N ‘): D yt,=N ) Dstyt“2+4cos ON E Dy,
t=1 t=1 t=1
T

N2
- 4cosO N él DY Y

‘it can be shown that:

T 1
* * ) * *
tzl Dy ¥ O Y1)

T
L D01, u i, 9}

T
tzl Dst(yT-I u(’ yT-z ul)}

T T 1
tE] D U Y ) 121 Do0yp Y Oy Y

T .
121 Dst(yt—l Ue Yi2 ut)l]‘

Therefore, we have:

. \
34 O34 j0034‘16)'

C C 1 vrfl
W (@) - wg = (4G Gyl G
which is independent of the value of ¢.

To prove Theorem 2.2, we will use the results in the following lemma.

Lemma A.2. As T - » (and hence N -1 ), we have:
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() N“”2r£ D u-0B, (1) (A.13.1)
i =1 st 't 1s e
N2 r{ D (-D'u - 6B, (1) (A.13.2)
=1 st t 2s T
N~'/2§ D sin)u LB (1) (A.13.3)
=1 st 27 % 3s e
T
-1/2 V.4
N 151 D, cosG) u - o B, (1) (A.13.4)
T
.. -3/2 1
Gy N élnmyu_lacmojo G, () dr (A.14.1)
N2 ){ D (-y. Ja(-DCeD o[l G dr (A.14.2)
2y st Y2 02 S
T
-312 n 1 1
N 1:2-—1 Dst(—ylH) - cos(-z—s) O'[CR I() G3(r) dr + Cl IO G4(r) dr
~sin@s) o [C, [L 6.y dr - C [ G.(1) dr] (A.14.3)
2 R0 4 70 73 ; U
N-3/2 T

oo T |
lz 1 D, (¥ ) = 8inGs) ¢ [C [) Gy dr+ € [ G, dr

- cos(gs) o [CR | (l) G 4(r) dr - CI | (l) GB(r) dr] (A.14.4)
Giiy N2 § D n chollrG(d A.15.1
L Dy Ve ol,rG (0 dr (A.15.1)
N-5/2 r{ D S Il ) .
Dy n (*yH) 4 (-1 C-D) o 0 r G2(r) di (A.15.2)

=1
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T
Gv) N2 l):jl D nu - ofB, (1) - I(I)B]S(r) dr] (A.16.1)

T
N2 [El D, (-D'u -+ ofB, (1) - | (‘) B, () dr] (A.16.2)

Proof.
() The relations in (A.13) follow immediately from (A.1) and (A.4).

(ii)  Using (A.1) and (A.10), it can be shown that:

T T -1

-3/2 _ 32 7
N L\ﬁl DS[ Yier = C(1) N til DS‘LEI uj] + ()p(l)

N .
312 v
=C(DN nzl Wit op(l).

n-1)S+s .
To show (A.14.2), define W, n_l(s) =(-1)° ) -1y uj. Then, we have:
> j=1

Wo a8 = -1 |w,

’

S .
BN
n-1 +j§1 -1 “(n-l)sﬂ]'

Thus, we obtain:

T T t-1 )
N-3/2 v Dst(_yu_l):(;(_l)N?/?‘ ¥ Dst(—l) Y (- +0P(1)
t=1 ’ =1 j=1 !
N
e N2y
=C(-1)N n}-l( D W) sy * 00

= C(-1) N2 I)\;I(-l)sw +0 (1)
n=1 ‘ 2,n-1 p 7

The relations (A.14.3) and (A.14.4) can similarly be obtained from (A.10.3) and the
continuous mapping theorem. That is,
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N3 :él Dy(-y; ) _ (-1)EHD2 32 nIgl(cR Wy = €Wy ) +0 (1), for s odd
4 . 1)3/2 N—3/2 ngl(CR W3,n - CI w 4,n) + ()p(l), for s even
-3/2 T F (s-1)/2 \-3/2 I:I
N 121 Dsl(—y3,l_2) =(-1) N n?‘_-l[CR Win " C, w4’n) + op(l), for s odd
= (-2 312 12\‘,1 (e Wy o C w3,n) + op(l), for s even.

n=1

(iii)  Using similar arguments, one can show that:

T N -
-5/2 -3/2 n
- n 1
NP3 D0y, =CONT Y (] 0+ 0,0
N-5/2§ D n(-y, )=(-1)°C(1) N2 l)él w40 (1)
=] S y2,t-l - ) n=1 N| "2,n-1 p

The relations in (A.15) follow from (A.2), (A.4) and Phillips and Perron (1988).
Similar expressions can be obtained for Y3p which are suppressed here, as they are not

explicitly used in the proof of Theorem 2.2.

(iv)  Similarly, one can also show that

T N
N-3/2 ¥ Dst n ul - N—l/2 ¥

n B 1 -
t=1 Nl [N] cln(s) - OlBls(l) - I()Bls(r) dr].

The other result given in the lemma follows by similar arguments,
Proof of Theorem 2.2.

(i)  We follow the steps of the proof of Theorem 2.1. It can be shown that for ¢ = 1:
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S T ~ 1P P
5“(45) = 1 E‘_-l Dst(yt-l - ys)_ (ut - us)} /

T =2
tzl Dsl(yH - ys) * Op(l)
(A.1T7)

T
whel'c§s-N Z D,y u~N Z D,

-1 t=1

Using standard arguments, it is easy to rewrite (A.17) as:

T

-1 T
N lzl Dst yl-l ul

T
-1/2
=1 S Yer| [N 2 Dy w,

t=1
2,-1
] ] + op(]) (A.18)

Combining the results in Lemmas A.1 and A2, ie., (AS8.1), (A9.D),
(A.13.1), (A.14.1), we obtain the formula for yX e

; S
R
WS“(‘P) = ) [

s=1

, T T
N2 ):Dy N2 Y Doy
=1 st 7 t-1

(= -1~

S
su(® = s.El”(]) G, dB, ® - [; G, dr B (D /[[{ G, dr - (] G,®) dry’].
(A.19.1)

As for W s L(l[)) with ¢ = -1, we can use similar arguments to obtain:

(1)-§ N'l'{D(~ u) - N'3/2}:D(~ ) N5 Dy

Vs et R AR S 2 s Y 2

- 24 -1

r T
2 a2 2 3/2
o [N [;Z:»l Dstyt_1 2 D ( Y, 1) } +0p(l).
Notin -12 T -1/2

g that N°° % D u =(- 1N ): D (-Du, the formula for S‘ can
=1 t=1

then be obtained as:

gD = ): [I G,() d B, (1) - || G, dr B, (D1 / []) G, dr - (I} G,) d)’]

(A.19.2)
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As for Ws | l(¢), we use arguments similar to (A.18) where Yor Y2 and u, in the

Wald statistic need to be replaced by their "demeaned" counterparts, i.e., (yt_1 -y, S),

(yt_2 -~ 31"_2 S) and (ul - ﬁs), respectively. The results in Lemma A.1 and A.2 can be used (o

obtain:

C uf =it ' L :
WSu—”VS,u—tr{j() dG F ”0 F34 F_o, !0 F34 dG') (A.19.3)

where F3 4(r) = (33 4(r) I 0 G3 4(r) dr is a 2-dimensional Brownian motion, which is the

demeaned counterpart of (}3 4(r).

(i)  As for the test statistics for the regression models with an intercept and a linear time
trend, we can show, for instance, that [see, e.g., Phillips and Perron (1998)]

S . A
Wl @# =3 M@ - D/ AN - 1)/ 12] 4o (1)
s=1 p

where

A T T
@ -1=M [N(N+1)/2]2Dnyl):Du
t=1 t=1

T T
- [N(N + D(2N + 1)/6] 151 Dst Y [El Dst u,

T T T T
-N (El D ny, tEl D nu +[NN+1)/2] 151 D,y 4 tzl D nu
T
+|N (N - D/12] Z D DA +()(1)

~[N2(N2—1)/121§D 2 ~N§D 2
- (=1 St Yii =1 Yo
T T T 2
N 1 _ .
#NN+D L Dony, L Dy, - INN+ 1 QN+ 1/6) z Dstnyl_ll
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Combining the results for Yl in Lemmas A.1 and A.2, we obtain:
R S 2
LNOR u);fsi] AJID (A.20.1)
where
A =6B, (1) I(‘) r G, (@) de - 4B, (1) I(‘) G, (1) dr
- 12B, (1) - 1B, ® el [ 1 G, dr - % [}6,® drl + [, G,® dB, (),

D=1G,0 dr - 12} 1 G dr® + 12 [} G,® dr [[ 1 G () dr
- 4 [f(l) Gl(r) dr]2

The same formula can be obtained for W[; 'c(_l) except that Gl(r) and Bls(r) should
be replaced by Gz(r) and st(r). As mentioned in the proof of Theorem 2.1, WI: r(l) and
Wl; T(~l) have the same distribution, and the same critical values can be used to test for
real unit roots 1. As for the limiting distribution of W(S: 'c(‘P)’ it should be noted first that

AS and D in (A.20.1) can be rewritten as:

A = [} G¥®) dB () and D= fj G dr
where GT(!’) is a "detrended” Brownian motion such that

GHD =G, - 4 [} G,0 dt -3 [} 1G@ au+ 6} 6,0 dt - 20] 1 G (0 du.
Using similar arguments to the derivation of Wg; . in (A.19.3), it can be shown that:

Cc 1 v (! ool ol \
W= ””o dG H;, [IO H,, H, | jo H,, dG') (A.20.2)
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where

H,,() = G, (1) - 4 U(‘) Gy (D) dt - %— f 5 £ G, (0 di] + 61] (‘) G, (1) dt - 2] (‘) LG, (0 dil

Using analogous arguments to the proof of Theorem 2.1, it follows that for any
arbitrary choice of ¢ such that |¢| < 2:

C C
W@ ¥,
C C
Wed® - Wy,
Proof of Theorem 3.1.

As in the proof of Theorem 2.1, one can show that:

-1
S T

A _ A A A A , A A A A , A

W4 SEl(ﬂ:ls’ Mg 7[33’ n4s) { 21 Dst X4t X4t ]l 414 (nls’ Mg Tag n4s) / 02
Ak ! o)

= D (y u,y u,y u,y u) Y D X X! :

s=1 |t=1 st Ll 0 72,1 0 31 0 732 t=1 st 4t 4 1:4,1:4

T 1

121 Do O U Yon Yp Yaer Yp Yo Wy +0p(D-

Moreover, according to the proof of Lemma A.1, it follows that:
N2 3 D -y, ) Diemyeen o 16w 6,md
2 s et o ’ o 0 Bt dr

) T n .
NT L DY) (g 2 cosyls - DT C) o x

13 G, G0 dr+C, |} G, (1) G,(r) dr]

- sin[%(s + )] C(1) o (o] (‘) G, G,mdr-C, | (‘) G,() G, () dr]
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) T
NE 3 Doy Y0047 C D cosf3(s - ] C(-1) o® x
t= ? r

[, | (‘, G,(1) G,® dr +C, | (‘) G, G,(1) dr]
- (-1® sinfF(s - ) C(-1) o [Cy (‘) G, G, dr - C, | (‘) G,(1) G, () di].

T

Note that while N2 Y D k,j=1,2,3,k#j) have a nondegenerating
t=1 ’

st yk,t’ yj t

asymptotic distribution for each season, they are uncorrelated asymptotically so that:

T S

-2
y,y.. =1
T I

-2 T
N“ Y Dstyk’[y.

=0 (1).
=1 i =%

Using this property, it can be shown that:

(T
2 Du(yluu 2 Y21 % Va1 U Yaga W)
A _
W4 = tr{ X
T
2 D4a(y1¢1“ 2 Yo Y Yot e Yoo W)
T 1
2 D4l(yltl’y2ll'y3tl’y4(1) Oy e Yoo Yaer Vo] %
-
I:El Dy B Y3 Y
/ 0P+ 0 (D).
T
21 Dy Yy Uy Y30 1)
L g )

The relations in Lemmas A.1 and A.2 can then be used to obtain:

w4l aw 6 i G 61! [l G aw)
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where G(r) is a 4-dimensional standard Brownian motion such that G = (1/2 Gl’ 172 GZ’

112 G3, ]NZ G 4). Then as in (A.12), the above expression can be rewritten as:
w2yl = ([} 46) G 1f; G T [ G @6y,

Note that the Wald statistic W‘f} for the hypothesis that 1, = 7, =7, =7, = 0 for

all s=1, ..., 4 has the same asymptotic distribution as the Johanson's test statistic for
cointegration with (n - 1) = 4. See Table 1 in Johanson (1988, p. 239).

As for the Wald statistic Wi, we can first show that:

T.) /1o

1
wS g(AAA)§Dxx' (n
=Y (m, m, T, W, T
4 _ t=1 st 44t 2:4.2:4 2s "3s T4s

: |3 1 ’

= X D (Y)Y Yo Y Y D, X, X,
s=1 li=1 2,t-1 3,t-1 3,2 l (=1 4 2:4.2:4
T

tzl DYy 1 Uy Va1 B Va2 “m)} 10+ 0,(D.

Then, it can be shown that: -

w (]! W) G; (dW)'}

v -1 1
234 ”0 234 6234] J'() 234
where (}23 4(r) = (1/2 GZ(r), 112 G3(r), 112G 4(r))'. By multiplying an orthogonal matrix

to W (see footnote 1 for details), we can show that:
S 1 -1 .
Wy Vg = “” {6) G Gy Gr | foG 0 O34 (dGY'}.

As for the test statistics for the regression models which contain deterministic terms
(intercept and time trend), we can use developments similar to the proof of Theorem 2.2

except that the Brownian motion process G(r) needs to be replaced by its "demeaned” and
"detrended” versions, respectively. That is,
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A

wh o u/j}“: w(J @) F (I} FET! [} FWGY)

WS-y = ([ @6 1 [fy HHT! [ H@GY)

where

F(t) = G@) - | (‘) G(r) dr

and

H() = F@) - 120 - %) Il - -;-) F(1) du.

It should be noted that Wﬁ‘ . has the same asymptotic distribution as the LR statistic

}
for cointegration in Johanson and Juselius (1990, Table A.2), and that W’: 1: has the same

distribution as TR r(" - 1) statistic in Perron and Campbell (1993, p. 787) with (n - 1) = 4.

S

Similar expressions can be obtained for W 4

S : .
and W v namely:

S — l ot 1 ] "1 1

234 Yo 234 Fo3q Gy}

234

S _ 1 ' 1 : S0 -1 ¢1 [
Wie™ V’ir = tr{ [ ((dG) My, [ Hyay Hyo I [ Hp (06,

To conclude, we turn our attention to the monthly regression models. To do so,
first, we define an appropriate set of filtered series:

y“::(l+B+B2+B3+B4+BS+B6+B7+B8+B9+B10+B“)Xl,

y, =-(1-B+B>-B>+B*- B+ B - B+ B - B+ B! - B!

(_’

Yy = -(B - B3+B>-B+8° - B”)xl,

Y= -0 - B2t - B0+ B8 - B,
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yg = - w1 +B-287+ B3+ BY - 285+ B4+ BT - 8%+ B0+ B! - 2!y,

4 6

ISy

> 1-B+B -B*+B ~B7+B9—Bm)xl,

Yo ™
y, =21 -B-287 - B3+ B+ 287 + BS - B7 - 288 - %+ B! 28!,

9 10

-B )x,

_f Y Y A
8= 2(1+B B -B"+B +B -B (

y9[=-%(ﬁ—B+B3—J3_B4+2B5~J§B6+B7 -3+ 3B -2y,
yml=%(1 - 3B +28” - BB+ - B+ 3BT - 28 + I B B,
Ym=%(\ﬁ+3 —33”J3—B4—2B5~ﬁBG~B7+B9+,/§Bm+2B”)xl,
Yip =300+ B+ 287+ TS B0 B - AT - 0nt - TR - B,
2,7 =(1-Bx,

Regressions similar to (3.1) through (3.3), can then be defined as:

12 12 p-3

z, ~§ T iy § ant_J " (A21)
i=1 j=1

2 32 P31 A2

t-~27cyltl+;u+239”ztJ 1 (A.22)
i=1 j=1
12 p-3

20=3 m oy +p+BO-N2+ X 0 2% +p (A.23)

t i=1 it 7it-1 J =1 jlot-j t

The hypotheses of interest, test statistics and distributions drawn from these regressions
appear in Table 3.1. The hypotheses H‘g(]2) and }13(12) are analogous to the quarterly

HA(4) and H(4) appearing in the main body of the text,
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