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On Stable Factor Structures

in the Pricing of Risk%

Eric Ghysels�

Abstract / Résumé

Muchof the research describing the cross-sectional and time series

behavior of asset returns can be characterized as a search for the relevant state

variables and also a search for the relevant model specification. Ultimately the

scope of such efforts is to find a satisfactory and stable asset pricing structure.

In this paper we discuss various methods to accomplish this and appraise the

success of two recently proposed classes of asset pricing models in tracking

predictable patterns in risk and return trade-offs. The two classes are the

conditional CAPM and the nonlinear APT. The parameters of both models are

estimated via a set of moment conditions using the GMM estimator and the model

fit is judged on the basis of the overidentifying restrictions. The fundamental

problem is that overidentifying restrictions tests are not designed to diagnose

whether a model, provides a stable relationship between the return series and

risk factors. We use a set of recently developed tests for structural stability of

parameter estimates for the GMM estimator to diagnose which factor structures

appear stable through time in the context of the two aforementioned classes of

models. In the course of trying to sort out whether there is systematic mispricing

we shall also try to determine what type of model looks most promising for

further development. In that regard we find the nonlinear APT more satisfactory

than the conditional APT and CAPM.

Dans cette étude nous réexaminons les modèles à facteurs qui ont été

proposés récemment, c�est à dire le CAPM conditionnel et l�APT non-linéaire. Ces

modèles ont été estimés par la méthode des moments généralisée. La diagnostique

usuelle pour juger ces modèles est la statistique de suridentification. Le problème

fondamental de cette statistique est qu�elle n�a pas de puissance par rapport à des

alternatives caractérisés par des variations de paramètres. Évidement, ces variations

entraînent des erreurs sur l�évaluation du risque. Nous proposons d�appliquer des

tests de changement structurel pour les paramètres et analysons plusieurs modèles

du type APT non-linéaire et CAPM conditionnel. Peu de modèles semblent être

stable. Nous trouvons que la spécification du APT non-linéaire semble être quand

même la plus satisfaisante.

Keywords: structural change, factor models, APT

Mots-clés : changement structurel, modèles à facteurs, APT
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1 Introduction

Linear factor models such as the unconditional CAPM and the APT have been
the cornerstone of theoretical and empirical �nance for decades now. Supported
by seminal papers, like Sharpe (1964), Lintner (1965), Merton (1973) and Ross
(1976), they are the most widely used tool to value the return on risky assets.
While the theory maintains a linear and stable relationship between risk fac-
tors and returns there is now considerable empirical evidence documenting time
variation in market betas and other factor payo�s. This is perhaps not so sur-
prising since the theoretical underpinnings of the unconditional arbitrage-pricing
theory reveal that time invariant linear factor structures are only obtained when
one imposes strong assumptions on underlying probability distributions and in-
vestor's attitudes towards risk1. In practice many portfolio managers constantly
update and reestimate factor returns and indeed Harvey (1989), Ferson and Har-
vey (1991, 1993) and Ferson and Korajczyk (1995) �nd that estimated betas
exhibit statistically signi�cant time variation.

Much of the research describing the cross-sectional and time series behavior
of asset returns can be characterized as a search for the relevant state variables
and also a search for the relevant model speci�cation. In a recent survey Fama
(1991) notes \since multifactor models o�er at best vague predictions about the
variables that are important in returns and expected returns, there is the danger
that measured relations between returns and economic factors are spurious, the
result of special features of a particular sample". This danger is very real and is
the subject of our paper. Ultimately the scope of speci�cation searches is to �nd
a satisfactory and stable asset pricing structure. To allow for time varying risk
premia certainly yields more sophisticated asset pricing models, but the search
for adequate model speci�cations is obviously more delicate. In particular, the
dynamics of predictable patterns needs to be scrutinized seriously as mispeci�-
cation could be costly in terms of pricing error. In this paper we discuss various
methods to accomplish this and appraise the success of several recently proposed
asset pricing models in tracking predictable patterns in risk factor/expected re-
turn trade-o�s.

Two recently proposed dynamic factor asset pricing models are extremely at-
tractive for two reasons: (1) they accommodate market betas changing through
time and (2) they maintain the fundamental and intuitively appealing idea of
the CAPM and APT that only a few state variables are needed to explain ex-
pected returns. The two models are the conditional CAPM and the nonlinear
APT. Ferson (1985), Ferson and Harvey (1991, 1993), Harvey (1991), Ferson

1Several general equilibrium developments of the unconditional CAPM and APT have been
advanced, see e.g. Huberman (1982), Chamberlain and Rothschild (1983), Ingersoll (1984),
Connor (1984), Connor and Korajczyk (1989), among others.
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and Korajczyk (1995), Dumas and Solnik (1993) among others discuss and apply
the former while the latter is presented in Bansal and Viswanathan (1993) and
Bansal, Hsieh and Viswanathan (1993). The conditional CAPM uses the insights
of the CAPM, put in a multiperiod context, and exploits the predictable varia-
tion in factor loading coe�cients. The nonlinear APT, in contrast, is based on
the existence of a low-dimensional nonnegative nonlinear pricing kernel which is
nonparametrically estimated. In a sense both developments can be related and
justi�ed by the results in Hansen and Jaganathan (1991). They show that, for a
given set of payo�s, there always exists a unique pricing kernel which is a condi-
tional linear combination of all the payo�s. As the set of all payo�s is typically
large one approximates the representation either with a small set of factors in a
conditionally linear structure, or else one computes a �xed nonlinear functional
pricing kernel also involving only a small set of factors. Both models were success-
fully used to price international equities, bonds, size-sorted and industry-based
portfolios as well as forward currency contracts.

The parameters of the conditional CAPM and the polynomial series expan-
sion of the nonlinear APT are estimated via the generalized method of moments
(GMM) procedure discussed in Hansen (1982). The success of the model �t is
primarily judged on the basis of GMM-based criteria. In particular, one tests
whether the overidentifying restrictions imposed by the model agree with the
data2. The fundamental problem is that overidentifying restriction tests are not
designed to diagnose whether a model, be it a conditional CAPM or nonlinear
APT or anything else, provides a stable time invariant relationship between the
variables. Technically speaking, one can easily face a situation where a model's
overidentifying restrictions are not rejected, while the conditional CAPM or non-
linear APT parameters vary through time. Indeed, the method of moments
approach will conceal the time variation as the GMM estimator will converge to
some sort of sample average of time parameter variation3. Hence, the question
whether one has found an asset pricing formula providing a reliable prediction of
expected returns as a function of a small number of risk factors is still unresolved.
In this paper we propose to apply a set of procedures which are explicitly aimed
at testing parameter stability. In fairness to the papers (and authors) quoted
on the conditional CAPM, APT and nonlinear APT it should be noted though
that they do not exclusively rely on the overidentifying restrictions tests. They
also tend to look at the pricing error of the models and conduct other informal

2Bansal, Hsieh and Viswanathan (1993) also used the Hansen-Jaganathan distance to gauge
the �t of alternative models. Such a criterion is like the usual GMM-based criteria, subject to
the same shortcomings we will discuss.

3In an econometrics jargon this means that overidentifying restrictions tests may not have
power against alternatives characterized by parameter variation. This is formally shown in
Ghysels and Hall (1990a). They also provide several examples using the consumption-based
CAPM.
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diagnostics. Our general goal is to provide more rigor and structure to this issue.
Moreover, it will be shown that some of the other diagnostics, like those exam-
ining pricing errors, are also prone to the shortcoming we will discuss. Finally,
in several paper one �nds explicit discussion of the desire to test the stability of
parameters like the conditional betas (see Ferson (1990)), the covariance price of
risk (see Harvey (1991)), the behavior of asset pricing model in energing market
(see Harvey (1993)). Yet, the procedures hitherto adopted are not suited for
testing this.

We will examine whether the conditional CAPM and nonlinear APT repre-
sent asset pricing models with time invariant parameters. This is important for
practitioners who assess the market price of the various risk factors. Whenever
an asset pricing structure is unstable it will naturally result in prediction errors
and mispricing of risk. The analysis proposed here is also a natural extension of
the model speci�cation search since testing for structural change in parameters
is one key element in assessing a model's reliability. For GMM estimation several
tests have been developed in recent years. The one we will use are discussed
in Andrews (1993)4. We apply the tests to the international conditional CAPM
of Harvey (1991), the multifactor conditional CAPM of Ferson and Korajczyk
(1995) and �nally the nonlinear APT of Bansal, Hsieh and Visaranathan (1993).
In section 2 we motivate the scope of our paper and discuss informally the test
statistics, the technical details appearing in the Appendix. Section 3 brie
y de-
scribes the two asset pricing models. Empirical results are documented in section
4. The paper concludes with section 5.

It should be noted that this paper is not simply an exercise in applying a set of
diagnostic tests to a class of recently developed asset pricing models. The results
of our investigation indicate that certain speci�cations appear more stable, and
hence more satisfactory, than others. In particular, we �nd the nonlinear APT
a more satisfactory speci�cation. What appears most problematic about the
conditional CAPM and APT is the speci�cation of the projection equations for
expected returns. Such �ndings help us directing our focus in the search for an
adequate pricing function for assets.

2 Testing for Stable Asset Pricing Models

With the help of a simple example we will �rst discuss the scope and purpose of
testing for structural stability in asset pricing models. Then we will move on to

4Tests for structural change for the GMM estimator can be divided in two categories, those
assuming a known breakpoint and those without such assumption. The former are covered in
Andrews and Fair (1988), Ghysels and Hall (1990a, b) and Dufour, Ghysels and Hall (1994).
The second category is covered in Andrews (1993) and Ghysels, Guay and Hall (1994). An
extensive Monte Carlo of tests belonging to the second category is documented in Ghysels and
Guay (1994).
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a discussion of the test statistics we will consider in our empirical work.
Let us concentrate on a very simpli�ed version of the conditional CAPM to

set the scene for discussion :

E [ri (t; t+ 1) jZt ] = �tE [rM (t; t+ 1) jZt ] (1)

where �t is the time varying market beta to be speci�ed more explicitly later
and Zt is a set of instruments. The excess return from t to t + 1 on the market
portfolio is measured by rM (t; t+ 1) while ri (t; t+ 1) is the excess return on any
asset i. Equation (2.1) accommodates the fact, noted by Harvey (1989), Ferson
and Harvey (1991, 1995) and Ferson and Korajczyk (1993), that market betas
vary through time. Yet, once we admit that beta varies through time we must
specify laws of motion for �t. The conditional CAPM does that, namely with a
single instrument it implies the following:

�t =
E [(rM (t; t+ 1)� �MZt) (ri (t; t+ 1)� �iZt) j Zt]

E
h
(rM (t; t+ 1) � �MZt)

2 j Zt

i (2)

From the above equation we learn that two time invariant parameters, namely
�M and �i, together with the projections on the instruments Zt and the asset
returns on the market portfolio and asset i determine the time variation in �t.
The two parameters are obtained via the projection equations:

E [ri (t; t+ 1) jZt ] = �iZt (3)

E [rM (t; t+ 1) jZt ] = �MZt (4)

The question we are interested in is whether this particular characterization of
�t is adequate and does not yield a systematic mispricing of risk factors. Combin-
ing equations (2.1) and (2.4) we can write the asset pricing equation as follows:

ri (t; t+ 1) = �t�MZt + uit+1 (5)

where Euit+1Zt = 0. If the restrictions of the conditional CAPM do not hold, we
obtain as a generic alternative:

ri (t; t+ 1) = ~�t~�MtZt + ~uit+1 (6)

with E~uit+1Zt = 0 and ~�t is obtained from (2.2) replacing �M by ~�Mt and �i by
~�it.5 No speci�c laws for ~�Mt or ~�it and hence ~�t will not be explicitly used for

5This generic altenative emphasizes the fact that the speci�cation of �t is erroneous. Other
sources of misspeci�cation, such omitted factor risk are, at least for the moment, not considered
here.
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the moment. Testing whether (2.1) is an adequate model in the pricing of asset
returns amounts to testing the hypothesis:

Ho :

(
~�Mt = �M 8t = 1; ��; T
~�it = �i 8t = 1; ��; T

(7)

so that sole time variation in beta is that determined by the model. It is worth
noting that in (2.7) all parameters are tested jointly for stability. In several
circumstances, however, the parameters involved play di�erent roles and therefore
depending on which ones are unstable, a di�erent interpretation should be given.
For instance, in the multifactor models which will be discussed later, one has a set
of parameters that arise from purely ancillary statistical assumptions regarding
projection equations besides parameters with an economic interpretation. To
emphasize this distinction we will often conduct tests involving only a subset of
the parameter vector. For the moment, however, we will proceed with discussing
tests involving the entire vector

Continuing with this simple example it should be noted that testing the hy-
pothesis in (2.7) is far more stringent than the usual overidentifying restrictions
tests, often called J statistics, that have typically been used to diagnose the �t
of an asset pricing model like the conditional CAPM. Since such models are es-
timated via GMM let us proceed by specifying the moment conditions of the
model. Namely, equations (2.5) and (2.3) yield that:

E

0
@ rit+1 � ~�itZt

rMt+1 � ~�MtZt

~�itZt

h�
rMt+1 � ~�MtZt

�2i
�

�
rMt+1 � ~�MtZt

��
rit+1 � ~�itZt

�
~�MtZt

1
AZt = 0 (8)

where rjt+1, is a short notation for rj (t; t+ 1) j = i;M . The formulation in
(2.8) represents the set of moment conditions involved in the GMM estimation
procedure but does not impose the null hypothesis (2.7). The estimation of
the conditional CAPM imposing �xed parameter �M and �i while the data are
generated by (2.8) will yield GMM parameter estimates �M and �i which are some
sort of sample average of the underlying ~�Mt and ~�it processes. Ghysels and Hall
(1990b) show formally that overidentifying restrictions tests based on the moment
conditions such as those in (2.8) but evaluated at �xed parameter estimates �M
and �i may have a tendency not to reject the model. This problem is not just
a theoretical curiosity. Indeed, we will provide numerous examples where this
situation occurs in empirical asset pricing models. Hence, the usual diagnostic
tests to judge the validity of a model are not adequate to detect systematic
mispricing of asset returns because of parameter instability. It is worth noting
parenthetically that besides J statistics other diagnostics are used to appraise the
models we will present. Often these complementary diagnostic tests, particularly
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those based on pricing errors, have the same shortcomings as the J statistic.
This will be discussed more elaborately at the end of the section. Our aim is to
explicitly test the null hypothesis (2.7). Testing such hypothesis provides a more
stringent evaluation of any asset pricing model as it addresses more explicitly the
potential systematic mispricing of risk.

How do we go about testing for structural invariance of the model, i.e. verify
whether (2.7) holds? As one can imagine, there are many ways to do this. Prob-
ably the simplest is to assume as an alternative that at some point in the sample
there is a structural break, like for instance :

e�jt =
(
�j1 t = 1; :::; �T
�j2 t = �T + 1; :::; T

j =M; i (9)

where � determines the fraction of the sample before and after the assumed break
point. If the break point �T were known our task would be relatively easy to
perform. Something like estimating �j1 and �j2 and comparing both estimates to
see whether they are signi�cally di�erent would be one way to proceed, which
is often referred to as a Chow test. Unfortunately, in the present context we
don't really want to assume � known. In recent years several procedures have
been advanced to test the null hypothesis (2.7) against the alternative like (2.9)
with unknown break point �. In the Appendix to the paper we provide a de-
tailed description of the econometric procedures that were developed for GMM
estimators by Andrews (1993). In the remainder of the section we will explain
what these procedures amount to without actually providing any of the techni-
cal details. To facilitate our presentation let us denote parameter estimates for
�jh ; h = 1; 2 , j = i;M associated with a particular presumed break point �T ase�jh (�). Suppose now we construct for each possible break point � between say

.2T and .8T a test for structural change based on e�jh (�), h = 1; 2:6Hence, for
each break point �we have a Wald-type statisticW (�)based on the two estimates
before and after the break �T . The idea now is to combine the Wald statistics
for all possible break points fW (�) ; � 2 [:2; :8]ginto a single test statistic. This
can be done in a variety of ways. A �rst possibility is to take the maximum
over �of allW (�)values, called SupW where Sup stands for supremum. Andrews
(1993) suggested this type of test and tabulated its distribution under the null
hypothesis appearing in (2.7).

The SupW test may be intuitively appealing as it picks the maximumevidence

6We have to leave a certain number of observations at each end of the sample in order to
estimate e�j1 and e�j2. Therefore we have in this particular case 20% of the sample trimmed at
each extreme. The trimming percentage determines for instance how many observations are
used to compute the �rst estimate e�j1 (�) and last estimate e�j2 (�) with � = :2T and � = :8T
respectively. The sample sizes T involved in our empirical applications made 20% a reasonable
choice.
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for a structural break. It is however not the only statistic one can think of. First,
it should be noted that we prefer to use the SupLM test, that is to say the
supremum Lagrangian Multiplier test rather than the SupW test simply because
the former requires far less computations. Indeed, with the SupLM which is
formally presented in equation (A.8) appearing in the Appendix, one does not
compute all the parameter estimates e�jh (�) for each of the subsamples. Instead,
the parameter estimates �M and �i obtained from the full sample are used. Since
we will subject a great many asset pricing models to our test, computational
e�ciency has a strong appeal. Moreover, the statistical properties of the SupLM
test are at least as good, if not better, than those of the SupW test (the Appendix
provides the details again). Taking the supremum is not the only way to construct
tests, and indeed we shall also consider an exponential LM test denoted ExpLM.
It uses all the LM tests and combines them in a way that is in a certain sense
optimal as explained in the Appendix.7

One may wonder by now why we focus exclusively on tests having a single
break point as alternative. Surely, there are many other types of structural insta-
bilities, like for instance cases where there are several breaks or where there are
gradual movements in the �ik parameters. Constructing tests against all possible
types of instabilities is simply impossible both statistically and practically. For-
tunately, however, the situation is not that hopeless because the single unknown
break point statistics have power against a large class of parameter instability
patterns for beyond what appears explicitly as alternative in (2.9).

The J -statistic is not the only diagnostic, of course, used to judge the �t of
asset pricing models. We would like to point out however, that our observations
regarding the J statistic extend to other model diagnostics used to appraise the
�t of conditional CAPM as well as the conditional and nonlinear APT models.
We would like to conclude this section with a digression on this point providing
some speci�c examples. Sometimes the so called pricing error of the model is
examined. Continuing with the simple illustrative conditional CAPM model,
this can be done in one of two ways which amount to a di�erent augmentation of
the moment conditions in (2.8).8 Let us �rst de�ne the pricing error to the asset
pricing model as :

eeit � e�itZt � e�te�MtZt (10)

This error is de�ned under the true data generating process which does not
necessarily impose the null hypothesis (2.9). Equation (2.10) represents the dif-
ference between the predicted excess return from the projection equation and
that from the CAPM. Obviously, since the conditional CAPM is estimated with

7The optimality is only against a certain class of alternatives and only for the maximum
likelihood environment . We will use both tests here side by side.

8The two moment conditions augmentations are for instance discussed in Harvey (1993).
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�xed parameters, its pricing error will be evaluated using parameter estimates �i
and �M . Therefore the pricing error actually being investigated is :

eit � �iZt � �t�MZt (11)

Straightforward algebra shows that the latter can be decomposed as :

eit � eeit + (�i � �it)Zt +
�
�t�M � e�te�Mt

�
Zt (12)

Hence, the pricing error being examined is a mixture of model speci�cation
error and the pricing error de�ned in (2.10). The two moment conditions aug-
mentations then considered are:

E (eit � �i) = 0 (13)

with the hypothesis of interest being �i = 0 and :

EeitZt�1 = 0 (14)

The �rst augmentation of the conditional CAPMmoment conditions obtained
by combining (2.8) and (2.13), yields a test of the average pricing error very simi-
lar in spirit to the commonly used unconditional CAPM test of a zero intercept in
a linear regression of the excess return of an asset on that of the market portfolio.
The second augmentation, combining (2.8) and (2.14) tests whether the pricing
error is conditionally predictable.

Since the diagnostic involving (2.14) is obviously more informative than that
involving (2.13) we will discuss the former only9. From the discussion earlier in
this section it is clear that a J statistic assessing the overidentifying restrictions
of (2.8) and (2.14) combined is not really addressing the issue whether �t equalse�t. To say this di�erently, it is clear that evaluating the sample crossproduct
of eitZt�1 yields no or little information regarding the misspeci�cation of the
temporal dynamics of the market price for risk. Equation (2.12) can be viewed as
another set of moment conditions involving time varying parameters like (�i � �it)
which will remain undetected. A more rigorous test would amount to jointly test
parameter stability, i.e. hypothesis (2.7), and the fact that the pricing error eeit �
eit satis�es (2.14). To avoid overburdening the scope of our paper we will restrict
our attention to simply testing the stability hypothesis (2.7) using the Andrews
tests described earlier. Indeed, they already represent a signi�cant amount of
discriminatory power among the di�erent models examined. In addition, the
joint tests of (2.7) and (2.14) actually would require a class of tests di�erent from
the Andrews type tests involving a mixture of parameter stability and moment

9In a standard setup Zt is a vector which includes a constant. This inplies that (2.14)
encompasses (2.13).
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condition tests. Such tests are formally discussed in Ghysels, Guay and Hall
(1994). Applications in �nance are discussed in Ghysels and Hall (1995).

3 A Review of the Conditional CAPM and Nonlinear

APT

We turn our attention now to the two classes of asset pricing models considered
in our empirical work, namely the conditional CAPM and the nonlinear APT. To
describe both classes of models we follow Bansal and Viswanathan (1993) closely
and start from the optimal portfolio allocation conditions of discrete time capital
asset pricing models10. In an economy with N assets we obtain the following �rst
order conditions:

E [MRS (t; t+ 1)xi (t; t+ 1) j
t ] = � (xi (t; t+ 1)) for i = 1; : : : ; N (15)

where xi (t; t+ 1) is the one-period payo� of the ith asset at time t+ 1 that has
time t price � (xi (t; t+ 1)) with MRS(t; t+ 1) the representative agent's marginal
rate of substitution between t and t+ 1 consumption.

The expectation in (3.1) is conditional on the information set 
t. Equation
(3.1) also holds when we replace MRS(t; t+ 1) by its projection on the space of all
one-period payo�s. Let us denote this projection as P ?

t+1. Hansen and Jaganathan
(1991) show this projection can be expressed as a linear combination of the N
asset one-period payo�s represented by the vector x (t; t+ 1) = [xi (t; t+ 1)]N

i=1:

P ?
t+1 =

NX
j=1

�jtxj (t; t+ 1) (16)

where the weights �t = [�jt]
N

j=1
satisfy:

�t =
h
E
h
x

0

t+1xt+1 j
t

ii
�1

�(x (t; t+ 1)) (17)

While equations (3.2) and (3.3) represent a fundamental relationship in char-
acterizing the pricing of assets it is not yet a \workable" model since it involves as
many factors as there are assets, namely N factors. To make the model workable
we need to reduce the set of factors, yet equations (3.2) and (3.3) tell us that this
is unlikely to be attainable with a simple �xed linear relationship. This observa-
tion yielded the nonlinear APT of Bansal and Viswanathan (1993) and Bansal,
Hsieh an Viswanathan (1993) and the conditional CAPM of Ferson (1985), Fer-
son and Harvey (1991, 1993) among others. We shall begin by brie
y presenting

10See Lucas (1978), Breeden (1979), Stulz (1981), Huang (1987), Du�e and Zame (1989)
among others.
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the former and then continue with the second class of models. For the nonlinear
APT we use equations (3.1) and replace the marginal rate of substitution by its
projection onto 
t+1, yielding :

E [E [MRS (t; t+ 1) j
t+1 ]xi (t; t+ 1) j
t ] = � (xi (t; t+ 1)) (18)

Then, instead of using the projection onto the entire information we consider
a vector P b

t+1 of well-diversi�ed basis variables such that:

E [MRS (t; t+ 1) j
t+1 ] = E
h
MRS (t; t+ 1)

���P b
t+1

i
= G

�
P b
t+1

�
(19)

with G (�) a well-behaved function chosen among a class of 
exible functional
forms.

Using the fact that � (xi (t; t+ 1)) 2 
t and normalizing the equation in (3.4)
yields the following set of moment conditions :

E
h�
G
�
P b
t+1

�
xi (t; t+ 1) � 1

�
Zt

i
= 0 (20)

where Zt is a set of instruments picked among the elements of 
t. Equation (3.6)
forms the basis of a GMM estimation procedure for the parameters described the
pricing kernel G (�). The set of Zt instruments actually used in our empirical
work will be described later since it coincides with those used in the conditional
APT model. The elements entering P b

t+1 are the same as those used by Bansal,
Hsieh and Viswanathan (1993) in their one-factor model namely :

P b
t+1 = (1 + rM (t; t+ 1) ; 1 + rf (t; t+ 1)) (21)

where rM (t; t+ 1) is the nominal return on the market and rf (t; t+ 1) the nom-
inal yield to maturity on the Treasury bill next period.

What remains to be speci�ed is a functional form for G (�). As the ex-
act speci�cation of the nonlinear pricing kernel is unknown, Bansal, Hsieh and
Viswanathan (1993) suggest to approximate it with a polynomial series expan-
sion, namely :11

G
�
P b
t+1

�
= �0 + �1trf (t; t+ 1) + �1M rM (t; t+ 1) + �2M [rM (t; t+ 1)]2

+�5M [rM (t; t+ 1)]
5 (22)

As with regard to the asset xi appearing in (3.6) we shall consider a set of size-
sorted portfolios and industry-based classi�ed portfolios which will also be used
in the conditional APT . The details will be discussed in section 4.2. Finally it
was noted in section 2 that the null hypothesis (2.7) was formulated for the entire

11As Bansal and Viswanathan (1993) explain, using the �th order rather than the third was
partly motivated by the need to reduce collinearity between the various powers of the expansion.
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parameter vector. For the nonlinear APT we will be interested in testing the �ve
parameters in (3.8) jointly, of course, but also each parameter individually as well
as for instance the parameters of the nonlinear part �2M and �5M separately.

We turn our attention next to two versions of the conditional CAPM, one
considered by Harvey (1991) to study the pricing of international assets and
another used by Ferson and Korajczyk (1995) to study predictable returns and
risk in the U.S. Since the former of the two is the simplest and was already
used as motivating example in section 2 we shall discuss it �rst. Again one can
start from the observation that equations (3.2) and (3.3) do not directly yield
a workable model, but instead of considering a nonlinear pricing kernel Harvey
proposed to study expected returns for stock markets from a set of countries
via their conditional beta with the return on a world market portfolio. Hence,
modifying the traditional CAPM to its conditional version on obtains:

E [ri (t; t + 1) j 
t] =
Cov [ri (t; t + 1) ; rM (t; t + 1) j 
t]

V ar [rM (t; t + 1) j 
t]
E [rM (t; t + 1) j 
t] (23)

where ri (t; t+ 1) is the return on the market of country i. This formulation
is of course di�erent from the nonlinear APT but shares several features and
objectives. In particular, it attempts to describe returns with a small set of
factors, in this case one, and departs from the �xed linear representation of the
traditional APT and CAPM models. To make the equation in (3.9) operational
Harvey de�ned a set of projections, namely:

E [ri (t; t+ 1) j
t ] = Zt�i (24)

E [rM (t; t+ 1) j
t ] = Zt�M (25)

where Zt is again a set of instruments (not necessarily the same as in the nonlinear
APT) and the vectors �i and �M are (stable) parameter vectors de�ning the
projections. One obtains a set of moment conditions suitable for GMM estimation
of � = [�i]

N

i=1
and �M via:

E

0
BBB@

(rt+1 � Zt�)
0

(rMt+1 � Zt�M)
0

�
u2Mt+1Zt� � uMt+1ut+1Zt�M

�0

1
CCCA

0


 Zt = 0 (26)

where rt+1 = [ri (t; t+ 1)]N
i=1

; ut = rt � Zt�1�; uMt = rMt � Zt�1�M and rMt+1 =
rM (t; t+ 1). The moment conditions appearing in (3.12) generalize those in (2.8),
Harvey included the following instruments in the estimation of the model (1) a
constant, (2) a January Dummy, (3) lagged rMt, (4) the return on a 90-days
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T-Bill minus that of a 30-days one, (5) the Moody Baa yield minus the Aaa one
and (6) the dividend yield on the S&P500 minus the 30-days T-Bill return. The
sample was similar to that in the �rst model, namely a set of monthly returns
covering 16 OECD countries and Hong Kong from December 1969 to May 1989.
The indices used were retrieved from the Morgan Stanley data base which also
included the world equity index. The instruments used were from sources similar
to these used by Bansal and Viswanathan. We refrain again from elaborating on
the details as they are described the original work by Harvey (1991).

In a recent paper Ferson and Korajczyk (1995) undertook a very thorough
empirical investigation of risk and return for the U.S. using a multifactor con-
ditional APT. The setup is very similar to that just described except that the
moment conditions are a bit more elaborate because of the presents of a mul-
titude of factors. For the multifactor conditional APT, Ferson and Korajczyk
de�ne the following set of moment conditions:

E

2
4 ri (t; t + 1)� Z

0

t
�i�

F
0

t+1
� Z

0

t

i

�0�
F

0

t+1
� Z

0

t

i

��
F

0

t+1
� Z

0

t

i

�
�i � Ft+1

�
ri (t; t + 1)� Z

0

t
�i

�
3
5Z

0

t
= 0 (27)

where Ft is a K � 1 vector of factor-mimicking portfolios, �i is a K � 1 vector
of the betas for asset i and Zt is an (L+ 1) vector of instruments. In contrast
to the nonlinear APT and conditional CAPM, the model de�ned in (3.13), has
parameters which play a di�erent role which makes hypothesis testing also more
interesting. Indeed, this more elaborate model has the advantage of separating
projection equations and asset pricing moment conditions involving conditional
betas. In (3.12) the third set of moment conditions does not involve any new
parameters while in (3.13) the third set involves explicitly parameterized betas.
The parameters �i and 
i arise from purely anciallary statistical assumptions.
Their instability means we have misspeci�ed the projection equations. The in-
stability of �i, however, has a very di�erent meaning and implication in (3.13).
These are the most interesting parameters from asset pricing perspective.

Two alternative sets of risk factors were examined. The �rst consisted of eco-
nomic variables similar to Chen, Roll and Ross (1986) and Ferson and Harvey
(1991). Five representative economic variables were selected and mimicking port-
folios were constructed using individual common stocks. The second approach
was motivated by many previous studies of the APT and used the asymptotic
principal components methods of Connor and Korajczyk (1986) to estimate the
common factors. We followed step by step the speci�cation of variables and
instruments described by Ferson and Korajczyk and once again refrain from de-
scribing the speci�c details.
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4 Empirical Results

We turn our attention now to the empirical evidence regarding the structural
invariance of the three dynamic asset pricing models described in section 3. As
there are three empirical models we will devote a subsection to each of them
starting with the most simple of all, namely the conditional CAPM studied by
Harvey (1991). The second subsection will cover the multifactor model of Ferson
and Korajczyk (1995) while we conclude with the nonlinear APT.

4.1 Stable factors in the Conditional CAPM

In Table 4.1 we report empirical results of the international conditional CAPM
described in equations (3.12) for the 17 countries covered by Harvey (1991) using
exactly the same data and sample. The �rst column of Table 4.1 reports the
overidentifying restrictions tests which are comparable with the tests reported by
Harvey in column 6 of Table V of his paper. It should be noted that there are
some slight di�erences between the results reported in the original paper and those
appearing in Table 4.1 which are due to the di�erence in covariance estimator used
in the GMM estimation. Our results are based on what should be asymptotically
a more e�cient estimator proposed by Andrews and Monahan (1992) which was
not available at the time the original Harvey paper was written. A consequence
of using this more e�cient estimator is that there are some di�erences with the
J-statistics reported by Harvey. Indeed, Harvey (1991) rejected the model (at for
5%) for Japan, Norway and Austria. We only reject the model for Austria, while
the moment conditions for all other 16 countries seem to �t the data reasonably
well when one uses the overidentifying restrictions as a guidance.

However, as we stressed before, the J statistic is a diagnostic test ill-equipped
to scrutinize a model in terms of its structural invariance and by the same token
the ability of a model to predict the market price for risk. Table 4.1 reports
SupLM and ExpLM tests for each of the six instruments involved in Harvey's
\common instrument" speci�cation12. Each test statistic has two degrees of free-
dom as each instrument is associated with two parameters, one entering the pro-
jection on the country return and the other entering the world return equation.
Let us consider an extreme case �rst. Take the results for France, for instance.
According to the overidentifying restrictions test the model is not rejected at 10
%. Yet, for �ve of the six instruments we �nd evidence of instability (at 10 %
signi�cance level).

Hence, despite the favorable evidence according to the usual J-statistic it
is clear that the return on France's market index cannot be satisfactorily priced

12To compute the statistics one has to specify the set of observations � (see equations (A.5)
and (A.7) in the Appendix). In all our computations we set � = [:2T; :8T ]. The choice of 20%
trimming was motivated by the length of the sample as noted in section 2.
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with the conditional CAPM. While the case of France is extreme in the sense that
almost all instruments appear unstable we note that of the 17 countries eight have
at least one unstable return-risk factor. These countries are Austria, Belgium,
France, Hong Kong, The Netherlands, Sweden, Switzerland and the U.K. More
interesting is to study whether any particular factor is more unstable than others.
This is indeed the case, as appears from the results reported in Table 4.1. Which
indicate that the interest rate spread series, i.e. the return for holding a 90-days
US T-Bill for one month less the return on a 30-days T-Bill, is for seven countries
an unstable risk factor (at least at 10 % signi�cance). Next to the spread comes
the lagged World return appearing as an unstable factor for �ve countries.
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Table 4.1: Stable Factors in the Conditional CAPM - Analysis of 17 countries

Instruments Constant Lagged World Return January Dummy Interest Rate Spread Junk Bonds Dividends

COUNTRY J-TEST SUP LM EXP LM SUP LM EXP LM SUP LM EXP LM SUP LM EXP LM SUP LM EXP LM SUP LM EXP LM

Australia 6.5174 3.6311 0.7418 3.0362 0.3654 4.6616 0.8674 4.2902 0.6982 2.9770 0.5552 2.1704 0.3730

Austria 13.6066** 5.9826 1.2506 6.2740 1.1737 4.3686 1.0386 8.9242 2.7685* 6.7049 1.2651 6.8269 1.5649

Belgium 6.8188 5.2952 0.9927 9.1891 1.9403 6.4421 1.9249 11.0542* 1.7573 2.7133 0.6496 2.6847 0.5062

Canada 2.9671 4.6890 0.9997 4.9056 0.9114 3.9951 0.8899 3.2388 0.4490 3.4358 0.8351 5.2689 1.2920

Denmark 8.1489 4.3348 1.2592 6.3573 1.4528 3.0238 0.8263 4.7545 0.4073 4.0658 0.9185 2.7222 0.3955

France 10.2547 10.4621* 3.2905** 10.6398* 1.3758 9.7953 0.9751 11.2252* 3.1842* 11.2551* 2.8443* 11.2382* 2.6412*

Germany 3.4082 5.8450 1.5141 5.7787 1.1556 5.6670 0.9872 9.2200 1.5306 4.2970 1.1627 3.7410 0.8116

Hong-Kong 5.5435 9.3268 2.8960 5.9882 1.3431 2.3676 0.3319 11.1050* 2.6757 10.0280* 2.6980* 7.5126 2.3448

Italy 7.4231 7.0516 1.6570 5.4374 0.7784 2.4048 0.4844 12.9267** 2.6979* 6.5378 1.1373 6.7605 1.3404

Japan 9.6251 3.9931 0.5907 2.8982 0.5399 4.9859 1.0410 5.2808 0.5902 3.2186 0.4227 3.5220 0.5320

Netherlands 3.8889 8.9479 2.2940 6.6443 1.8772 7.4040 2.1625 9.6209 2.8014* 5.2552 1.2923 10.4580* 3.2942**

Norway 7.8014 4.6432 1.1367 9.7020 2.3309 3.5191 0.5844 6.5901 1.5024 6.1809 1.1902 5.5848 1.2164

Spain 8.6923 3.4196 0.6213 2.7424 0.4669 4.7209 0.7158 9.2328 1.6251 3.5783 0.4747 3.4557 0.5073

Sweden 7.0917 4.9210 0.6827 10.2503* 1.7013 5.3662 0.9731 5.0658 0.9265 4.8685 0.7173 6.8217 0.7296

Switzerland 9.3350 8.0102 2.3841 10.3749* 2.9198* 4.5855 0.9076 12.0330** 2.9852* 4.6948 1.1773 8.3915 2.2835

United Kingdom 1.0003 8.9989 2.2616 16.4854*** 3.3758** 3.4458 0.8674 6.5070 1.1286 8.3893 1.8824 8.4515 1.5184

United-States 7.8994 2.4225 0.3708 3.2592 0.3690 6.0156 1.0762 9.1552 2.0155 2.7975 0.4562 3.3951 0.5439

Notes: The data are taken from Harvey (1991) where all details appear. The instruments are defined as follows: Lagged World Return is the excess return on the MSCI world index, the interest rate spread
is the return for holding a 90-days US Tbill for 1 month less the return on a 30-days Bill, the Junk bond instrument is the yie ld on Moody's Baa rated bonds less the yield on Moody's Aaa rated bonds,
the dividend instrument is the dividend yield on the S & P 500 stock index less the return on a 30-days Tbill.



This �rst of three empirical examples underscores several important points

which motivates our study. We reported a set of models that would be found em-

pirically acceptable, according to their overidentifying restrictions, for explaining

the return on international stock markets with a pricing formula based on a set

of common instruments. Using tests for structural stability, there is only for a

small subset of countries, at least on the basis of the particular sample, support-

ing empirical evidence and a stable risk-return model. Moreover, quite often we

also found the same unstable factors, in particular the interest rate spread and

lagged world return. In practical terms this means that have to be careful using

these instruments to yield a satisfactory dynamic conditional asset pricing model.
In such circumstances either the model needs to be modi�ed or else we need to

search for a stable risk factor alternative.13

4.2 Stable factors in the Conditional Multifactor APT

Among the countries listed in Table 4.1 �gures the U.S. The results show that
we �nd the conditional CAPM a satisfactory speci�cation since all loading coef-
�cients for the six risk factors appear stable. Here we shall further explore this

speci�cation via a more detailed study of asset returns for the U.S. market. The
data are those of Ferson and Korajzcyk (1995), that is to say a data set covering
size-sorted returns for stocks appearing on the CRSP data set as well as those
same asset returns classi�ed by industry. To describe the empirical results let us
return to equation (3.13) and recall the interpretation of each of the parameters.
There are essentially three sets of moment conditions, the �rst two de�ning con-

ditional expectations (linear projections) of asset returns while the third relates
to the multifactor beta model. Indeed, we noted in section 3 that instability of
the parameters �i and 
i re
ects a misspeci�cation of the statistical models of
predictable dynamics in returns or factor mimicking portfolios. In contrast, from

an asset pricing perspective, �xed conditional betas is more a fundamental and a

crucial assumption (see for instance Ferson (1990, table VIII) on this issue). We
will �rst discuss the two sets of projection equations and then turn to the risk

equation pricing.
The �rst set of moment conditions are used to model predictability of portfolio

returns over time and involve six instruments plus a constant. The instruments

are fairly standard, namely (1) the level of the one-month T-Bill, (2) the divi-
dend yield of the CRSP value-weighted NYSE stock index, (3) a detrained stock
price level, (4) a measure of the slope of the term structure, (5) a quality-related

yield spread in the corporate bind market, and (6) a January dummy. Obviously

these instruments are quite similar to those appearing in the previous section,

13Our sample did not include, except for Hong Kong, many so called emerging markets
which by their very nature of transition and globalization are prone to instabilities. Garcia and
Ghysels (1994) focus more explicitly and exclusively on emerging market asset pricing.
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though their precise de�nition di�ers slightly as can be veri�ed by consulting the

details of respectively Harvey (1991) and Ferson and Korajczyk (1995). Given

that the instruments are quite similar let us �rst discuss the empirical results

regarding the stability of the coe�cients �i in (3.13) obtained from projecting the

six instruments plus constant on size-sorted and industry-based portfolio returns.

Obviously, one has to keep in mind that like in Harvey's model discussed in the

previous section, these coe�cients are estimated as part of a larger joint sys-

tem involving moment conditions containing factor-mimicking portfolios. Those

moment conditions will be discussed later.

18



19

Table 4.2: Stable Factors in the Conditional APT - Industry Classification with Principal Components Factors

Industry 1 Industry 2 Industry 3 Industry 4 Industry 5 Industry 6 Industry 7 Industry 8 Industry 9 Industry 10 Industry 11 Industry 12

J-TEST 39.4 45.2 ** 21.6 51.6 *** 54.1 *** 31.6 33.2 39.2 58.0 *** 44.0 ** 55.2 *** 43.1 *

Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM

*ALL 39.9 *** 52.8 *** 18.8 44.5 *** 38.5 *** 19.9 * 37.1 *** 14.3 21.6 * 25.1 ** 88.2 *** 32.1 ***

*1 4.5 9.5 ** 3.5 9.8 ** 7.5 * 7.6 * 7.9 * 4.4 3.7 10.7 ** 8.2 * 2.8

*2 22.2 *** 3.6 1.1 11.8 ** 1.5 9.7 ** 2.7 1.0 2.2 7.1 3.4 1.4

*3 4.8 13.0 *** 2.4 5.7 8.7 * 11.9 ** 12.4 *** 4.7 0.9 8.3 * 20.6 *** 2.3

*4 3.7 15.8 *** 2.7 6.2 8.0 * 8.3 * 7.1 4.6 1.6 11.3 ** 15.6 *** 2.3

*5 8.2 * 11.7 ** 4.7 7.4 * 8.4 * 10.7 ** 6.5 5.1 3.9 6.7 15.0 *** 6.0

*6 6.3 11.8 ** 0.8 11.4 ** 21.3 *** 9.4 ** 8.3 * 2.0 3.7 12.7 *** 32.3 *** 12.7 ***

*7 1.4 3.7 3.7 6.6 1.6 4.7 2.5 3.8 8.3 * 6.9 10.0 ** 2.3

(1c 71.1 *** 63.3 *** 9.8 17.5 48.7 *** 16.4 38.9 *** 20.1 * 102.4 *** 21.1 * 83.5 *** 83.6 ***

(2c 50.8 *** 79.2 *** 34.3 *** 45.2 *** 30.1 *** 22.6 ** 31.2 *** 47.3 *** 80.4 *** 49.4 *** 85.4 *** 81.3 ***

(3c 65.8 *** 152.3 *** 16.5 45.4 *** 57.1 *** 35.2 *** 33.1 *** 33.5 *** 78.0 *** 48.8 *** 81.3 *** 93.4 ***

(4c 64.6 *** 70.7 *** 31.2 *** 62.7 *** 61.0 *** 37.9 *** 69.6 *** 78.8 *** 30.5 *** 56.7 *** 50.1 *** 53.1 ***

(5c 56.0 *** 65.6 *** 19.1 70.2 *** 30.0 *** 30.1 *** 55.8 *** 36.8 *** 52.6 *** 33.8 *** 65.9 *** 44.6 ***

$ALL 82.0 *** 127.2 *** 9.8 67.0 *** 42.6 *** 52.5 *** 86.4 *** 74.9 *** 57.0 *** 106.6 *** 50.7 *** 132.7 ***

$1 1.7 26.2 *** 4.5 25.9 *** 3.2 2.9 35.1 *** 9.9 ** 0.7 15.4 *** 9.7 ** 24.8 ***

$2 24.0 *** 53.9 *** 5.7 35.5 *** 17.2 *** 12.4 *** 18.4 *** 23.4 *** 2.9 52.3 *** 7.2 * 21.4 ***

$3 25.9 *** 66.1 *** 2.9 7.8 * 4.6 16.3 *** 31.1 *** 3.3 37.7 *** 52.7 *** 4.1 92.0 ***

$4 5.4 21.6 *** 1.9 24.4 *** 2.5 3.2 23.8 *** 24.8 *** 4.3 18.4 *** 1.6 30.9 ***

$5 8.9 ** 7.9 * 2.6 28.7 *** 11.6 ** 3.1 20.8 *** 6.8 8.4 * 12.5 *** 10.1 ** 24.1 ***

Note: Tests for Ferson's model.  *  test all coefficients of * together (7 parameters), *  (i=1,2,...,7) test all coefficients of * one by one (1 parameter each).  (   (i=1,2,...,5) test all coefficients of ( columnALL i ic

by column (7 parameters by column).  $  test all coefficients of $ together (5 parameters), $  (i=1,2,...,5) test all coefficients of $ one by one (1 parameters each).ALL i

*: 10% ; **: 5% ; ***: 1%
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Table 4.3: Stable Factors in the Conditional APT - Size Classification with Principal Components Factors
Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 Size 7 Size 8 Size 9 Size 10

J-TEST 37.4 50.2 ** 32.7 53.5 *** 39.2 26.1 52.8 *** 39.8 47.1 ** 60.5 ***

Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM

*ALL 35.8 *** 19.1 37.2 *** 28.6 *** 21.8 * 29.8 *** 32.2 *** 78.8 *** 167.6 *** 189.4 ***

*1 2.2 2.4 3.7 4.9 5.4 2.8 3.6 30.8 *** 3.5 4.5

*2 2.4 4.9 4.6 15.6 *** 6.6 15.7 *** 5.7 7.7 * 2.6 25.6 ***

*3 4.0 2.3 4.4 5.3 5.6 2.6 4.5 34.2 *** 6.1 6.2

*4 3.1 2.7 4.7 5.5 5.4 2.1 4.9 35.7 *** 6.5 6.1

*5 2.3 1.1 3.4 17.1 *** 8.0 * 9.9 ** 5.2 19.0 *** 22.4 *** 14.7 ***

*6 2.8 2.2 6.6 6.6 4.6 2.6 6.3 62.8 *** 3.4 12.8 ***

*7 5.7 6.9 9.6 ** 3.6 6.5 7.7 * 3.2 10.9 ** 2.2 9.8 **

(1c 46.7 *** 55.0 *** 34.1 *** 63.3 *** 51.4 *** 21.9 ** 26.1 ** 64.2 *** 203.1 *** 162.4 ***

(2c 68.30 *** 87.5 *** 80.6 *** 25.2 ** 32.1 *** 28.4 *** 34.8 *** 38.4 *** 121.7 *** 92.2 ***

(3c 57.1 *** 86.4 *** 39.4 *** 53.5 *** 69.9 *** 27.0 *** 25.0 ** 40.8 *** 309.1 *** 209.3 ***

(4c 78.9 *** 155.4 *** 99.0 *** 82.5 *** 97.0 *** 65.6 *** 42.1 *** 49.5 *** 119.1 *** 75.2 ***

(5c 47.5 *** 77.0 *** 73.4 *** 46.4 *** 41.9 *** 25.4 ** 27.8 *** 55.9 *** 156.6 *** 110.4 ***

$ALL 94.1 *** 50.9 *** 58.6 *** 24.7 *** 64.0 *** 29.9 *** 44.0 *** 81.9 *** 363.9 *** 319.7 ***

$1 31.3 *** 23.1 *** 7.7 * 11.6 ** 8.4 * 10.9 ** 1.2 21.9 *** 14.5 *** 91.6 ***

$2 9.6 ** 5.4 32.1 *** 9.5 ** 12.4 *** 23.0 *** 25.7 *** 58.0 *** 45.2 *** 60.8 ***

$3 62.2 *** 24.6 *** 20.7 *** 10.4 ** 30.0 *** 1.1 8.8 * 24.2 *** 306.9 *** 275.2 ***

$4 27.5 *** 8.8 * 8.5 * 6.8 15.1 *** 9.6 ** 4.9 7.4 * 135.2 *** 123.9 ***

$5 38.7 *** 10.3 ** 9.2 ** 8.9 ** 11.7 ** 14.5 *** 11.9 ** 22.9 *** 40.0 *** 90.2 ***

Note: Tests for Ferson's model.  *  test all coefficients of * together (7 parameters), *  (i=1,2,...,7) test all coefficients of * one by one (1 parameter each).  (   (i=1,2,...,5) test all coefficients of ( columnALL i ic

by column (7 parameters by column).  $  test all coefficients of $ together (5 parameters), $  (i=1,2,...,5) test all coefficients of $ one by one (1 parameters each).ALL i

*: 10% ; **: 5% ; ***: 1%
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Table 4.4: Stable Factors in the Conditional APT - Industry Classification with Economic Variables Factors
Industry 1 Industry 2 Industry 3 Industry 4 Industry 5 Industry 6 Industry 7 Industry 8 Industry 9 Industry 10 Industry 11 Industry 12

J-TEST 36.7 35.2 27.8 36.5 31.4 37.7 27.5 48.8 ** 34.6 26.2 49.8 ** 33.5

Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM

*ALL 16.3 15.0 9.0 17.9 19.6 10.3 12.6 14.2 16.6 13.8 14.2 13.5

*1 1.7 0.6 5.1 1.5 10.0 ** 2.3 1.9 1.8 4.3 7.7 * 2.1 1.8

*2 3.2 1.5 2.6 1.3 3.9 1.0 2.1 1.8 5.5 6.6 3.6 2.5

*3 3.9 1.2 4.9 1.5 12.0 ** 1.4 1.7 1.3 3.7 5.7 2.6 2.6

*4 3.4 0.5 4.9 1.4 9.9 ** 1.6 1.7 1.6 4.2 7.0 2.0 2.0

*5 5.8 2.5 3.2 2.9 7.3 * 2.8 2.1 3.6 4.3 5.5 1.5 3.4

*6 8.3 * 1.8 3.2 5.7 13.0 *** 3.0 3.3 1.4 1.8 7.7 * 2.7 3.2

*7 3.5 1.2 1.8 2.1 5.6 3.9 6.5 1.9 2.4 4.3 6.7 3.0

(1c 77.9 *** 76.4 *** 66.9 *** 62.6 *** 99.2 *** 69.5 *** 62.7 *** 62.5 *** 61.4 *** 81.6 *** 64.8 *** 71.7 ***

(2c 170.6 *** 112.0 *** 108.4 *** 95.7 *** 142.0 *** 95.8 *** 91.9 *** 92.5 *** 90.4 *** 131.3 *** 105.2 *** 97.9 ***

(3c 32.2 *** 27.8 *** 15.4 23.5 ** 22.9 ** 21.0 * 12.7 33.7 *** 22.7 ** 17.6 25.4 ** 16.2

(4c 31.0 *** 23.0 ** 51.2 *** 19.3 17.9 20.0 * 15.7 37.3 *** 23.2 ** 14.5 18.4 19.1

(5c 43.1 *** 16.1 9.0 16.0 20.5 * 12.6 9.8 27.0 *** 9.7 20.6 * 14.9 17.9

$ALL 36.8 *** 17.6 * 7.1 8.7 39.4 *** 22.2 ** 8.4 17.0 * 17.8 * 9.0 28.1 *** 19.8 **

$1 10.3 ** 7.8 * 2.1 5.5 1.0 2.9 3.1 3.9 4.1 2.4 1.6 9.4

$2 10.7 ** 9.1 ** 1.0 2.5 5.5 3.6 3.0 5.0 2.0 4.8 3.1 16.2 ***

$3 1.2 3.6 0.8 2.8 24.9 *** 3.9 3.3 2.0 5.8 2.5 19.9 *** 2.2

$4 4.2 14.5 *** 1.1 4.2 4.2 0.8 0.8 2.8 8.5 * 1.7 5.8 0.7

$5 18.2 *** 3.4 1.7 1.9 25.5 *** 11.0 ** 5.0 14.3 *** 10.7 ** 3.9 18.3 *** 4.4

Note: Tests for Ferson's model.  *  test all coefficients of * together (7 parameters), *  (i=1,2,...,7) test all coefficients of * one by one (1 parameter each).  (   (i=1,2,...,5) test all coefficients of ( columnALL i ic

by column (7 parameters by column).  $  test all coefficients of $ together (5 parameters), $  (i=1,2,...,5) test all coefficients of $ one by one (1 parameters each).ALL i

*: 10% ; **: 5% ; ***: 1%
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Table 4.5: Stable Factors in the Conditional APT - Size Classification with Economic Variables Factors
Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 Size 7 Size 8 Size 9 Size 10

J-TEST 29.3 32.3 46.9 ** 53.5 *** 50.7 ** 46.5 ** 39.5 37.4 30.1 54.9 ***

Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM

*ALL 13.2 11.1 14.0 10.9 16.4 19.1 31.7 *** 23.2 ** 14.3 40.7 ***

*1 3.2 8.2 * 5.5 8.4 * 10.5 ** 4.1 4.8 5.8 3.9 2.4

*2 1.7 2.4 6.5 4.3 9.6 ** 1.7 10.1 ** 7.9 * 11.2 ** 3.8

*3 3.4 10.0 ** 5.5 9.5 ** 11.7 ** 5.1 4.9 4.0 2.6 3.0

*4 2.5 8.4 * 4.8 8.2 * 10.2 ** 4.0 3.2 4.5 4.0 3.0

*5 1.0 3.9 5.8 5.4 8.9 ** 3.4 10.0 ** 4.0 10.5 ** 10.5 **

*6 3.8 7.7 * 2.9 7.4 * 6.6 8.9 * 5.8 2.0 2.6 2.1

*7 5.0 3.0 3.0 2.6 4.9 1.9 1.3 4.9 3.4 3.1

(1c 64.3 *** 59.7 *** 65.1 *** 61.7 *** 64.4 *** 75.4 *** 66.5 *** 57.2 *** 67.5 *** 75.2 ***

(2c 103.0 *** 105.0 *** 109.7 *** 115.0 *** 141.6 *** 126.4 *** 110.4 *** 98.8 *** 108.1 *** 108.9 ***

(3c 31.3 *** 26.0 ** 13.9 19.9 * 30.0 *** 24.0 ** 19.7 * 17.0 23.5 ** 26.2 **

(4c 33.3 *** 28.8 *** 14.6 23.4 ** 25.5 ** 27.5 *** 24.1 ** 18.8 24.4 ** 22.0 **

(5c 12.2 8.2 9.7 10.8 13.8 17.2 29.1 *** 22.8 ** 12.5 43.2 ***

$ALL 8.6 9.5 7.3 16.2 13.1 18.5 ** 18.6 ** 17.5 * 18.1 * 39.2 ***

$1 2.8 2.2 5.2 3.7 2.2 6.1 8.6 * 3.2 2.3 2.7

$2 4.6 4.3 5.3 3.3 2.4 7.5 * 6.6 3.2 2.7 6.2

$3 1.0 4.7 4.6 2.3 5.9 4.9 10.9 ** 6.0 4.7 25.4 ***

$4 2.5 1.7 1.3 6.3 4.7 8.5 * 3.7 10.5 ** 12.9 *** 7.1

$5 4.9 2.4 1.6 3.1 3.4 4.6 11.8 ** 4.6 4.9 38.0 ***

Note: Tests for Ferson's model.  *  test all coefficients of * together (7 parameters), *  (i=1,2,...,7) test all coefficients of * one by one (1 parameter each).  (   (i=1,2,...,5) test all coefficients of ( columnALL i ic

by column (7 parameters by column).  $  test all coefficients of $ together (5 parameters), $  (i=1,2,...,5) test all coefficients of $ one by one (1 parameters each).ALL i

*: 10% ; **: 5% ; ***: 1%



Tables 4.2 through 4.5 cover the empirical results for the conditional APT
with a combination of industry-based and size-sorted portfolios using principal
component factors and so-called economic factors. Both types of factors will be
discussed shortly. For the moment let us concentrate on the J-statistics appearing
in the top row of each table and the statistics listed in the rows labelled �all
and �i; i = 1; : : : ; 7.14 The tests corresponding to �all will be joint tests for all
seven instruments (the �rst being a constant), while the other measure each
instrument individually. In Tables 4.2 through 4.5 we only report SupLM tests;
a set of companion tables A.1 through A.4 appearing in the Appendix cover the
ExpLM statistics. Let us focus on the results in Table 4.2. They cover the twelve
industries selected by Ferson and Korajczyk.
According to the J-statistic we would reject the model for industries 2 (Fi-
nance/Real Estate), 4 (Basic Industries), 5 (Food/Tobacco), 9 (Utilities), 10
(Textile/Trade), 11 (Services) and to a lesser degree (i.e. only at 10 %) indus-
try 12 (Leisure). Let us therefore concentrate on the remaining industries and
examine the SupLM test associated with the �all row. Hence we focus on all
the instruments together used to model the predictable part of returns and test
whether such predictions can be done with a time invariant vector �. For industry
1 (Petroleum), 7 (Capital Goods), and to a lesser extend industry 6 (Construc-
tion) there is evidence of instability. The only industries left, after using the
J-statistics and SupLM statistic for �all as diagnostics, are industry 3 (Consumer
Durables) and 8 (Transportation). For the other tables the results are not as
dramatic. In particular, when looking at Table 4.4 where the industry classi�ca-
tion is paired with an economic variables factor speci�cation we would only reject
the model for two industries, again solely on the basis of the two �rst diagnostic
tests. Finally, it should also be noted that the individual tests for �i; i = 1; : : : ; 7
listed in Tables 4.2 and 4.4 con�rm mostly what is found on the basis of �all.

We turn our attention now to size-sorted portfolios, restricting again our at-
tention �rst to the J and �all tests. The model appears to �t none of the size-sorted
portfolios if we judge its performance not only on the basis of the overidentifying
restrictions but also on the basis of the stability of the � coe�cients. If we were
only to use the J tests the verdict would not have been as dramatic, with �ve out
of ten portfolio speci�cations rejected. Unlike the results in Table 4.2 we should
note that quite often the individual �i coe�cients appear stable in Table 4.3 yet
overall the parameter vector � is time varying. When the model is estimated
with portfolio-mimicking factors using economic factors instead of principal com-
ponent we �nd again more favorable evidence as can be seen from the results in
Table 4.5.

Let us examine now the second set of projection equations involving factor-

14The index J to �j is not to be confounded with index �i in (3.13). The latter referred to

asst i and represents the entire vector (� all tin the tables), while �j is an element of � all.
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mimicking portfolios denoted Ft in (3.13). It was noted at the end of section
3 that two types of factors were considered, a set of representative economic
variables as in Chen, Roll and Ross (1986) or Ferson and Harvey (1991) and the
commonly used principal component APT speci�cation using methods discussed
by Connor and Korajczyk (1986). To produce a Kx1 vector of factor-mimicking
portfolios, with the factors either economic variables or principal components,
Ferson and Korajczyk used a method proposed by Lehmann and Modest (1988)
which they describe in detail in an Appendix to their paper. The second set
of moment conditions in (3.13), like the �rst, involves projections on the set of
instruments described before, to extract the predictable part of the Kx1 vector
Ft . Since this is a multivariate process prediction with K=5 we focus on tests
for each column which projects the entire set of instruments on the each of the 5
factor-mimicking portfolios. Hence, we use the notation 
ic; i = 1; : : : ; 5 to denote
the tests associated with each of the column vectors15. We turn our attention
�rst to Tables 4.2 and 4.3 where the results are reported involving principle
component factor-mimicking portfolios. The results are quite unambiguous. It
is clearly impossible to predict with time invariant linear projections using the
instruments in Zt the �ve portfolios. With the economic factor speci�cation
appearing in Tables 4.4 and 4.5, there is clearly some improvement. Yet, there
is never ever a speci�cation of the model neither for industry-based portfolios
nor for size-sorted ones, which yields results in all �ve elements of the Ft vector
being adequately predictable via projections on Zt . The best one can settle
for is three out of the �ve projections being stable (see industries 7 and 12 in
Table 4.4). Clearly this part of the conditional APT moment conditions needs
to be improved upon, either by considering nonlinear projections and/or other
instrumental variables.

In the remaining part of the model speci�cation we turn our attention to the
vector of conditional betas appearing in the third set of moment conditions (3.13).
We have �ve parameters in �, as many as there are factor-mimicking portfolios.
The tests reported in Tables 4.2 through 4.5 cover both joint tests, i.e. all elements
of �, as well as individual tests for �j; j = 1; : : : ; 5.16 The results in the �rst
set of two tables with the principal component speci�cation is again revealing
strong evidence of misspeci�cation. Since from an asset pricing perspective, the
instability of these parameters is more for reaching, this result is more signi�cant
then the previously reported instabilities. The economic variables speci�cation
on the other hand again yields more satisfactory results, particularly with the
size-sorted portfolios. In fact, the �0s for small companies appear quite stable

15We could not perform an overall test for the entire matrix 
 involving 35 coe�cients as no

critical values were available for that many coe�cients. For reason of space we do not report

individual tests nor tests associated with a particular instrument in this case.
16We use again the same convention for �j as we did for 
j :
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in comparison to large companies as appears from the results in Table 4.5. This
means, despite the problems with the speci�cation of the projection equations
discussed earlier, it appears that for some of the smaller �rms in the sample
there is a reasonable pricing equation which emerges.

A �nal comment is in order before moving to the nonlinear APT. The tables
containing the ExpLM tests, which appear in the Appendix, largely con�rm the
results reported in Tables 4.2 through Tables 4.5. This means that our �ndings
appear fairly robust regarding the presence of parameter instability

25



4.3 Stable factors in the Nonlinear APT

We turn now to the nonlinear APT proposed by Bansal, Hsieh and Viswana-than
(1993). We did not attempt here to exactly replicate their data and estimates.
Instead, for the purpose of comparison, we used the Ferson and Korajczyk data
set of sized-sorted and industry-based portfolios to estimate the nonlinear APT
speci�ed in equation (3.8) using the same set of instruments as in the proceeding
section. This means we have seven instruments, including a constant, to specify
the moment conditions in (3.6). Since there are �ve parameters in equation (3.8)
we have two overidentifying restrictions. The results are reported in two tables,
one covering the asset returns for each of the ten sized-sorted portfolios and the
other containing the industry-based portfolios. To streamline the presentation we
have only reported the SupLM tests in the main body of the paper and deferred
companion tables with ExpLM tests to the Appendix.

In Tables 4.6 and 4.7 we report, besides the J-test, tests for the stability of
each of the �ve parameters in the nonlinear APT separately as well as two joint
tests, one involving the parameters of the "nonlinear part", namely �2M and �5M ,
and one involving the joint set of �ve beta parameters. The results in Table 4.6
show that according to the J-test we reject the model for small �rms only (size 1).
However, if we look at the tests for parameter stability there are clearly problems
with size categories 7, 9 and 10 and to a certain extend also size 2. All other size
categories appear to be well �tted by a stable nonlinear APT model. In some
sense this is far better than the conditional APT of the previous section, since
for six portfolios the model seems acceptable. In particular, the results seem to
indicate that the nonlinear APT fails to explain the return on very large �rms,
which are often used in speculative arbitrage strategies between broad market
indices like the S&P100 and index futures and options. It also fails to explain
returns on very small �rms which probably are more a�ected by informed trading
and idiosyncratic events. The nonlinear APT appears also quite successful if one
looks at industry-based portfolios. In Table 4.7 we can see that for at least half of
the twelve industries there is neither instability according to the SupLM tests nor
rejection by the J-statistic. The industries where the model fails are : industry
2 (Petroleum), 3 (Consumer Durables), 5 (Food and Tobacco), 6 (Construction),
7 (Utilities) and 11 (Services). In each of these cases one must probably search
for other risk factors to add to P b

t+1 such as the oil price (Petroleum), housing
starts (construction), etc. or consider augmenting the polynomial expansion to
accomplish a stable pricing kernel.
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Table 4.6:  Stable Factors in Nonlinear APT - Size Classification
Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 Size 7 Size 8 Size 9 Size 10

J-TEST 8.08 ** 0.79 0.41 0.03 0.00 0.28 0.13 0.77 0.04 0.01

Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM

$0 14.18 *** 7.97 * 2.68 2.92 1.10 1.18 12.17 ** 3.70 10.00 ** 14.78 ***

$1f 16.20 *** 7.84 * 2.56 2.84 0.87 1.00 8.72 * 2.03 6.63 11.82 **

$1M 14.18 *** 7.95 * 2.68 2.92 1.10 1.18 12.15 ** 3.67 9.98 ** 14.82 ***

$2M 14.17 *** 7.94 * 2.68 2.93 1.09 1.18 12.14 ** 3.65 9.95 ** 14.85 ***

$5M 14.14 *** 7.89 * 2.66 2.94 1.07 1.18 12.09 ** 3.59 9.88 ** 14.95 ***

$  & $2M 5M 14.27 ** 8.91 2.94 3.75 2.28 2.18 12.51 ** 6.04 10.90 * 16.70 ***

$ALL 38.89 *** 12.30 7.65 6.05 4.95 3.65 19.77 ** 10.70 15.14 19.43 **

Table 4.7:  Stable Factors in Nonlinear APT - Industry Classification
Industry 1 Industry 2 Industry 3 Industry 4 Industry 5 Industry 6 Industry 7 Industry 8 Industry 9 Industry 10 Industry 11 Industry 12

J-TEST 4.19 0.78 0.06 0.01 5.87 0.33 0.00 5.82 0.87 0.21 2.18 2.37

Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM Sup LM

$0 10.74 ** 1.52 13.09 *** 5.45 7.18 * 9.21 ** 4.92 2.46 19.85 *** 2.40 16.51 *** 5.77

$1f 10.12 ** 1.49 11.63 ** 2.27 7.56 * 7.87 * 2.97 2.81 18.43 *** 1.34 18.85 *** 4.93

$1M 10.72 ** 1.54 13.03 *** 5.41 7.16 9.20 ** 4.88 2.48 19.84 *** 2.34 16.57 *** 5.73

$2M 10.69 ** 1.55 12.97 *** 5.36 7.14 9.18 ** 4.84 2.50 19.83 *** 2.28 16.63 *** 5.69

$5M 10.61 ** 1.59 12.77 *** 5.22 7.08 9.14 ** 4.72 2.55 19.79 *** 2.11 16.79 *** 5.56

$  & $2M 5M 14.04 ** 4.28 14.38 ** 8.38 9.41 9.91 7.36 4.05 20.02 *** 12.02 ** 21.40 *** 12.27 **

$ALL 17.91 * 4.90 23.84 *** 21.34 ** 11.41 15.45 12.03 5.57 31.00 *** 17.29 * 29.07 *** 13.61

Note: $   test each parameter separately.  $  & $   test these two parameters jointly.  $  test all parameters together.i 2M 5M ALL

*: 10% ; **: 5% ; ***: 1%



5 Conclusion

One should not trivialize the role of model speci�cation and diagnostic in the

formulation of empirical asset pricing models. We took several APT-type models

of recent vintage which have as their key ingredient a time varying structure in

factor-return tradeo�s. These models are at the same time sophisticated and

fragile. They are sophisticated because they exploit dynamics in predictability

and/or nonlinearities. But they are also fragile because they must deal with time

varying betas and are therefore more prone to sources of misspeci�cation and

hence mispricing of assets. The role of this paper was to show (1) how serious
the problem of parameter instability is and how relevant the quote from Fama

(1991) appearing in the introduction is, (2) how the proposed diagnotics help
us to identify where de�ciencies exist and where progress is made. Finally, the
paper also emphasized that the commonly used model diagnotics fall short of
exposing the problems which exist. So far, the literature has focused on testing
overidentifying restrictions for a set of moment conditions determined by the

pricing kernel of the APT models. We argued, however, that such tests are highly
inadequate in gauging the �t and (out-of- sample) use of the pricing formula
determined by the model. The more stringent diagnostics we proposed helped
us to identify the factors in the conditional CAPM and APT which appeared
systematically unstable and therefore unreliable and helped us also to assess the
relative merit of one model speci�cation against another.

We found that for the U.S. market returns on size-sorted and industry-based
portfolios are di�cult to �t with principal component factors in a conditional
APT . The pricing formula seem hardly usable as almost no parameters are sta-
ble. There is some improvement when a set of economic factors are used to price
the assets, although the predictable part of the factor-mimicking portfolios seems

still di�cult to model. A far more stable formulation which emerged from our

study is the nonlinear APT. It does fail for some size categories and some in-
dustries, but overall its performance seems far more satisfactory. With regard to
both the conditional CAPM and APT, one could probably make a considerable

improvement by trying more sophisticated projection formula instead of the sim-

ple linear projections on the instruments since most often these linear projections
appear unstable. These are directions in which we should try to further explore

the formulation and testing of the empirical models discussed here.
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1 APPENDIX

In this Appendix we provide a more formal discussion of the tests for structural

stability. To set the scene we �rst note that the models discussed in the previous

section 3 can be expressed via a generic set of moment conditions:

E [f (xt+1;�o)] = E [e (yt+1;�o)
 Zt] = 0 (A.1)

where Zt is a set of instruments yt a vector process containing all asset returns,
factors, etc. entering the pricing kernels while �o is the parameter vector govern-
ing the pricing function, the projection equations or conditional betas. Equations
(3.6), (3.12) and (3.13) describe the speci�c examples considered in the empirical
section 4. For the purpose of discussion we shall divide the parameter vector in

two subvectors, namely �o � (
o; �o). This division allows for cases where we
are not always interested in testing the complete parameter vector �o but only
a subvector 
o. We observed in section 2 that this is often done because the pa-
rameters involved in the moment conditons play very di�erent roles. This leads
to the following null hypothesis:

Ho : 
t = 
0 8t � 1 for some 
0�B � IRp: (A.2)

When no parameter �0 is present, one tests the entire parameter vector; a
situation referred to as testing for pure structural change. Otherwise, one tests
for partial structural change. The alternative hypothesis consists of a one-time

change at some point �� (0; 1). Then, with sample size T , the change occurs at
�T and can be formulated as:

H1T (�) : 
t =

(

1 (�) for t = 1; : : : ; �T

2 (�) for t = �T + 1; : : : ; T

(A.3)

for some constants 
1 (�) ; 
2 (�) �B � IRp. As � is assumed unknown or ��� �
(0; 1) a pre-speci�ed subset Andrews (1993) proposed to compute Wald, LM and
LR-like tests for all � in � and consider statistics of the form g (fST (�) ; ���g)

where the statistic ST (�) equals WT (�) ; LMT (�) or LRT (�) if Wald, LM or

LR tests are computed. Andrews and Ploberger (1994) formulated a unifying
framework for the choice of the function g depending upon the alternatives of

interest. In particular, consider

g (fST (�) ; ���g) = (1 + c)p02
Z
�

exp

�
1

2

c

1 + c
TST (�)

�
dJ (�) (A.4)
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where J (�) is a weight function over the values of ��� and c determines the

direction for the power of the test. When c ! 1, tests have power against

distant alternatives giving greater weight to large structural changes. Such tests

will be denoted ExpST as they are computed according to the following formulas

corresponding to c!1 in equation (A.4):

ExpST = log s
�

exp

�
1

2
TST (�)

�
dJ (�) (A.5)

with J (�) representing a uniform weighting scheme for all values over �. The

exponential statistics come in three forms, namely:

ExpWT ; ExpLMT and ExpLRT : (A.6)

An alternative design for the function g is of the \sup" form. It corresponds
to a case where c= (1 + c) is equal to a constant and this constant goes to in�nity.
Andrews (1993) initially proposed such tests, namely:

Sup
���

WT (�) Sup
���

LMT (�) and Sup
���

LRT (�) : (A.7)

Of the six test statistics we shall only consider two, both of the LM variety.
There are two reasons for con�ning our attention to the SupLM and ExpLM
statistics. First, unlike their Wald and LR counterparts, they only require one

estimation of the model over the entire sample. Second, based on Monte Carlo
simulations Ghysels and Guay (1994) �nd that the LM statistics have, compared
to the Wald and LR tests, very good power properties and show no notable size
distortions.

To discuss the tests more formally, let V̂ (�) i = 1; 2 be the sample covariance

matrices obtains from a standard GMM procedure with heteroskedasticity and

autocorrelation consistent covariance matrix estimation [see, e.g., Hansen (1982),
Gallant and White (1988), Hall (1993) or Ogaki (1993) for general discussion].

The LM statistic makes use of the full-sample GMM estimator
�
�̂; �̂

�
and can be

written as:

LMT (�) = CT (�)
0

�
V̂1 (�) 0� + V̂2 (�) 0 (1 � �)

�
�1

CT (�) (A.8)

where CT (�) is computed as

CT (�) = [IP � IP ]

�
��1

�
M̂

0

1
Ŝ
�1

1
M̂1

�
�1

M̂
0

1
Ŝ
�1

1
0

0 (1 � �)�1

�
M̂

0

2
Ŝ
�1

2
M̂2

�
�1

Ŝ
�1

2

�
p
TmT

�
~�; ~�; �

�
where mT

�
~
; ~�; �

�
is the set of moment conditions m (xt; 
; �) stacked according

to the sample split at � evaluated at the full sample estimates ~
 and ~�:

mT (�; �; �) =
1

T

�TP
t=1

"
m (xt; 
1; �)

0

#
+ 1

T

TP
t=T�+1

"
0

m (xt; 
2; �)

#
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while M̂i = M̂i (�) is the score function of the sample moment conditions

m (xt; 
1; �) with respect to 
i for i = 1; 2. Finally, Ŝi = Ŝi (�) is the heteroskedas-

ticity and autocorrelation consistent covariance estimator of the sample moment

conditions for i = 1; 2. In our case we simpli�ed the computations, as is typically

done by using, the full sample estimates M̂i (�) = M̂ and Ŝi (�) = Ŝ.
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Table A.1: Stable Factors in the Conditional APT - Industry Classification with Principal Components Factors
Industry 1 Industry 2 Industry 3 Industry 4 Industry 5 Industry 6 Industry 7 Industry 8 Industry 9 Industry 10 Industry 11 Industry 12

J-TEST 39.4 45.2 ** 21.6 51.6 *** 54.1 *** 31.6 33.2 39.2 58.0 *** 44.0 ** 55.2 *** 43.1 *

Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM

*ALL 16.6 *** 21.1 *** 7.0 * 17.8 *** 14.4 *** 7.2 * 16.0 *** 5.2 8.4 ** 8.0 ** 38.4 *** 12.7 ***

*1 0.6 2.7 ** 0.3 2.3 ** 1.5 2.4 ** 0.9 0.6 0.6 2.5 ** 1.1 0.2

*2 7.1 *** 0.7 0.1 1.9 * 0.1 2.5 ** 0.2 0.1 0.2 0.9 0.7 0.1

*3 0.6 4.2 *** 0.1 0.8 1.9 * 3.8 *** 2.3 *** 0.9 0.1 1.6 * 6.1 *** 0.2

*4 0.5 5.2 *** 0.2 1.3 1.7 * 2.6 ** 1.0 0.7 0.2 2.7 ** 3.6 *** 0.2

*5 1.2 2.3 ** 1.1 0.8 2.9 ** 3.4 ** 1.6 * 1.4 1.1 1.3 4.3 *** 1.0

*6 0.4 2.7 ** 0.0 2.2 ** 6.9 *** 2.9 ** 0.9 0.3 0.2 2.3 ** 11.5 *** 2.5 **

*7 0.1 0.7 0.7 1.2 0.2 0.9 0.4 0.7 2.4 ** 1.0 3.1 ** 0.4

(1c 31.2 *** 26.9 *** 2.8 5.9 19.7 *** 6.1 15.6 *** 7.2 * 45.3 *** 7.6 * 36.3 *** 36.4 ***

(2c 21.5 *** 35.4 *** 13.2 *** 18.4 *** 10.8 *** 8.0 ** 11.8 *** 20.5 *** 34.5 *** 20.1 *** 38.1 *** 35.7 ***

(3c 28.6 *** 70.9 *** 5.4 18.8 *** 24.2 *** 13.6 *** 12.5 *** 12.6 *** 34.4 *** 20.5 *** 35.6 *** 41.9 ***

(4c 30.3 *** 30.6 *** 12.8 *** 28.3 *** 25.8 *** 15.3 *** 30.6 *** 35.6 *** 11.7 *** 23.8 *** 21.1 *** 23.9 ***

(5c 24.3 *** 27.8 *** 7.2 * 30.9 *** 10.8 *** 11.0 *** 23.9 *** 15.0 *** 22.3 *** 14.1 *** 29.0 *** 20.0 ***

$ALL 36.3 *** 58.7 *** 2.6 29.5 *** 15.2 *** 22.4 *** 38.7 *** 32.1 *** 23.7 *** 47.9 *** 20.9 *** 60.8 ***

$1 0.2 9.3 *** 1.1 8.9 *** 0.1 0.2 13.7 *** 1.6 * 0.1 4.1 *** 1.4 9.9 ***

$2 8.6 *** 20.8 *** 1.0 13.7 *** 4.7 *** 4.1 *** 5.7 *** 7.4 *** 0.3 21.7 *** 2.2 ** 8.0 ***

$3 9.9 *** 28.1 *** 0.7 1.1 0.4 4.2 *** 10.7 *** 0.2 14.0 *** 20.3 *** 0.4 40.6 ***

$4 0.6 7.4 *** 0.3 9.3 *** 0.4 0.3 7.7 *** 8.3 *** 0.4 5.8 *** 0.1 12.0 ***

$5 1.2 0.8 0.2 11.2 *** 2.5 ** 0.8 6.6 *** 0.6 1.0 2.1 ** 2.5 ** 9.0 ***

Note: Tests for Ferson's model.  *  test all coefficients of * together (7 parameters), *  (i=1,2,...,7) test all coefficients of * one by one (1 parameter each).  (   (i=1,2,...,5) test all coefficients of ( columnALL i ic

by column (7 parameters by column).  $  test all coefficients of $ together (5 parameters), $  (i=1,2,...,5) test all coefficients of $ one by one (1 parameters each).ALL i

*: 10% ; **: 5% ; ***: 1%
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Table A.2: Stable Factors in the Conditional APT - Size Classification with Principal Components Factors
Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 Size 7 Size 8 Size 9 Size 10

J-TEST 37.4 50.2 ** 32.7 53.5 *** 39.2 26.1 52.8 *** 39.8 47.1 ** 60.5 ***

Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM

*ALL 12.8 *** 5.7 14.2 *** 10.7 *** 8.3 ** 12.0 *** 11.0 *** 33.8 *** 77.5 *** 88.8 ***

*1 0.4 0.4 0.7 0.9 1.0 0.3 0.9 10.5 *** 0.5 0.9

*2 0.1 0.6 0.4 3.9 *** 1.0 4.9 *** 0.6 1.6 * 0.3 8.9 ***

*3 0.7 0.5 0.8 0.9 0.6 0.3 0.6 12.1 *** 1.2 1.1

*4 0.6 0.4 1.0 1.1 1.1 0.3 1.3 12.8 *** 1.4 1.2

*5 0.2 0.1 0.3 4.7 *** 1.9 * 3.2 ** 0.5 6.5 *** 6.0 *** 5.6 ***

*6 0.7 0.4 0.8 1.2 0.4 0.2 0.5 26.0 *** 0.4 2.8 **

*7 1.6 * 1.7 * 2.2 ** 0.5 0.6 1.4 0.6 2.2 ** 0.3 1.7 *

(1c 20.3 *** 22.1 *** 12.4 *** 26.1 *** 21.0 *** 8.7 ** 9.3 ** 27.5 *** 96.2 *** 76.0 ***

(2c 29.8 *** 40.8 *** 35.4 *** 10.2 *** 12.9 *** 11.8 *** 14.2 *** 16.0 *** 54.8 *** 41.6 ***

(3c 23.6 *** 38.3 *** 16.4 *** 21.8 *** 31.3 *** 10.9 *** 7.8 ** 15.9 *** 148.3 *** 98.4 ***

(4c 37.0 *** 73.0 *** 45.3 *** 38.8 *** 43.8 *** 29.7 *** 18.6 *** 21.1 *** 54.8 *** 32.5 ***

(5c 18.9 *** 33.8 *** 32.2 *** 19.7 *** 16.8 *** 10.6 *** 11.2 *** 22.7 *** 72.1 *** 49.8 ***

$ALL 42.7 *** 21.1 *** 24.3 *** 8.9 *** 27.7 *** 12.0 *** 17.2 *** 36.6 *** 175.7 *** 154.0 ***

$1 11.7 *** 7.9 *** 1.7 * 1.8 * 1.8 * 2.9 ** 0.1 7.1 *** 2.9 ** 41.3 ***

$2 2.3 ** 0.8 11.4 *** 1.5 2.5 ** 8.7 *** 9.2 *** 24.7 *** 16.9 *** 24.7 ***

$3 27.1 *** 8.0 *** 6.3 *** 1.9 * 11.0 *** 0.1 1.8 * 9.4 *** 147.2 *** 131.6 ***

$4 10.4 *** 2.1 ** 1.0 1.1 2.6 ** 2.2 ** 0.6 1.4 62.2 *** 56.6 ***

$5 15.5 *** 2.0 * 2.5 ** 1.8 * 3.0 ** 4.8 *** 3.6 *** 6.7 *** 14.9 *** 39.7 ***

Note: Tests for Ferson's model.  *  test all coefficients of * together (7 parameters), *  (i=1,2,...,7) test all coefficients of * one by one (1 parameter each).  (   (i=1,2,...,5) test all coefficients of ( columnALL i ic

by column (7 parameters by column).  $  test all coefficients of $ together (5 parameters), $  (i=1,2,...,5) test all coefficients of $ one by one (1 parameters each).ALL i

*: 10% ; **: 5% ; ***: 1%
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Table A.3: Stable Factors in the Conditional APT - Industry Classification with Economic Variables Factors
Industry 1 Industry 2 Industry 3 Industry 4 Industry 5 Industry 6 Industry 7 Industry 8 Industry 9 Industry 10 Industry 11 Industry 12

J-TEST 36.7 35.2 27.8 36.5 31.4 37.7 27.5 48.8 ** 34.6 26.2 49.8 ** 33.5

Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM

*ALL 4.8 4.6 3.0 5.5 6.6 3.3 3.7 3.6 5.0 4.3 4.1 4.4

*1 0.1 0.1 1.0 0.2 2.3 ** 0.2 0.1 0.2 0.6 1.7 * 0.2 0.3

*2 0.1 0.2 0.6 0.1 0.9 0.1 0.2 0.4 0.6 1.8 * 0.2 0.2

*3 0.4 0.1 1.0 0.1 2.9 ** 0.1 0.1 0.1 0.4 1.1 0.4 0.4

*4 0.3 0.1 1.0 0.2 2.3 ** 0.1 0.1 0.2 0.7 1.5 0.2 0.2

*5 1.5 0.3 0.6 0.4 1.7 * 0.2 0.4 0.3 0.4 1.4 0.2 0.4

*6 1.0 0.1 0.6 0.8 3.2 ** 0.2 0.2 0.1 0.2 1.7 * 0.4 0.4

*7 0.4 0.2 0.2 0.3 1.5 0.7 1.2 0.2 0.4 1.0 1.5 0.4

(1c 35.3 *** 34.2 *** 28.9 *** 27.3 *** 45.2 *** 30.8 *** 27.3 *** 27.5 *** 27.3 *** 36.5 *** 28.4 *** 31.8 ***

(2c 79.6 *** 52.4 *** 49.3 *** 43.0 *** 66.4 *** 44.7 *** 42.6 *** 42.3 *** 42.0 *** 60.1 *** 48.9 *** 44.9 ***

(3c 12.5 *** 10.7 *** 4.8 7.7 ** 7.5 * 6.5 3.5 12.8 *** 7.7 ** 5.7 8.5 ** 5.3

(4c 11.9 *** 8.0 ** 20.8 *** 7.3 * 6.0 6.6 5.5 14.5 *** 8.0 ** 5.5 7.1 * 6.9 *

(5c 16.5 *** 5.1 2.8 5.3 7.0 * 3.6 2.7 9.5 *** 2.9 6.8 * 3.6 5.8

$ALL 13.1 *** 5.0 2.1 2.0 16.1 *** 6.6 ** 2.5 6.3 ** 5.6 * 2.7 12.2 *** 6.9 **

$1 1.6 * 1.5 0.6 0.7 0.1 0.6 0.5 0.8 0.4 0.5 0.1 2.3 **

$2 1.8 * 2.3 ** 0.2 0.4 1.2 0.8 0.5 0.9 0.4 1.2 0.3 4.2 ***

$3 0.1 0.4 0.1 0.4 8.8 *** 0.6 0.2 0.3 1.3 0.3 7.6 *** 0.1

$4 0.6 3.4 ** 0.1 0.3 0.8 0.1 0.1 0.4 1.5 0.1 1.8 * 0.1

$5 5.0 *** 0.5 0.2 0.2 9.8 *** 1.9 * 0.7 4.3 *** 3.2 ** 0.8 7.6 *** 1.0

Note: Tests for Ferson's model.  *  test all coefficients of * together (7 parameters), *  (i=1,2,...,7) test all coefficients of * one by one (1 parameter each).  (   (i=1,2,...,5) test all coefficients of ( columnALL i ic

by column (7 parameters by column).  $  test all coefficients of $ together (5 parameters), $  (i=1,2,...,5) test all coefficients of $ one by one (1 parameters each).ALL i

*: 10% ; **: 5% ; ***: 1%
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Table A.4: Stable Factors in the Conditional APT - Size Classification with Economic Variables Factors
Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 Size 7 Size 8 Size 9 Size 10

J-TEST 29.3 32.3 46.9 ** 53.5 *** 50.7 ** 46.5 ** 39.5 37.4 30.1 54.9 ***

Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM

*ALL 3.8 3.5 4.4 3.6 5.6 5.2 11.4 *** 7.5 * 4.3 16.2 ***

*1 0.5 1.9 * 0.9 2.0 * 2.5 ** 0.6 0.6 1.3 0.4 0.1

*2 0.3 0.4 0.6 0.6 1.4 0.3 1.4 0.7 2.2 ** 0.3

*3 0.6 2.4 ** 0.8 2.3 ** 2.8 ** 0.9 0.7 0.6 0.3 0.5

*4 0.4 1.9 * 0.7 1.9 * 2.3 ** 0.6 0.5 0.8 0.4 0.3

*5 0.1 0.5 1.1 0.8 2.0 * 0.4 2.5 ** 0.5 2.5 ** 2.2 **

*6 0.7 1.7 * 0.3 1.7 * 1.2 1.2 0.6 0.2 0.3 0.3

*7 1.5 0.6 0.3 0.3 0.5 0.3 0.1 0.6 0.5 0.5

(1c 27.3 *** 26.0 *** 28.2 *** 26.6 *** 28.0 *** 33.7 *** 29.8 *** 25.0 *** 30.0 *** 33.2 ***

(2c 46.3 *** 47.4 *** 50.7 *** 52.1 *** 65.1 *** 57.7 *** 51.5 *** 45.9 *** 50.6 *** 49.8 ***

(3c 10.5 *** 8.2 ** 4.0 6.1 11.0 *** 7.9 ** 7.0 * 6.5 6.9 * 10.8 ***

(4c 12.5 *** 10.0 *** 5.0 7.7 ** 10.5 *** 9.6 *** 9.0 ** 6.6 9.2 ** 8.1 **

(5c 4.3 2.7 3.0 3.3 4.0 5.0 10.5 *** 7.5 * 3.3 17.4 ***

$ALL 2.9 2.6 2.5 4.9 3.8 5.4 * 6.4 ** 5.9 * 6.3 ** 15.8 ***

$1 0.6 0.4 1.1 0.5 0.4 1.5 * 2.7 ** 0.6 0.5 0.2

$2 1.1 0.8 1.3 0.6 0.4 2.1 ** 1.9 * 0.6 0.5 0.8

$3 0.1 0.7 0.6 0.4 1.4 0.6 2.3 ** 1.5 * 0.9 8.0 ***

$4 0.1 0.2 0.1 1.7 * 1.4 2.1 ** 0.9 3.0 ** 3.7 *** 1.4

$5 0.5 0.3 0.2 0.4 0.5 0.5 2.5 ** 0.7 0.8 15.0 ***

Note: Tests for Ferson's model.  *  test all coefficients of * together (7 parameters), *  (i=1,2,...,7) test all coefficients of * one by one (1 parameter each).  (   (i=1,2,...,5) test all coefficients of ( columnALL i ic

by column (7 parameters by column).  $  test all coefficients of $ together (5 parameters), $  (i=1,2,...,5) test all coefficients of $ one by one (1 parameters each).ALL i

*: 10% ; **: 5% ; ***: 1%
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Table A.5:  Stable Factors in Nonlinear APT - Size Classification
Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 Size 7 Size 8 Size 9 Size 10

J-TEST 8.08 ** 0.79 0.41 0.03 0.00 0.28 0.13 0.77 0.04 0.01

Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM

$0 3.83 *** 1.46 0.28 0.13 0.05 0.08 3.79 *** 0.45 2.34 ** 3.81 ***

$1f 4.86 *** 1.41 0.28 0.14 0.04 0.06 2.28 ** 0.22 1.25 2.72 **

$1M 3.83 *** 1.45 0.28 0.13 0.05 0.08 3.78 *** 0.44 2.34 ** 3.83 ***

$2M 3.83 *** 1.45 0.28 0.13 0.05 0.08 3.78 *** 0.44 2.33 ** 3.85 ***

$5M 3.83 *** 1.44 0.28 0.13 0.05 0.08 3.76 *** 0.43 2.31 ** 3.90 ***

$  & $2M 5M 4.00 ** 1.77 0.37 0.72 0.16 0.28 3.87 ** 1.10 2.65 * 5.44 ***

$ALL 16.24 *** 3.23 1.92 1.27 0.64 0.66 7.03 ** 2.98 4.69 6.57 **

Table A.6:  Stable Factors in Nonlinear APT - Industry Classification
Industry 1 Industry 2 Industry 3 Industry 4 Industry 5 Industry 6 Industry 7 Industry 8 Industry 9 Industry 10 Industry 11 Industry 12

J-TEST 4.19 0.78 0.06 0.01 5.87 0.33 0.00 5.82 0.87 0.21 2.18 2.37

Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM Exp LM

$0 3.27 ** 0.15 3.74 *** 0.86 1.08 1.33 0.83 0.27 6.68 *** 0.39 4.62 *** 0.99

$1f 3.02 ** 0.15 3.20 ** 0.28 1.19 1.04 0.43 0.31 6.10 *** 0.23 4.86 *** 0.75

$1M 3.26 ** 0.16 3.72 *** 0.86 1.08 1.33 0.83 0.27 6.67 *** 0.39 4.61 *** 0.98

$2M 3.25 ** 0.16 3.70 *** 0.85 1.09 1.33 0.82 0.27 6.66 *** 0.38 4.59 *** 0.97

$5M 3.22 ** 0.16 3.64 *** 0.83 1.09 1.32 0.80 0.27 6.64 *** 0.36 4.55 *** 0.94

$  & $2M 5M 4.66 ** 0.40 4.19 ** 1.37 1.78 1.45 1.22 0.55 6.98 *** 2.83 * 6.82 *** 2.91 *

$ALL 6.06 * 0.96 8.43 *** 7.57 ** 2.68 3.89 3.42 1.39 11.47 *** 5.68 * 9.98 *** 3.81

Note: $   test each parameter separately.  $  & $   test these two parameters jointly.  $  test all parameters together.i 2M 5M ALL

*: 10% ; **: 5% ; ***: 1%
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