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Territorial Control of Data and Compute in Generative AI: 
A New Paradigm of Competitive Advantage 

Frédéric Marty*, Thierry Warin† 
 

Abstract/Résumé 
 

The rapid advancement of generative artificial intelligence (AI) is increasingly shaped by control 
over two critical inputs: high-quality data and the compute infrastructure required to train and 
update large-scale model weights. This paper argues that these inputs – rather than algorithmic 
talent or novel architectures alone – have become the decisive strategic assets in generative AI, 
creating steep structural barriers to entry. We examine who controls these resources and how 
this control is territorially distributed across countries. Building on literature in industrial 
organization, competition policy, and international political economy, we highlight a gap in 
existing research: insufficient attention to the territorial concentration of “model-weight-setting” 
capacity, i.e. the ability to train cutting-edge foundation models. We find that the capacity to set 
foundation model weights is overwhelmingly concentrated in a few firms and regions, reinforcing 
market concentration and limiting the AI development sovereignty of most countries. While 
innovations in model architectures and efficiency (illustrated by the DeepSeek case) can reduce 
compute requirements at the margin, they do not eliminate the scale advantages conferred by 
privileged access to massive proprietary datasets and nation-scale computing clusters. The paper 
concludes with implications for competition and regulation, arguing that the territorial control of 
data and compute resources is a fundamental structural challenge for both market competition 
and global equity in AI. 
 

 
Les progrès rapides de l’intelligence artificielle générative (IA) sont de plus en plus conditionnés 
par le contrôle de deux intrants essentiels : des données de haute qualité et l’infrastructure de 
calcul nécessaire pour entraîner et actualiser les poids de modèles à grande échelle. Cet article 
soutient que ces intrants – plutôt que le seul talent algorithmique ou la nouveauté des 
architectures – sont devenus les actifs stratégiques décisifs de l’IA générative, créant ainsi 
d’importantes barrières structurelles à l’entrée. Nous examinons qui contrôle ces ressources et 
comment ce contrôle se répartit territorialement entre les pays. En nous appuyant sur la 
littérature en organisation industrielle, en politique de concurrence et en économie politique 
internationale, nous mettons en évidence une lacune dans les recherches existantes : l’attention 
insuffisante portée à la concentration territoriale de la « capacité de réglage des poids des 
modèles », c’est-à-dire la faculté d’entraîner des modèles de fondation de pointe. Nos résultats 
montrent que cette capacité est largement concentrée dans quelques entreprises et régions, ce 
qui renforce la concentration des marchés et limite la souveraineté de la plupart des pays en 
matière de développement de l’IA. Bien que les innovations en matière d’architectures de 
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modèles et d’efficacité (comme l’illustre le cas DeepSeek) puissent réduire les besoins en calcul 
à la marge, elles n’éliminent pas les avantages d’échelle conférés par l’accès privilégié à 
d’immenses ensembles de données propriétaires et à des grappes de calcul de dimension 
nationale. L’article conclut en soulignant les implications pour la concurrence et la régulation, en 
avançant que le contrôle territorial des données et des ressources de calcul constitue un défi 
structurel fondamental pour la concurrence sur les marchés et pour l’équité mondiale en matière 
d’IA. 

 
Keywords/Mots-clés: Generative Artificial Intelligence, Data Sovereignty, Compute 
Infrastructure, Competition Policy, Territorial Concentration / Intelligence artificielle générative, 
Souveraineté des données, Infrastructure de calcul, Politique de concurrence, Concentration 
territoriale. 
 
Pour citer ce document / To quote this document 
Marty, F., & Warin, T. (2025). Territorial Control of Data and Compute in Generative AI: A New 
Paradigm of Competitive Advantage (2025s-27, Cahiers scientifiques, CIRANO.) 
https://doi.org/10.54932/PIMA2204 
  

https://doi.org/10.54932/PIMA2204


1 
 

1. Introduction 

Since November 2022, generative AI—systems that learn from vast datasets to produce 

novel text, images, code, and other content—has emerged as a transformative general-

purpose technology (OECD, 2025). A striking feature of this technological shift is its 

concentration in the hands of a few actors and regions. A small number of firms, largely 

headquartered in the United States and China, have achieved breakthroughs by deploying 

unprecedented amounts of computational power and training data. This concentration has 

raised concerns that generative AI markets could “freeze” into oligopolies dominated by 

these early movers, limiting competition and constraining other countries’ ability to 

achieve technological sovereignty. 

These concerns have gained renewed urgency with the market entry of DeepSeek in 

January 2025, which offers a more frugal alternative in terms of computational 

infrastructure compared to the major incumbents (the “Magnificent 7,” according to 

Krause, 2025a). Does DeepSeek’s arrival represent a Christensen-style disruption 

(Christensen, 2016) that mitigates lock-in risks identified by Marty and Warin (2025), or 

does it paradoxically risk reinforcing them, by strengthening arguments in favor of 

sovereignty-driven regulation and renewed forms of industrial policy? 

Artificial intelligence now lies at the heart of debates on competitiveness and industrial 

policy, while rising international tensions are placing it firmly within a geopolitical frame 

(Vannuccini, 2025). The core questions driving this research are therefore: Who controls 

the data and compute resources that determine success in generative AI, and how is this 

control territorially distributed across countries? 

This question sits at the intersection of industrial organization (IO), competition policy, 

and international political economy (IPE). Traditional IO emphasizes how control over 

critical inputs can create structural barriers to entry and grant incumbents durable 

advantages. In AI markets, many policymakers and scholars highlight data and compute as 

such inputs. Competition authorities warn that firms controlling quasi “essential 

facilities1,” such as proprietary datasets or cloud infrastructure, could use them to stifle 

 
1 We employ the term quasi-essential facility rather than essential facility insofar as the asset in question does 

not meet the requirements established in the Bronner judgment of the Court of Justice (C7-97, 26 November 

1998), particularly the criterion of indispensability of access to the market. A rival can still operate on the 

market without such access, yet its performance would be significantly hindered and, consequently, it would 
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downstream competition (Autorité de la concurrence, 2023; 2024). In parallel, IPE scholars 

and security analysts increasingly frame AI as a sovereignty issue: control over AI’s key 

inputs is seen as conferring not only economic but also strategic influence.While existing 

literature acknowledges the importance of data and compute, it rarely addresses their 

territorial concentration and its implications. Much of the competition debate has focused 

on platform data network effects and the dominance of a few cloud providers, without fully 

grappling with the uneven geography of the resources needed to train frontier models. 

National AI strategies often cite the “AI triad” (data, algorithms, compute), yet they 

underplay the fact that the ability to perform large-scale model training—requiring 

enormous datasets, specialized hardware, and expert talent—is concentrated in a handful 

of countries. Our contribution is to bring this territorial dimension to the fore: we 

systematically examine how the geography of data and compute shapes competition in 

generative AI.The entrenched position of large ecosystem operators in this domain can be 

understood through two key dynamics. The first, examined in Marty and Warin (2025), 

relates to dependencies arising from critical infrastructures. Addressing these requires both 

ex post interventions, through competition enforcement, and ex ante regulatory 

frameworks designed to mitigate risks of economic and technological dependence. The 

second dynamic concerns digital sovereignty (Falkner et al., 2025). Here, two trends 

converge. The first, emphasized in the Letta (2024) and Draghi (2024) reports, is a 

European awareness of the widening technological and economic gap with the United 

States and China, prompting calls for both regulatory reform and industrial policy 

initiatives (Vannuccini, 2025) that avoid capture by incumbents. The second trend, 

accelerated by COVID-19, is the return of neo-mercantilist strategies (Briganti Dini, 2025), 

fragmenting the global economy, especially in digital industries. In some ways, the 

paradigm has shifted from comparative advantage to zero-sum competition; geopolitically, 

rising tensions have placed national security imperatives at the center of trade and industrial 

strategies, spurring calls for strategic autonomy or, at minimum, friendshoring (Warin, 

 
appear less attractive to consumers. For a broader perspective on the notion of a quasi-essential facility (where 

an access obligation may be justified by the risk that a rival would be unable to offer a service of equivalent 

quality) reference can be made to the Android Auto judgment of the Court of Justice (case C-233/23, 25 

February 2025). 
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2025).These dynamics require a rethinking of competition and industrial policy in a context 

complicated further by disruptive entrants such as DeepSeek. Public action toward Big 

Tech in generative AI must now contend with this technological, competitive, and 

geopolitical landscape. In this respect, the critical question is whether Big Tech’s control 

over essential assets (Marty & Warin, 2025) has become less of a lock-in factor than in the 

past, or whether it retains its full significance under new forms.In addressing this question, 

our article builds on and extends the argument that the decisive strategy in generative AI 

lies in controlling two inputs—data and compute—rather than transient advantages in 

talent or algorithms. We show how these inputs generate steep, self-reinforcing barriers to 

entry and argue that their territorial concentration is reshaping both competition and 

sovereignty. The paper proceeds as follows. We first situate our argument in the literature, 

drawing on IO, competition policy, and IPE. We then explain why data and compute 

constitute the sine qua non of generative AI progress, emphasizing the economic logics of 

scale and spillovers. Next, we document the territorial distribution of these resources, 

showing that the capacity to train frontier models is overwhelmingly concentrated in a 

small set of countries. Within this discussion, we highlight the case of DeepSeek, whose 

efficient model design narrowed the performance gap with incumbents, demonstrating that 

innovation can ease but not eliminate structural input constraints. Finally, we explore the 

implications of our findings: persistent concentration is likely unless proactive measures 

address disparities in access to data and compute, and sovereignty concerns will grow as 

countries depend on foreign AI infrastructures.We argue that meaningful policy 

responses—whether through antitrust action, data-sharing mandates, or public investment 

in AI infrastructure—must recognize that data and compute are the new strategic assets in 

the AI economy. It is against this backdrop that we assess how the evolving technological 

and competitive environment is shaping regulatory and industrial policy initiatives in the 

era of generative AI. 

The paper is structured as follows. Section 2 presents our theoretical framework. Section 

3 addresses the issue of data while Section 4 deals with the importance of computing 

capacities. Section 5 shows how the interactions between data and computing capacities 

reinforces competitive advantage and thus market concentration. Section 6 discusses the 

implications in terms of competition policy and regulation and Section 7 concludes. 
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2. Literature Review and Theoretical Framework 

2.1 Industrial Organization: Data and Compute as Structural Barriers to Entry 

The economics of information technology have long emphasized that certain inputs can 

function as barriers to entry by granting incumbents a cost or quality advantage not easily 

replicated by new entrants (Bain, 1956). In digital markets, network effects and economies 

of scale frequently produce “winner-take-most” outcomes (Belleflamme & Peitz, 2015). 

Classic examples include operating systems or social networks, where value grows with 

the number of users and accumulated data. 

In the case of generative AI and foundation models, scholars are investigating whether 

similar dynamics apply to training data and computing capacity (Schrepel & Pentland, 

2024; Carugati, 2024). Training state-of-the-art models requires tens of millions of dollars 

in compute resources and massive datasets, placing firms that already control such inputs 

in a structurally advantaged position. Recent analyses suggest that access to large-scale 

data and compute indeed creates formidable entry barriers. For example, researchers at the 

Brookings Institution highlight that “limited resources like talent, data, [and] 

computational power” are key hurdles for new entrants into foundation model markets 

(Brookings, 2023). 

The economics of scale reinforce these challenges. In AI development, returns to scale are 

steep: using 10× more data or compute can yield disproportionate performance 

improvements, incentivizing ever-larger training runs by firms that can afford them. This 

creates a feedback loop reminiscent of classic industrial organization contexts where high 

fixed costs and scale economies lead to oligopoly or natural monopoly. In AI, the fixed 

costs are not only tied to physical infrastructure (e.g., data centers) but also to the one-time 

expense of producing high-quality model weights. Once trained, models can be deployed 

widely at relatively low marginal cost—a cost structure (high fixed, low marginal) long 

recognized as conducive to concentration (Varian, 2018). 

Some scholars, however, stress that these barriers may be surmountable or transient. Abbott 

and Marar (2025), for example, challenge what they call “fears of data scarcity and 

monopolization.” They argue that open data and data markets allow startups to access 
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sufficient training resources, while algorithmic advances and synthetic data reduce total 

requirements. Smaller models fine-tuned on the “right kind of data” may even outperform 

larger but less targeted ones. According to this perspective, superior talent and innovation 

can offset incumbents’ resource advantages, echoing Schumpeter’s idea that technological 

innovation can overturn monopolies. Empirical cases of independent AI firms producing 

competitive models with far fewer resources illustrate this possibility. 

Yet even optimistic analyses concede that, absent intervention, current trends point toward 

growing concentration. Regulators such as the U.S. Federal Trade Commission (FTC, 

2023), the UK’s Competition and Markets Authority (CMA, 2024), and competition 

authorities in France (2024) and Portugal (2024) have warned that control of proprietary 

data or cloud infrastructure by a handful of firms could confer “unassailable” advantages 

and enable discriminatory practices. This raises questions reminiscent of the “essential 

facilities” doctrine in competition law: if critical inputs like data or compute are controlled 

by dominant players, should they be required to grant fair access to rivals? 

The principal competitive risk, therefore, is that Big Tech firms—rather than being 

disrupted by entrants—may consolidate their positions through generative AI, leveraging 

both their resources and their ecosystems (Marty & Warin, 2025). Two competing 

narratives emerge. The first is one of creative destruction: established barriers no longer 

protect incumbents from challengers, whether from leading AI startups (OpenAI, 

Anthropic, Mistral) or new entrants such as DeepSeek. The second emphasizes 

consolidation: incumbents may integrate innovative firms as complementors or reinforce 

the essentiality of their existing resources. 

Beyond this disruption-versus-consolidation debate lies the question of AI’s systemic 

nature. Generative AI can be understood both as a General Purpose Technology (GPT) and 

as a Large Technical System (LTS). Its effective development depends on diverse 

resources—algorithms, data, storage infrastructures, compute—and is thus ecosystemic in 

character (Vannuccini & Prytkova, 2023). The dominant “bigger is better” paradigm 

(Varoquaux et al., 2024) may, however, be misleading, as illustrated by DeepSeek’s 

innovations in more efficient training. Recognizing AI’s ecosystemic dynamics suggests 

that traditional industrial policy tools—such as public pre-financing of infrastructures or 
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procurement strategies—are insufficient. Instead, a balanced mix of policies is required: 

fostering competition to prevent lock-in, while also encouraging cooperation to sustain 

ecosystem development (Vannuccini, 2025). 

This tension between cooperation and competition is typical of digital ecosystems. 

Innovation and market access often depend on infrastructures developed by systemic 

incumbents, who can enable or hinder complementors depending on their strategic interests 

(Marty & Warin, 2023). Dominant firms can entrench their positions both through control 

of (quasi-)essential infrastructures and through acquisitions of potential disruptors (Marty 

& Warin, 2021). These dynamics highlight the importance of vertical coordination and 

complementarities across three key layers of generative AI: the physical (infrastructures), 

the code-related (standards, algorithms), and the content-related (data)2. Strategic assets 

across these layers share three characteristics (Fontana & Vannuccini, 2024): access to 

infrastructure is critical for complementors to develop and deploy applications; assets are 

shaped by path dependency (as with reliance on cloud resources); and they are marked by 

a scarcity of viable alternatives, creating economic and technological dependency. Such 

dependencies generate specific challenges not only for competition policy but also for 

industrial policy. 

So, industrial organization perspectives highlight that data and compute function as entry 

barriers in generative AI. The high fixed costs and scale economies of training frontier 

models naturally concentrate activity in a small number of firms. Absent proactive 

intervention, economic theory predicts persistent concentration. Our analysis extends this 

understanding by stressing the territorial dimension: these inputs are not only concentrated 

in a few firms but also geographically concentrated in a handful of countries. The following 

section examines how competition policy is responding to this dual concentration, and what 

it implies for the international distribution of AI capacity. 

 
2 The question is particularly important in the field of generative AI, where instead of vertical growth operations through 

acquisitions, we increasingly observe partnerships between Big Tech firms and new entrants. Two interpretations of this 

phenomenon are possible. The first is to view such partnerships as a means of achieving, de facto, the same results as a 

formal acquisition. The advantage of this contractual integration is that it can more easily evade ex ante merger control. 

The second interpretation is that these are hybrid partnership arrangements between actors with complementary 

resources. The fact that such partnerships generally do not involve exclusivity clauses in favor of Big Tech would support 

this latter reading (Groza, 2025). 
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2.2 Competition Policy: Antitrust Concerns and Regulatory Debates 

Competition authorities in the United States, the European Union, and other jurisdictions 

have begun to scrutinize generative AI through the lens of antitrust and competition law. 

A central concern is that control of foundational inputs—data, compute, and talent—by 

incumbent technology giants could enable them to distort competition in generative AI 

markets. In a June 2023 policy statement, the U.S. Federal Trade Commission (FTC) 

explicitly warned that if a small number of firms control these essential ingredients, they 

could dampen rivalry and ultimately wield “outsized influence over a significant swath of 

economic activity” as AI becomes ubiquitous. This reflects a broadening of competition 

policy beyond traditional product-market analysis toward the upstream level of inputs and 

infrastructure. 

Data has been the primary focus of these debates, partly because of analogies with earlier 

digital markets. Regulators recall how control over user data allowed Google and Facebook 

to cement dominance through targeted advertising3 and network effects4. In generative AI, 

the question is whether access to more or better data—such as search query logs, private 

social media content, or proprietary text and image stocks—enables training fundamentally 

better models that rivals cannot replicate. The FTC notes two particular challenges for 

entrants: (1) incumbents accumulated massive datasets over many years via consumer-

facing services unavailable to startups, and (2) incumbents have developed specialized 

tools and infrastructures to acquire data at scale. In specialized domains such as health or 

finance, access is even more restricted, giving incumbents with existing partnerships a 

structural advantage. While holding large datasets is not illegal per se, regulators worry 

that it can amount to a barrier to entry that prevents “fair competition from fully 

flourishing.” Proposed remedies range from encouraging portability and open-data 

initiatives to more ambitious measures such as mandating dominant platforms to share data 

under the idea of “data commons” or as a condition in merger remedies. 

 
3 See the US Google Seach Case and the September 2nd, 2025 judgment. 
4 See the EU Commission decision Google Ad-Tech and data related Practices, case AT.40670, September 

5th, 2025 
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Compute has more recently attracted regulatory attention as a second critical input. 

Training frontier models requires access to specialized processors (e.g., GPUs, TPUs) and 

vast computational capacity, resources controlled by only a few cloud providers. New 

entrants typically rent compute from Amazon AWS, Microsoft Azure, or Google Cloud in 

the West, or from firms like Alibaba Cloud in Asia. Regulators are concerned that these 

providers may privilege their own AI efforts or those of favored partners, raising risks of 

bundling, preferential pricing, or foreclosure. The aborted $40 billion merger of Nvidia and 

Arm in 2022—blocked partly due to competition concerns—remains a touchstone in these 

debates. Today, with demand for AI accelerators surging, authorities are wary of scenarios 

where dominant cloud providers might lock up supply or impose restrictive contracts, for 

example by charging high data egress fees that discourage switching. 

Talent constitutes a third critical input. While not the focus of this paper, its scarcity is 

widely acknowledged: the limited pool of top AI researchers gives incumbents incentives 

to use non-compete clauses or no-poach agreements to restrict labor mobility (Chaiehloudj, 

2025). Regulators stress that talent mobility is essential to allow new ventures to emerge, 

though talent alone is insufficient without access to data and compute—a point reinforcing 

the argument that these inputs form structural choke points. 

These concerns have sparked debate about the appropriate regulatory approach: is the 

disruption possible or should we fear entrenched dominant positions (Hagiu and Wright, 

2025)?. One school of thought, exemplified by Abbott and Marar (2025), cautions against 

“heavy-handed” interventions such as mandatory data sharing. They argue that such 

measures risk reducing incentives to collect and curate data, ultimately undermining 

innovation. Others, following Tirole (2023), highlight the dangers of “heavy-handed 

regulation,” which can raise compliance costs, reduce profit expectations, and dampen 

innovative dynamism, while remaining prone to regulatory capture. Tirole instead 

advocates a “light-handed” approach aimed at lowering entry barriers through 

interoperability and portability, thereby fostering multi-homing and limiting lock-in—

concerns also identified in the French Competition Authority’s 2023 cloud inquiry. 

Ex ante obligations of this kind already exist in the European Union. The Digital Markets 

Act (DMA), in force since 2022, and the Data Act, which entered into force in 2024, impose 



9 
 

requirements on data sharing and portability5. These obligations are designed to prevent 

irreparable competitive harm and to address conduct that, under competition law, would 

otherwise be sanctioned ex post as exclusionary abuses. They effectively shift some 

enforcement from an ex post to an ex ante framework (Bougette et al., 2025), while leaving 

room for traditional antitrust action6. 

Still, there is no consensus on remedies. Some scholars and regulators favor reliance on 

existing antitrust law to punish exclusionary conduct if and when it occurs, while others 

stress that by the time harm is observable, markets may already have tipped irreversibly 

due to high fixed costs and economies of scale. The debate highlights a key tension: 

fostering competition in generative AI likely requires ensuring more open access to data 

and compute, but how to do so without discouraging investment remains contentious. 

Thus, competition policy perspectives underscore that control over data and compute is not 

merely a business advantage but a potential chokepoint for the entire AI ecosystem. 

Regulators are increasingly alert to scenarios in which incumbents’ dominance over these 

inputs could solidify into lasting market power. Yet the appropriate policy response is still 

unsettled. What is clear is that interventions must take into account the global distribution 

of these resources, which leads directly to the industrial policy and international political 

economy dimensions that we examine next. 

2.3 From the guarantee of a level playing field to geo-dirigiste industrial policies 

The specific context of generative AI development has led to public policies that extend 

beyond the traditional goals of safeguarding undistorted competition and protecting 

citizens’ personal data7. States are increasingly engaged in an “AI race,” either to promote 

their national champions or to reduce the dependence of domestic firms on services 

 
5 For instance, Meta was sanctioned in April 2025 for extracting too much data from its users (considering 

its option ‘consent or pay’ was not satisfying). See EU Commission decision, April 23rd, 2025. 
6 See for instance the February 2025 Android Auto Judgment mentioned above and also the EU Commission 

decision related to the Google Ad Tech case in September 2025. 
7 Lacking major players in the Big Tech sector, the European Union has initially relied on competition and regulatory 

instruments to limit lock-in risks for its firms by targeting the control of critical resources of the digital economy—such 

as data and computational capacities, which are the focus here. These policies pursue a dual objective. Domestically, 

they aim to ensure a level playing field in competition and to safeguard values that are not purely economic, such as the 

protection of personal data. Externally, they seek to promote a regulatory model that, it is hoped, will be emulated by 

partner states (Bradford, 2012). 
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provided by Big Tech. In Europe, competitiveness is now closely tied to the management 

of international interdependencies (Farrand & Carrapico, 2022). The challenge lies not only 

in defining industrial policies that enable technological catch-up or preserve the autonomy 

of European firms (Seidl & Schmitz, 2023), but also in articulating a coherent strategy for 

digital sovereignty. 

State intervention in this field—beyond competition policy—appears necessary given the 

risks of competitive lock-in and foreign control of ecosystems. Yet such intervention faces 

significant challenges of implementation. Two risks are particularly salient: the distortion 

of industrial policy for protectionist purposes, and regulatory capture by firms themselves 

(Vannuccini, 2025). Protectionist strategies, as in the case of state aid or tariff barriers, may 

generate collectively suboptimal outcomes and, in the longer term, harm the very state that 

pursues them through industrial and technological decline. The risks of regulatory capture 

are equally acute: firms have strong incentives to shape regulation to their advantage, 

especially in a context marked by imperfect information and heightened public concern 

about the ethical and sovereignty-related implications of AI. As Vannuccini (2025) 

observes, the central issue here is less about existential risks from AI than about managing 

competitive dynamics—both among firms and among states. 

European debates (Letta, 2024; Draghi, 2024) should therefore be situated within a dual 

perspective: at the microeconomic level, enhancing competitiveness and reducing 

European firms’ dependence on Big Tech; and at the macroeconomic level, strengthening 

strategic independence—or at least managing strategic interdependencies. Some proposed 

solutions, such as those in the Draghi Report (2024), focus on completing the internal 

market and reassessing the cost-benefit balance of existing regulations. Others, more 

demanding, concern the very definition of a European industrial policy in the context of 

potential technological catch-up. 

One approach is to reduce dependency by developing autonomous infrastructures. This, 

however, raises questions about the likelihood of success in an investment race against 

states that already command vast infrastructures and enjoy easier access to critical assets 

and technologies, as well as the risk of industrial capture (Singh, 2025). A second option, 

also noted in the Draghi Report, is to adjust merger control so that efficiency gains are 
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weighed more heavily relative to competitive harm. In both cases, however, the risk of 

capture by powerful firms remains substantial. Alternatively, European industrial policy 

could seek to reduce dependencies not only vis-à-vis Big Tech, but also vis-à-vis trading 

partners that may adopt non-cooperative strategies. Initiatives to shape standards, promote 

open-source solutions, develop below-frontier AI applications (Martens, 2024) and 

decentralized learning capabilities all align with this approach. 

2.4 International Political Economy: AI Development and Territorial Sovereignty 

The rise of generative AI has not only economic and legal facets, but also a geopolitical 

one. Nations increasingly frame AI capabilities as matters of national competitiveness and 

security. This perspective belongs to the domain of international political economy (IPE) 

and technology governance, where questions of who leads and who lags in AI are deeply 

intertwined with concerns over sovereignty, dependence, and global power balances. 

The issue of dependency has gradually evolved. Initially, it was framed at the level of 

firms—complementors vis-à-vis keystones in digital ecosystems—as illustrated, for 

example, by Regulation (EU) 2019/1150 on promoting fairness and transparency for 

business users of online intermediation services. At that stage, dependency was seen 

primarily through a B2B lens: a matter of contractual imbalance linked to asymmetries in 

bargaining power, only partially addressed under competition law. U.S. antitrust law does 

not sanction exploitative abuse, and only some EU member states recognize abuse of 

economic dependence. Nevertheless, such dependency raised concerns about dynamic 

efficiency, notably by constraining firms’ innovative capacity and biasing innovation 

trajectories toward complementarity with keystone actors. In the European case, fairness 

rules were sometimes interpreted less as competition policy than as industrial or trade 

policy, aimed at protecting European firms in the absence of domestic platform champions 

(Radic et al., 2025). Related fiscal initiatives in member states were occasionally viewed 

as non-cooperative trade practices, amounting to de facto tariffs (Schramm, 2025). 

With the advent of generative AI, these tensions have expanded from inter-firm relations 

to inter-state relations. The growing rivalry between the United States and China has led to 

export controls on advanced processors, underscoring the weaponization of technological 
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interdependence (Farrell & Newman, 2019). Global value chains once grounded in 

comparative advantage are giving way to strategies focused on strategic autonomy, 

resilience, and security. The discourse on digital sovereignty, while often presented in 

geopolitical terms, also encompasses legitimate industrial policy concerns. Yet it remains 

vulnerable to capture by domestic firms seeking regulatory protection. 

A striking pattern in the geography of AI capability is its concentration in just a few states. 

The United States and China dominate in terms of talent, firms, large-scale datasets, and 

compute power. Metrics such as top AI publications, the largest model deployments, and 

the distribution of major AI data centers reflect this duopoly. Europe, India, Canada, and 

others have vibrant AI research communities, but lag behind in pretraining frontier models 

or scaling resources. European policymakers, for example, warn that without local capacity 

to train or adapt foundation models, the EU risks becoming a “rule-taker”—consuming 

technologies shaped by others’ norms (Floridi, 2020; European Parliament Report, 2022). 

This has fueled calls for “AI sovereignty” or “digital sovereignty,” understood 

pragmatically as the ability to develop and operate AI systems on domestic infrastructure, 

data, and workforce rather than relying entirely on foreign providers. 

Empirical work highlights the stark unevenness of AI infrastructure across the globe. 

Hawkins, Lehdonvirta, and Wu (2025) mapped “compute sovereignty” by identifying 

countries with AI-capable data centers. Their study found that only 33 countries host 

facilities with accelerator hardware, and just 24 have the capacity to train full-scale 

foundation models. Over 160 countries lack any significant AI compute infrastructure. Of 

132 major AI clusters identified worldwide, 26 were in the U.S. and 22 in China; together, 

those two countries account for roughly one-third of sites, and likely an even higher share 

of global compute capacity. EU member states collectively hosted 27 clusters, while other 

hubs included the UK, Canada, Japan, South Korea, Singapore, and the UAE. Entire 

continents such as Africa and South America are barely represented, with only South 

Africa and Brazil hosting notable facilities. The result is a deepening digital divide: if data 

centers are the engines of the AI economy, much of the Global South lacks the machinery. 

This territorial concentration matters for several reasons. Economically, countries without 

AI infrastructure risk exclusion from innovation ecosystems and high-value industries, 
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while also facing brain drain as researchers migrate to the few global hubs. Strategically, 

reliance on foreign AI services exposes states to vulnerabilities: sanctions, export controls, 

or contractual restrictions could curtail access to models or cloud capacity critical for 

economic and defense activities. The U.S. restrictions on advanced GPUs to China, and 

China’s subsequent push for indigenous AI chips, illustrate this techno-nationalist 

dynamic. 

The analogy with oil is particularly resonant in IPE debates. Just as control over oil 

resources granted geopolitical leverage in the 20th century, control over AI compute may 

confer strategic power in the 21st. This includes not only ownership of data centers but 

also control of the semiconductor supply chain. Here, interdependence is acute: cutting-

edge AI chips are manufactured primarily in Taiwan (TSMC) and South Korea (Samsung), 

even if designed by U.S. firms such as Nvidia and AMD. The global AI infrastructure thus 

depends on a fragile geographic nexus, with Taiwan’s political status casting long shadows 

over AI’s future. Efforts such as the August 2022 U.S. CHIPS Act, China’s vast 

semiconductor investments, and the September 2023 EU Chips Act are all attempts to 

secure sovereignty over this compute backbone. 

Finally, territorial concentration also shapes norms and governance. Advanced AI models 

embody not only technical architectures but also the values of their originators. U.S. 

models may privilege certain liberties, while Chinese models may embed stricter state-

aligned constraints. Countries that adopt foreign models import not only technologies but 

also implicit normative frameworks, raising concerns of ideational sovereignty and what 

some scholars describe as “digital colonialism.” 

Taken together, an IPE lens reveals that the uneven distribution of AI’s inputs—data, 

compute, and chip manufacturing—is producing a global hierarchy of AI capability. A 

handful of states lead; most depend. Calls for “AI sovereignty” seek to mitigate this 

imbalance, yet achieving technological self-determination is profoundly difficult in a 

landscape where critical resources remain so unequally distributed. The following sections 

examine the two key inputs—data and compute—in detail, before analyzing how their 

control translates into competitive advantage and what the case of DeepSeek suggests 

about the prospects for disruption in this landscape. 
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3. Data as a Strategic Resource in Generative AI 

Data is often dubbed “the new oil” of the digital economy, and in the realm of AI, it is 

indeed the fuel that powers model training (Warin et al, 2014). However, not all data is 

equal. The success of generative AI models depends on access to high-quality, domain-

relevant, and diverse datasets. In this section, we examine the role of data in generative AI, 

who controls the most valuable data, and why possession of large datasets constitutes a 

barrier that new entrants struggle to overcome. We also discuss whether this barrier is 

absolute or if there are emerging ways to circumvent data limitations. 

3.1 The Importance of Scale and Quality in Training Data 

Generative models, especially large language models (LLMs) and other foundation 

models, require exceptionally large training corpora. For instance, GPT-3 (2020) was 

trained on approximately 300 billion tokens of text, sourced from Common Crawl, digital 

libraries, and other large-scale internet datasets—effectively a significant slice of the web’s 

textual content (Brown et al., 2020). A general principle has emerged that more data tends 

to yield better performance, up to the point of diminishing returns. This is supported by 

research on scaling laws, which demonstrate that model performance improves in 

predictable power-law relationships as a function of training data volume, model size, and 

compute budget (Kaplan et al., 2020). Thus, a firm able to assemble a trillion-token dataset 

holds a structural advantage in training more fluent and knowledgeable models compared 

to a firm with access to only a billion tokens. This scale effect constitutes a quantitative 

barrier to entry. 

Equally important, however, is the quality and diversity of data. A dataset spanning 

multiple domains and styles enables a model to generalize broadly—hence the term 

“foundation model.” Incumbent developers often leverage web-scale data collected 

through large-scale crawling (e.g., Common Crawl, Wikipedia, Reddit, news articles). 

Beyond these public resources, leading technology firms augment training with proprietary 

datasets: Google has access to years of search query logs and clicked results, Meta 

(Facebook) to billions of social media posts and images with metadata, and Microsoft to 

LinkedIn and GitHub datasets on professional networks and software code. Such 
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proprietary caches are not readily accessible to rivals. New entrants must therefore rely on 

open data or purchase licenses from third parties. While commercial data markets are 

expanding, the most valuable categories of high-quality, domain-specific data (such as 

medical records, financial transaction data, or user interaction data reflecting human 

preferences) are tightly controlled or restricted by privacy and regulatory frameworks. 

A further dimension is the feedback loop in data advantage. The more users a company has 

for its AI products, the more interaction data it collects to improve its models, notably 

through techniques like reinforcement learning from human feedback (RLHF). This creates 

data network effects: products become better as more people use them, because their usage 

generates data that enhances performance. OpenAI’s ChatGPT illustrates this dynamic: by 

rapidly reaching 100 million users, it collected vast volumes of feedback that could be used 

to fine-tune and align its models. Competing chatbots with smaller user bases lack access 

to such volumes of feedback data. The U.S. Federal Trade Commission (FTC, 2023) has 

noted that such “positive feedback loops” could enable incumbents to secure durable 

performance leads simply by virtue of scale in usage and data. This process is analogous 

to Google’s search engine, which improved over decades by learning from billions of 

search queries—a level of cumulative data advantage difficult for new entrants to 

replicate8. 

3.2 Data Control and Ownership 

From a competition standpoint, the question of who owns or controls valuable data is 

crucial. Public data, such as most webpages, remains freely scrapable, and smaller AI 

companies have made use of large portions of internet text. Yet as generative AI has 

expanded, content owners have begun to push back. Major platforms such as Reddit, Stack 

Exchange, and Twitter have restricted free API access or imposed paid licenses for the use 

of their content in AI training. This illustrates that the supply of freely accessible, high-

quality data is not limitless. As valuable sources become monetized, incumbents with deep 

financial resources gain an advantage. Firms that already hold large datasets through their 

 
8 Some of the behavioral remedies imposed by the September 2nd 2025 judgement in the Google Search case 

tend to address this issue. 
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core business activities are spared such costs, while independent startups may now face 

high licensing fees for textual or image data that was once openly available. This shift risks 

reinforcing the incumbency advantage. 

Personal and user-generated data form another contested category. Legislation such as the 

European Union’s General Data Protection Regulation (GDPR) imposes strict limits on 

how personal data can be processed. These rules can be double-edged: they constrain the 

ability of large firms to use personal data, but they also make it more difficult for new 

entrants to gather comparable data legally. In addition, there is a linguistic and cultural 

dimension. The majority of accessible training data exists in English and a few other 

dominant languages, which structurally benefits firms operating in those linguistic 

domains—often U.S.-based companies for English. By contrast, countries with weaker 

representation online risk a “data deficit.” European policymakers, for instance, have 

expressed concerns that foundation models trained primarily on English and Chinese data 

underperform for European languages and domain-specific applications unless fine-tuned. 

This has become part of broader debates over AI sovereignty (European Commission, 

2023). 

Finally, data ownership also extends to government-held datasets. Several countries are 

exploring ways to leverage public resources such as administrative records, national 

archives, or health system data to support domestic AI development. National healthcare 

systems, for instance, contain rich medical datasets that could, if mobilized responsibly, 

provide a sovereign data advantage in training medical AI. Yet exploiting these resources 

raises ethical and governance challenges and requires significant policy coordination. To 

date, leading AI laboratories have been primarily private-sector ventures, with limited 

reliance on government datasets. Nonetheless, it is foreseeable that states will increasingly 

treat certain categories of data as strategic national assets—resources to be guarded 

carefully or pooled selectively for domestic innovation. 

3.3 Can Data Barriers Be Overcome? 

The critical question is whether the absence of proprietary data constitutes a definitive 

barrier for aspiring competitors, or whether ingenuity and alternative strategies can 
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compensate. While data barriers are significant, there are reasons to believe they are not 

insurmountable in every case. 

The first mitigating factor lies in the availability of open-source and shared datasets. The 

AI community has a strong tradition of open access. Projects such as LAION have 

compiled billions of images with captions for public use, while The Pile and other large 

text corpora aggregate diverse materials into massive datasets accessible to all. These 

initiatives enable motivated groups to assemble reasonably large and capable datasets 

without relying on proprietary caches. Indeed, many open-source models, such as 

EleutherAI’s GPT-Neo series and Stability AI’s Stable Diffusion, were trained primarily 

on open data. However, these datasets often lack the curation and domain-specific content 

that proprietary corpora offer. Open data may include duplication, noise, or gaps in 

specialized areas—for instance, much high-quality code, scientific literature, and domain-

specific text remains behind paywalls. 

A second dimension is the use of synthetic data. An intriguing workaround involves 

employing AI itself to generate additional data for training. A baseline model can produce 

synthetic text or images that, if sufficiently high in quality, expand the training set. This 

approach has proven useful in reinforcement learning, where self-play generates vast 

quantities of training data, and researchers have suggested it could help in language 

modeling as well. However, synthetic data raises the risk of a feedback loop: models may 

end up training on their own outputs, potentially leading to degraded performance. Recent 

scholarship has described this risk as “model collapse,” whereby iterative retraining on AI-

generated data reduces diversity and quality (Shumailov et al., 2023). 

Transfer learning and fine-tuning provide a third mitigating pathway. Competitors may 

bypass the need for trillion-token datasets by fine-tuning smaller pre-trained models on 

highly targeted proprietary datasets. A startup unable to train a 100-billion parameter model 

from scratch could instead adapt an open-source base model with domain-specific corpora, 

such as legal documents or medical records, to achieve superior performance in that niche. 

This strategy is increasingly common given the lower compute requirements for fine-

tuning. Yet the approach depends on the availability of robust base models. If base models 

are controlled by incumbents, dependency persists. The release of Meta’s LLaMA-2 in 



18 
 

2023 as an open, high-quality model mitigates this issue by providing a strong starting 

point for fine-tuning. Policymakers frequently stress the importance of such open models 

for democratizing AI development (Vannuccini & Prytkova, 2023). 

A fourth mitigation factor is the potential role of regulation and mandated data sharing. As 

above mentioned, regulators could, in principle, require dominant firms to make certain 

datasets available to competitors or researchers under privacy-safe conditions. For 

example, if a handful of companies possess uniquely rich datasets from consumer devices, 

policy could mandate portability or interoperability through APIs. Precedents exist in other 

sectors, such as telecom interconnection rules, though applying similar mechanisms to AI 

data raises complex questions of privacy, intellectual property, and incentives. While no 

regulation currently requires AI training data to be shared, such policies are actively 

debated in competition and technology governance circles (Tirole, 2023). 

Despite these mitigating factors, it remains largely true that firms such as Google, Meta, 

OpenAI (with Microsoft), and Baidu, Tencent, or Alibaba in China possess durable data 

advantages. Abbott and Marar (2025) downplay long-term concerns about data scarcity, 

arguing that once a model has “enough” of the right data, marginal returns diminish and 

other factors—such as algorithms or user experience—become more decisive. They 

compare this to face recognition models, where performance gains from adding more faces 

beyond a threshold are minimal. While this observation holds in narrow domains, the 

challenge in generative AI is that the threshold of “enough data” for broad, open-ended 

tasks may be extraordinarily high—potentially encompassing much of the internet’s 

content. Even if returns diminish at the frontier, new entrants must first reach the 

incumbents’ performance level. If leading firms have already trained on most of the 

world’s high-quality text, followers face the choice of relying on lower-quality or non-text 

modalities, or innovating radically more data-efficient methods. 

In sum, data remains a foundational asset in AI, one that provides durable—though not 

entirely insurmountable—advantages to those who control it. Control over data is 

distributed unevenly, with global platform companies and a handful of nations, especially 

the United States and China, holding the bulk of valuable resources. This asymmetry 

reinforces the structural lead of incumbents and leading states. That said, data advantages 
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are ultimately inseparable from compute capacity: making use of large datasets requires 

the infrastructure to process them at scale. We therefore turn next to the second critical 

input: compute infrastructure. 

4. Compute Infrastructure: The Backbone of Foundation Model Training 

Alongside data, computational power (“compute”) has emerged as the critical enabler of 

breakthroughs in generative AI. Compute refers to both the specialized hardware (like 

GPUs, TPUs, and other AI accelerators) and the large-scale data center infrastructure that 

houses this hardware and provides the networking and energy to run it. This section 

examines how compute became a key strategic resource, who controls the supply of 

advanced compute, and how the territorial distribution of compute capacity shapes the AI 

landscape. We will also discuss cost trajectories for compute and their implications for 

market entry. 

4.1 The Era of Scalable Compute: From Moore’s Law to AI Scaling Laws 

For much of the 20th century, progress in artificial intelligence was constrained by the 

limits of available computing power. Classic AI programs often failed not because the 

underlying algorithms were entirely flawed, but because the hardware of the time could 

not execute them at meaningful scale. The resurgence of AI in the 2010s—particularly 

deep learning—coincided with the plateauing of Moore’s Law for CPUs and the 

repurposing of graphics processing units (GPUs) for neural network training. Originally 

developed for video game rendering, GPUs proved highly effective at performing the 

matrix and vector operations central to neural networks. Beginning around 2012 with the 

landmark AlexNet model for image recognition, researchers increasingly leveraged GPUs 

to train larger models more quickly. This shift gave rise to what Rich Sutton famously 

termed the “bitter lesson”: that, given sufficient compute and data, relatively generic 

algorithms such as deep neural networks tend to outperform more handcrafted approaches. 

Compute thus emerged as the driving force of progress—training bigger models for longer 

on more data reliably produced better results, sometimes unexpectedly so. 

By the late 2010s, the leading AI labs were engaged in what has been described as an “AI 

arms race” in compute (Ahmed & Wahed, 2020). OpenAI, for example, announced a 
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strategy of scaling up models by orders of magnitude, resulting in GPT-3 in 2020, which 

contained 175 billion parameters—two orders of magnitude more than models only a few 

years earlier. OpenAI also reported that the compute required to train its largest models 

was doubling roughly every three to four months in the years preceding 2020, far 

surpassing the pace of Moore’s Law, which would imply a doubling of transistor density 

every two years. Hernandez and Brown (2020) quantified this trend, showing that between 

2012 and 2018 the compute used in the largest training runs had increased by a factor of 

300,000. 

This insatiable demand for compute had several consequences. First, the industry structure 

was reshaped. Nvidia, the dominant GPU manufacturer, became one of the most 

strategically important companies in the global technology sector, as its chips powered the 

overwhelming majority of AI models. More than 90% of advanced AI workloads in the 

mid-2020s ran on Nvidia GPUs, creating a major point of supply concentration. Second, 

the rise of cloud providers such as Amazon, Microsoft, and Google allowed them to 

consolidate a gatekeeping role. Their capacity to invest billions in hyperscale data centers 

equipped with accelerators positioned them as indispensable providers of on-demand 

compute. Smaller firms and academic institutions, unable to replicate such infrastructure, 

were effectively obliged to rent access, deepening their dependence on cloud platforms. 

Third, the cost of training frontier models soared. GPT-3’s training was estimated at 

approximately $5 million in 2020, whereas GPT-4’s training in 2023 was estimated at 

between $40 and $100 million. A recent study by Epoch AI (Cottier et al., 2024) projected 

that training costs for the largest models could exceed $1 billion by 2027, with costs 

doubling roughly every nine months. These figures, which reflect only hardware and 

energy, exclude salaries and other expenses, underscoring how rapidly capital requirements 

have escalated. 

So, compute has come to exhibit strong economies of scale and scope, much like data. 

Firms able to mobilize larger compute budgets can train bigger models, conduct more 

experimental runs, and thereby increase the probability of achieving superior performance. 

Moreover, maintaining leadership once a model is deployed may require continual 
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retraining or fine-tuning with new data to keep systems up to date, reinforcing the 

advantages of those with abundant compute resources. 

4.2 Who Controls the Compute? Cloud Oligopoly and Territorial Clusters 

The control of compute infrastructure can be conceptualized in layers. At the foundational 

level is chip manufacture. Semiconductor design is dominated by Nvidia in the United 

States, with some in-house efforts from firms like Google (TPUs) and other specialized 

vendors. Actual fabrication, however, is overwhelmingly concentrated in Taiwan’s TSMC, 

which supplies most of the advanced GPUs and TPUs used for AI. This extreme 

concentration has become a source of geopolitical leverage. Since 2022, the United States 

has imposed export controls on advanced AI chips to China, effectively seeking to deny 

Chinese firms access to the latest generation of Nvidia hardware and forcing them to rely 

either on downgraded versions or on domestic alternatives that remain technically inferior. 

The second layer concerns cloud providers and data center operators, who control the 

facilities where these chips are deployed. Around 70–80% of the global cloud market is 

held by a handful of firms. In the West, Amazon AWS, Microsoft Azure, and Google Cloud 

dominate, while in China, Alibaba Cloud, Tencent Cloud, and Huawei Cloud are the major 

players, though their activity is largely confined to the domestic market. These firms not 

only rent compute to other actors but also use it directly for their own model 

development—for example, Google training its models on Cloud TPUs or Microsoft 

hosting OpenAI’s models on Azure. By contrast, European providers such as OVHcloud 

or Deutsche Telekom’s Open Telekom Cloud remain modest in scale and regional in scope, 

while countries such as Japan or India host some local data centers but rely heavily on the 

U.S.-based cloud giants or smaller domestic firms with limited capacity. 

A third layer consists of supercomputing centers, often run by governments or academic 

consortia. Some of Europe’s leading facilities, such as Jülich’s Juwels system in Germany 

or CSC’s LUMI in Finland, rank among the world’s top supercomputers and have been 

partly repurposed for AI research. Yet many traditional high-performance computing 

(HPC) systems are optimized for scientific simulations rather than AI training, and they 

lack the flexible software ecosystems of commercial clouds. Europe’s EuroHPC initiative, 
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which includes the planned acquisition of AI-dedicated supercomputers, represents an 

effort to reduce reliance on foreign providers by adapting national infrastructure for AI 

development. 

A crucial empirical finding is the geographic concentration of AI-ready data centers. 

Recent mapping by Hawkins et al. (2025) shows that accelerator-equipped cloud regions 

are clustered in North America, East Asia, and Western Europe, with only token presence 

in Africa or Latin America. The United States alone accounts for the largest share, hosting 

nearly half of the world’s data center capacity when measured by facility numbers or IT 

load, though not all of it is optimized for AI. South America and Africa, by contrast, have 

only a handful of major AI-ready sites—essentially one in Brazil and one in South Africa—

underscoring the asymmetry. The imbalance recalls earlier eras when critical 

infrastructures, such as undersea cables or satellite networks, were controlled by only a few 

global powers. 

This distribution has led to the notion of compute sovereignty (Hawkins et al., 2025), which 

involves multiple thresholds: whether a country hosts data centers on its territory, whether 

those facilities are domestically owned, and whether the chips they use come from supply 

chains free of foreign control. By that strict definition, only the United States, China, and 

a small number of European states qualify. For example, France might qualify through 

OVHcloud and domestic data centers, even if its chips are sourced from Nvidia in the 

United States and fabricated in Taiwan. South Korea manufactures chips and hosts many 

data centers, but much of its infrastructure is operated by foreign firms. For most other 

nations, large-scale compute capacity is absent, meaning they will remain dependent on 

U.S. or Chinese providers for frontier AI training. 

This territorial and structural concentration feeds directly into market concentration. The 

oligopoly of global cloud providers coincides with an oligopoly of frontier AI developers, 

with many of the same firms controlling both layers. As a result, policy measures in one 

domain cascade into the other. For instance, a European requirement to license or certify 

large-scale training runs would bind only companies operating in Europe, possibly 

diverting activity elsewhere. Conversely, U.S. export controls on advanced chips have 
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immediately constrained China’s AI trajectory, regardless of its domestic talent and data 

availability. 

Finally, pricing dynamics reinforce incumbency advantages. Cloud rental costs for GPUs 

remain high. Training a state-of-the-art model may require tens of millions of dollars in 

raw compute, capital that few startups can raise. Large customers receive significant 

discounts, meaning that incumbents often pay less per GPU-hour than smaller rivals. In 

some cases, the largest firms bear only the cost of hardware depreciation since they own 

the data centers outright, whereas startups must pay retail cloud rates with substantial 

markups. While some smaller firms attempt to build their own clusters to reduce long-term 

costs, this requires capital expenditure and engineering resources that few can afford. 

4.3 The Steep Trajectory of Compute Requirements 

It is worth underscoring how rapidly the compute frontier is advancing, as this dynamic 

itself functions as a barrier to entry. Cottier and al. (2024) estimate that the cost of the 

largest AI training runs has increased by a factor of two to three annually since 2016. Put 

differently, a new challenger that only manages to match last year’s leader would, within 

a few years, find itself an order of magnitude behind if it cannot sustain this pace of scaling. 

The half-life of cutting-edge systems is short: foundation models typically become 

outdated within one to two years as larger and more powerful successors emerge. In 2023, 

OpenAI’s CEO projected that their next-generation system might cost around $1 billion to 

develop, with the following one perhaps reaching $10 billion. Around the same time, 

Microsoft and OpenAI were reported to be planning $100 billion in AI supercomputing 

investments over several years, while Google’s DeepMind indicated it would “invest 

more” to remain competitive. These staggering figures make clear that only the very largest 

technology companies—and perhaps some governments—can afford to operate at the 

frontier. Smaller firms are effectively priced out of direct competition in training state-of-

the-art foundation models. 

At the same time, not every AI application requires access to the frontier. Many can be 

built and deployed using smaller models or those tailored to specific domains. As Carugati 

(2023) observes, there remains a diversity of models and providers, suggesting ongoing 
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dynamic competition rather than a closed monopoly. Open-source models, fine-tuned for 

targeted purposes, have become increasingly popular and can be deployed with far less 

compute. The barrier is most acute in the training of new frontier models, which is why 

“model-weight-setting capacity” can be considered the scarcest resource. Once a model’s 

weights are trained and released—such as with Meta’s LLaMA—many others can adapt it 

with modest resources. Fine-tuning can be performed on a single GPU using techniques 

like Low-Rank Adaptation (LoRA), as highlighted in the FTC’s 2023 analysis. Thus, the 

critical competition question becomes: how many actors worldwide can realistically afford 

to set the weights of a state-of-the-art model? At present, the number appears limited to a 

handful: OpenAI/Microsoft, Google, Meta, and possibly Anthropic in the United States, 

along with Baidu and Huawei in China. Beyond these, there are a few government-backed 

efforts, such as the UAE’s TII, which trained Falcon on a top-tier cluster, and ongoing 

initiatives in Europe to establish large-scale compute capacity. Some academic consortia 

or nonprofit coalitions may attempt smaller-scale efforts, but the capacity to push the 

frontier remains territorially concentrated in just a few countries. 

This concentration of compute also raises the prospect of consolidation. Smaller companies 

that attempt to compete at scale often find themselves acquired or eclipsed by resource-

rich incumbents. Inflection AI, a heavily funded startup with ambitions to train a frontier 

model, was effectively absorbed into Microsoft in 2023 when its core team and intellectual 

property were folded into the tech giant’s operations. This dynamic echoes earlier 

discussions of the “kill zone,” where promising startups are either purchased or 

outcompeted by dominant platforms. Without access to resources on par with the largest 

firms, independent actors face a high likelihood of being subsumed or marginalized. 

Control over compute infrastructure is therefore more readily quantifiable than control over 

data. It can be measured in chips, petaflops, and dollars—and by these measures, only a 

small elite of firms and nations command the majority of the world’s AI compute capacity. 

This control is also inherently territorial: data centers are fixed in place, subject to national 

jurisdiction, and embedded in geopolitical rivalries. The next section integrates these 

insights, showing how data and compute reinforce one another to entrench incumbents, 

and turns to the example of DeepSeek to explore whether advances in efficiency can 
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meaningfully shift this balance or merely provide temporary relief from the escalating 

costs. 

5. The Interaction of Data and Compute: Reinforcing Advantages and Market 

Concentration 

The synergy between data and compute is what makes them especially formidable as 

barriers to entry. Large datasets require vast computational resources to be effectively 

harnessed through training, while powerful compute enables the processing of ever-larger 

datasets. Together, these elements generate better-performing models that attract more 

users, in turn producing more data and further reinforcing the cycle. This feedback loop 

creates a self-reinforcing advantage for actors that already hold a lead in both domains. 

In what follows, we synthesize how the combination of data and compute produces steep 

structural barriers, contributing to concentration in the generative AI industry. We then 

examine how these barriers shape the limits of AI sovereignty for most countries, 

highlighting the risks of widespread dependency on a small number of providers. Finally, 

we consider potential countervailing forces, with particular attention to whether 

algorithmic innovations and efficiency gains can disrupt this cycle. The DeepSeek case 

serves as a lens through which to explore whether breakthroughs in efficiency offer a 

genuine challenge to incumbency, or merely temporary relief from the escalating costs of 

frontier AI. 

5.1 Structural Entry Barriers and Market Concentration 

Combining the analyses of the previous sections reveals a clear pattern: the firms at the 

frontier of generative AI—such as OpenAI/Microsoft, Google, Meta, and a small number 

of Chinese counterparts—are precisely those positioned at the intersection of abundant data 

and abundant compute. This co-location of resources is not coincidental but the result of 

deliberate strategic accumulation. Some firms began with one input and subsequently 

acquired the other: Google, for instance, leveraged its vast data holdings and talent pool 

before investing heavily in building large-scale compute centers, while Microsoft 

capitalized on its Azure cloud infrastructure and partnered with OpenAI to gain leverage 

in models and data. Others, notably Chinese technology giants, pursued both inputs 
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simultaneously, often underpinned by state-led initiatives. For any new entrant to challenge 

these incumbents directly by training a model of comparable scale and sophistication, it 

would need to assemble equivalent levels of data and compute—an undertaking requiring 

extraordinary capital and time. 

This dynamic constitutes a structural barrier to entry in the classical sense defined by Bain 

(1956): new entrants face significantly higher costs, or lower expected profits, relative to 

incumbents because the latter already control critical resources. The barrier here is not only 

about brand recognition or consumer lock-in—though these factors exist, particularly as 

users gravitate toward trusted providers—but about a fundamental capability gap. 

Incumbents can simply do things that outsiders cannot: train larger models, leverage 

proprietary datasets, and continuously update at scale. The consequence is an oligopolistic 

market structure. Already, the field is populated by only a few frontier firms, many of 

which form alliances rather than compete head-on, for example, OpenAI’s strategic 

integration with Microsoft, further narrowing the set of true competitors. 

Empirical evidence supports the emergence of concentration. By late 2023, a majority of 

advanced generative AI applications worldwide—whether large language models or image 

generators—relied on underlying models produced by a handful of organizations. 

OpenAI’s GPT-4 was estimated to account for more than 50 percent of API calls in 

advanced language model markets, with Google’s models and a few others splitting the 

remainder, though exact figures remain proprietary. Even ostensibly open-source models 

often trace their lineage to weights produced by incumbents, such as Meta’s LLaMA. The 

geopolitical salience of this concentration was underscored by the UK’s AI Safety Summit 

in 2023, where only a small group of firms—exclusively from the United States and 

China—were invited as the core “frontier model” companies, implicitly recognizing the 

narrowness of the field. 

From a competition theory perspective, the market exhibits features of both a natural 

monopoly—driven by high fixed costs and increasing returns—and a differentiated 

oligopoly, in which models compete more on quality and specific features than on price, 

since many are delivered as free services or via APIs. The concern is not merely static 

concentration but dynamic inefficiency: a lack of competition may eventually slow 
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innovation or result in higher costs for users. Classical monopoly theory predicts higher 

prices and weaker incentives for innovation. In AI, the analogue may be a small set of 

companies extracting rents through cloud usage fees or high API charges once enterprise 

customers are locked in, while neglecting niche applications or safety issues that a more 

diverse ecosystem might better address. Conversely, one could argue that competition “for 

the market” is currently fierce, driving the rapid innovation of what Schrepel and Pentland 

(2024) describe as the “spring” of foundation models. Yet the risk remains that this spring 

could soon give way to “winter” if market leaders consolidate their dominance to the point 

of excluding new entrants. 

5.2 Limits on Sovereignty and the Risk of Dependency 

The concentrated control of data and compute also means that most countries, and their 

firms, remain dependent on foreign entities for access to advanced AI. Even large 

economies such as those in the European Union currently rely on models and compute 

largely supplied by the United States, and to some extent by China for certain products. 

This reliance raises several interrelated concerns. 

The first is economic and technological dependence. If European businesses must license 

AI models from U.S. providers, a significant share of the value generated within the EU is 

transferred abroad. This resembles reliance on foreign oil, where resource dependency 

channels wealth outward. It also risks slowing the development of Europe’s domestic AI 

sector, which may struggle to grow in the absence of indigenous capabilities. 

A second concern relates to regulatory and ethical misalignment. Different jurisdictions 

enshrine different values in their legal and cultural frameworks. A foreign model may not 

align with local rules or societal norms. For instance, European privacy protections could 

clash with the data-intensive practices of U.S.-based firms, while a model developed in 

China might censor content considered legitimate in a Western context. Without the ability 

to train and adapt models domestically, countries may be forced to accept the embedded 

biases, priorities, or constraints of external providers. 

Third, national security considerations arise. Dependence on another country’s AI services 

can be perceived as a vulnerability, whether due to fears of espionage, covert backdoors, 
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or the risk of sudden access restrictions. If geopolitical tensions were to result in the loss 

of access to major AI APIs, critical systems might be disrupted. Governments also worry 

about more subtle risks, such as the potential for adversarial AI to influence public opinion 

or amplify disinformation. For this reason, AI sovereignty is framed not only as an 

economic imperative but also as a matter of information security. 

Finally, there is the issue of unequal benefits. Countries without access to significant AI 

resources risk lagging in their ability to apply AI for development in sectors such as 

agriculture, education, or healthcare. Without local capacity, talent in these countries may 

be forced to migrate or rely on external collaborations to work at the frontier, perpetuating 

cycles of dependency and underdevelopment in AI capabilities. 

On the current trajectory, the territorial concentration of model-weight-setting capacity 

means that full AI sovereignty is effectively reserved for those countries that host such 

capacity. Others may attain only partial sovereignty—by running smaller models locally 

or adapting open-source systems—but lack the independence to create frontier models. The 

Oxford study’s finding that only the United States, China, and a few European states meet 

a high bar for compute sovereignty highlights how rare this capability remains. 

Some initiatives aim to broaden access. Proposals have been made for an “AI Equitable 

Compute Fund”—an international scheme to provide compute access to researchers in less-

resourced countries, akin to how global collaborations grant access to large scientific 

infrastructures such as telescopes or particle colliders. NVIDIA itself has acknowledged 

the global imbalance, noting that only around 16 percent of countries host AI-ready data 

centers. Yet such efforts are still at an early stage and face significant practical challenges. 

5.3 The Case of DeepSeek: Efficiency Innovation and Its Discontents 

An illustrative example of both the promise and the limits of disrupting incumbent 

advantages is the case of DeepSeek. DeepSeek is a (fictitious but plausible) Chinese AI 

startup, founded in 2023, which attracted global attention for reportedly achieving radical 

training efficiency in a new language model (Yang, 2025). According to industry reports, 

DeepSeek released an open-source model, DeepSeek-R1, that delivered performance 

comparable to leading systems such as GPT-3.5, yet was trained at only a fraction of the 
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cost. Bain & Company’s analysis noted that DeepSeek claimed to have trained its model 

for about $6 million using 2,000 Nvidia H800 GPUs, whereas models of similar ability, 

such as GPT-4 or Meta’s latest release, were estimated to cost on the order of $80–100 

million and to require 16,000 top-tier GPUs. If accurate, this represented more than a 

tenfold improvement in cost efficiency. 

DeepSeek attributed its breakthrough to a combination of engineering innovations. It 

implemented a Mixture-of-Experts (MoE) architecture with 671 billion parameters, though 

only about 37 billion were active for any given input token. This sparse activation allowed 

the model to combine vast capacity with manageable compute costs. The team also used 

advanced distillation techniques to compress knowledge from very large models into 

smaller ones, thereby preserving performance while reducing training overhead. 

Reinforcement learning was integrated into training to emphasize useful behaviors and 

reduce reliance on costly supervised fine-tuning. In addition, DeepSeek introduced a novel 

multi-head latent attention (MHLA) mechanism that lowered memory requirements to 

roughly 5 percent of previous methods, overcoming major bottlenecks. On the data side, 

the company reported deploying an optimized reward function that directed compute 

toward high-value data segments while avoiding waste on redundant or low-quality inputs. 

Finally, it exploited low-precision computation (FP8) and hardware-specific optimizations, 

even hand-coding operations in Nvidia’s PTX rather than CUDA, and developed a custom 

“DualPipe” algorithm to improve GPU communication. 

The cumulative result of these techniques was a model that achieved strong performance 

at a dramatically reduced training budget. DeepSeek’s open-source release was quickly 

adopted by hundreds of derivative projects worldwide and hailed as evidence that “bigger” 

is not always synonymous with “better”—that clever design could significantly narrow the 

gap with brute-force approaches. From the perspective of competition, DeepSeek 

demonstrated the potential for innovation to mitigate entry barriers. If a small team could 

accomplish with $6 million what others required $60 million for, the resource barrier 

appeared less absolute than previously assumed. The Mercatus working paper cited 

DeepSeek as proof that ingenuity could lower data and compute costs, preventing 

incumbents from enjoying a permanent advantage. Because DeepSeek’s code and weights 
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were open-sourced, its efficiency techniques were immediately available to the wider 

community, at least partially leveling the playing field. 

Yet several caveats temper these findings. First, DeepSeek’s claims faced verification 

challenges. The reported $6 million training cost could not be independently confirmed, 

and some experts speculated that the team had quietly relied on lower-end hardware or 

borrowed intellectual property in its distillation methods. Moreover, while DeepSeek-R1 

performed well, it still lagged behind the very best proprietary models on certain 

benchmarks, suggesting that efficiency gains can narrow but not fully close the gap: the 

final increments of performance may still depend on scale. Second, open-sourcing meant 

that incumbents could quickly adopt DeepSeek’s methods. Large firms such as Microsoft, 

AWS, and Nvidia integrated the model into their platforms and undoubtedly studied its 

engineering choices. Many of the underlying techniques—sparsity, distillation, low-

precision computation—were already being pursued by major labs like Google and 

OpenAI. Efficiency innovations, while valuable, do not erase the advantage of abundant 

compute; they simply reduce waste. In economic terms, they shift the production 

possibility frontier outward for the entire industry without redistributing control of the 

frontier itself. Third, the market impact was paradoxical. By lowering inference costs 

through sparse activation, DeepSeek spurred wider adoption of AI applications. This 

dynamic arguably reinforced incumbents, since increased demand for AI compute 

ultimately flowed to the large cloud providers hosting the infrastructure. In this sense, 

DeepSeek exemplified Jevons’ paradox: efficiency gains stimulated greater consumption 

rather than reducing reliance on large-scale resources. 

In short, DeepSeek illustrates both the potential and the limits of innovation as a 

counterweight to scale. The startup showed that algorithmic and engineering advances can 

significantly reduce costs and expand access, providing a hopeful counterexample to the 

narrative of insurmountable entry barriers. Yet the broader outcome reaffirmed the 

resilience of incumbents. Efficiency improvements did not lead OpenAI, Google, or other 

major players to scale back their ambitions. Instead, they doubled down on building even 

larger next-generation systems, incorporating similar efficiency techniques along the way. 

In this respect, the steep barriers of data and compute were dented but far from dismantled. 
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6. Discussion: Implications for Competition and Regulation 

Our analysis indicates that control of data and compute resources in generative AI leads to 

structural market power and geopolitical stratification. We now turn to the implications of 

this reality. How should competition authorities approach an industry where a few players 

control the inputs in a way that could solidify dominance? And how can policymakers 

concerned with national or regional AI sovereignty respond to the concentration of AI 

capabilities? 

6.1 Competition Policy Responses 

The findings presented here lend support to the view that traditional antitrust instruments 

may require augmentation in the context of artificial intelligence. As Vannuccini (2025) 

notes, several approaches could be considered, each with its own strengths and limitations. 

One option would be to apply the essential facilities doctrine to key AI inputs. Certain 

datasets or compute infrastructures could be treated as essential facilities that dominant 

firms must not withhold from competitors. For example, a leading cloud provider might be 

obliged to offer fair rental terms to an AI startup with which it also competes, or a dominant 

platform could be required to license anonymized portions of its user data to rival model 

developers. This logic resembles regulatory approaches in railroads or 

telecommunications. The difficulty lies in defining what qualifies as “essential” in AI, 

while also ensuring that compelled access does not undermine incentives for investment in 

data collection or infrastructure. Privacy concerns (for data) and security risks (for shared 

compute) further complicate the analogy to traditional utilities. 

Another line of action involves merger scrutiny and vertical integration oversight. Antitrust 

authorities could intensify their review of acquisitions to prevent further concentration of 

inputs or talent. A merger between a cloud giant and a leading AI chip designer might raise 

concerns similar to those that led regulators to block Nvidia’s attempted acquisition of 

Arm. Likewise, if an incumbent sought to buy a startup with a breakthrough training 

technique to prevent it from empowering a rival, this could warrant intervention. 

Monitoring vertical integration is also important: a cloud provider that uses its dominance 

in hosting services to establish dominance in AI models could create competitive 
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distortions. In extreme cases, this could even raise the prospect of structural remedies, 

though such measures remain politically unlikely at present. 

A complementary approach is to promote open source and collaboration. Supporting open-

source models and open data initiatives can lower barriers across the ecosystem by 

expanding the supply of inputs available to all actors. Governments and philanthropic 

organizations could, for example, fund the creation of large multilingual or domain-specific 

datasets as public goods to offset incumbents’ proprietary advantages. Similarly, policies 

could support the provision of compute access through academic or shared facilities, giving 

more players the ability to experiment at scale. These measures fall more within the realm 

of industrial policy than antitrust enforcement, yet they directly address the input 

bottleneck by broadening access rather than constraining incumbents. 

In addition, regulators may adopt a strategy of monitoring and guardrails. Even short of 

active intervention, agencies are likely to closely scrutinize the behavior of the few firms 

that dominate frontier AI development. Signs of collusion, such as coordinating release 

schedules or fixing API prices, or of predatory practices, such as pricing below cost to drive 

out innovative entrants, would fall under existing competition law. The FTC, for example, 

has explicitly cautioned companies against engaging in unfair methods of competition 

during this paradigm shift. Vigilance is therefore an important dimension of maintaining 

contestability, even in a concentrated market. 

Not all observers agree, however, that strong intervention is warranted at this stage. Abbott 

and Marar (2025), for instance, warn against premature regulation, emphasizing that the 

AI market remains dynamic and emergent. They argue for a “permissionless innovation” 

approach in which regulators intervene only when clear harms materialize, rather than 

attempting to shape market structure in advance. Overregulation, they caution, risks 

entrenching incumbents by imposing compliance costs that large firms can absorb more 

easily than startups. For example, if strict licensing requirements were imposed on the 

training of models above a certain size (a possible safety regulation), large firms such as 

Google or Microsoft could comply, while smaller open-source groups might be excluded 

altogether. 
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Balancing the imperative to safeguard competition with the need to preserve innovation is 

delicate. Yet the evidence of territorial and structural concentration presented in this study 

suggests that market forces alone are likely to produce a highly concentrated outcome. 

Given the natural monopoly tendencies of data and compute, waiting until consumer harm 

is evident—whether in higher prices, lack of choice, or reduced innovation—may be too 

late. By then, the entrenched market structure could prove extremely difficult to reverse. 

6.2 International and Sovereignty Strategies 

From a sovereignty perspective, nations outside the U.S.–China duopoly face several 

strategic choices. One option is to invest directly in domestic capability, through public 

spending on AI research, data center infrastructure, and training programs designed to 

produce homegrown models. The European Union, for example, has debated the creation 

of a large-scale European compute cloud for AI, while France’s Jean Zay supercomputer 

has already hosted GPT-3-scale experiments. Similarly, the United Kingdom has 

announced funding for an “exascale AI compute” initiative. Although expensive, these 

efforts aim to secure independent capacity for regions otherwise reliant on foreign 

providers. The challenge is whether such public investments can keep pace with private 

U.S. firms. This may require continuous subsidies or public–private partnerships. The 

analogy to nuclear supercomputers is often invoked: even if uneconomical, they are 

maintained for reasons of strategic necessity. A similar logic could justify treating AI 

infrastructure as a form of critical national infrastructure warranting state support. 

A second path is to develop collaborative hubs. Countries that individually cannot mount 

competitive AI efforts may pool resources regionally. Proposals have emerged for the 

Nordic countries to build a shared AI cluster, while ASEAN members have also discussed 

collective strategies. Analogies are drawn to CERN, where international collaboration in 

particle physics has enabled shared access to world-class facilities. At the global level, 

some commentators have suggested an “AI stability board” that could include mechanisms 

for resource sharing, in order to prevent widening divides in capability. 

A third option involves leveraging open ecosystems. Governments can encourage 

institutions and firms to adopt and contribute to open-source models, thereby retaining 
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greater control than would be possible with closed, proprietary systems. Meta’s release of 

LLaMA, for instance, inadvertently enabled a global community of researchers to adapt 

the model to local languages and domains, with many European groups creating derivatives 

tailored to their own contexts. Public policy could reinforce this trend by favoring open-

source adoption in public sector AI deployments, thereby cultivating domestic expertise 

around open tools rather than proprietary APIs. 

A more geopolitical strategy is to pursue regulatory reciprocity or bargaining. Here, 

countries use market access as leverage, requiring AI providers to localize infrastructure 

or transfer some technology as a condition for entry. The European Union has already 

pressed major providers in this direction: Microsoft and Google have developed “sovereign 

cloud” offerings for the European market, designed to ensure that data remains local. 

NVIDIA’s partnership with Deutsche Telekom on a “sovereign AI cloud” reflects similar 

pressures for localized control. While such arrangements do not alter the global 

concentration of chip design or fabrication, they represent partial steps toward more 

distributed ownership and governance of AI infrastructure. 

Finally, many states may simply accept dependence but seek to mitigate the risks. Rather 

than attempting to build a GPT-5-level model, they might diversify across foreign 

suppliers, negotiate contracts to guarantee service continuity, or develop contingency plans 

such as maintaining smaller backup models to ensure resilience if access to a major foreign 

service were cut off. For many developing countries, this pragmatic strategy is the only 

feasible path in the near term—comparable to how not every state manufactures aircraft 

but most diversify suppliers and retain some domestic maintenance capacity. 

The territorial concentration of compute also highlights the need for global governance 

mechanisms to address resource inequalities. If a handful of countries controls not only 

AI’s trajectory but also its potential risks, global institutions such as the UN or G7 may 

have to design frameworks for transparency and inclusion. One idea is a global compute 

tracking mechanism to monitor whether exceptionally large training runs—those capable 

of producing highly powerful models—are underway. Such monitoring would likely 

depend on the cooperation of major cloud providers and chip manufacturers, who are 

uniquely positioned to observe compute usage. Concentration thus produces a double-
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edged outcome: while it is easier to track a few dominant actors than many, it also places 

enormous responsibility on these firms to act in the global interest, a responsibility that 

may not align with either profit motives or national affiliations. 

6.3 How addressing Big Tech economic power in such a context? 

The potential disruption brought about by DeepSeek challenges not only catch-up 

industrial strategies and leadership strategies based on heavy investment in infrastructures, 

but also the competitive positioning of leading generative AI firms, whether Big Tech 

companies or specialized players such as OpenAI. Market entry at scale appears possible 

independently of incumbent-controlled bottlenecks, thanks to open-source models and 

process innovations in development. Yet, if DeepSeek’s innovation proves robust, other 

barriers to entry may emerge (Krause, 2025b). These could be technical, under the control 

of established operators, or regulatory, and thus determined by states. Technical barriers 

primarily concern the quality and availability of training data, while regulatory barriers 

encompass legal, commercial, and compliance-related constraints. 

Krause (2025b) argues that the consequences of DeepSeek’s entry may vary depending on 

the position of the so-called “Magnificent 7” along the AI value chain. For infrastructure 

providers such as Nvidia, Microsoft, Alphabet, or Amazon, reduced demand for cloud 

infrastructures and computational capacity could lower access prices but simultaneously 

undermine the amortization of massive recent investments in the capacity race. By contrast, 

application developers such as Meta, Tesla, or Apple may find it easier to sustain their 

positions. They could benefit from falling costs of resources while leveraging the 

advantage of access to proprietary datasets tailored to their ecosystems. 

Such dynamics could also reshape corporate strategies. Big Tech firms might shift away 

from relying primarily on control over infrastructural bottlenecks and data volumes as the 

basis of dominance, and instead emphasize the exploitation of proprietary datasets and the 

integration of generative AI into their service portfolios. It is important to note that the 

essentiality of Big Tech assets extends beyond upstream resources: it also encompasses 

downstream applications, which constitute the principal channels through which AI 

technologies are disseminated to businesses and individuals. 
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In this context, channeling generative AI applications into Big Tech ecosystems may rely 

on a range of complementary strategies (Krause, 2025b). One is the development of open-

source initiatives, which allow firms to shape standards and attract developer communities. 

Another is the preservation of infrastructural advantages, ensuring that the final 

development and fine-tuning of models occur within their ecosystems. A third is the 

reinforcement of software integration capabilities to make their platforms indispensable. A 

fourth is the ability to shape regulation, particularly in areas such as data security and 

integrity, which may raise compliance costs for new entrants or even exclude them from 

certain markets altogether. 

At the same time, the emergence of actors offering more frugal solutions outside the orbit 

of the Magnificent 7 opens a different path for public policy. Instead of focusing solely on 

market fragmentation along regional economic blocs or engaging in costly and uncertain 

investment races, states may explore alternatives based on the promotion of open-source 

models over proprietary systems, the encouragement of decentralized learning solutions, 

and wider access to large datasets. Such an approach would require new forms of public 

intervention—beyond post-war style catch-up strategies, traditional partnership programs 

in mature technologies, or the simple public financing of infrastructures. 

7. Conclusion 

This paper has examined how territorial control of high-quality data and large-scale 

compute infrastructure functions as the decisive strategic factor in generative AI, 

overshadowing other inputs such as algorithmic innovation or isolated talent. We reframed 

success in developing and maintaining frontier AI systems as fundamentally a question of 

who controls the means to set model weights—and where those means are located. 

Evidence from industry trends and emerging research indicates that these inputs (massive 

datasets, advanced AI chips, and hyperscale cloud clusters) are highly concentrated in a 

handful of firms and countries, creating steep structural barriers to entry that reinforce 

market concentration. 

From an industrial organization perspective, generative AI exhibits the classic dynamics of 

increasing returns, which tend toward oligopoly or monopoly. The more data and compute 
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a firm possesses, the stronger its models; the stronger its models, the more users and 

investment it attracts; and the more resources it accrues, the greater its ability to scale 

further. This self-reinforcing cycle produces advantages for incumbents and disadvantages 

for challengers. Competition policy is beginning to grapple with these upstream 

chokepoints. The FTC’s recognition that generative AI’s foundational inputs could be 

leveraged to distort competition is a step in the right direction, but enforcement will need 

to be both vigilant and, at times, pre-emptive (FTC, 2023). 

At the level of international political economy, the territorial concentration of AI capacity 

raises the specter of a new kind of digital divide—one that maps directly onto national 

boundaries and entrenches global asymmetries of power. Unless more states secure the 

ability to develop and govern AI on their own terms, many risk falling into a form of 

technological dependency reminiscent of past dependencies on energy or raw materials. 

The concept of AI sovereignty has emerged to capture these concerns, stressing the 

importance of local control over data, compute, and algorithms. Our analysis suggests that 

achieving meaningful sovereignty will be difficult for latecomers, but also that it is 

essential: without it, nations risk the loss of economic opportunity, strategic influence, and 

security autonomy in the AI era. 

The case of DeepSeek offered a nuanced perspective on whether innovation can offset 

these barriers. DeepSeek showed that algorithmic and engineering advances—through new 

architectures, training efficiencies, or hardware optimizations—can lower the resource 

threshold for achieving competitive performance. Open-sourcing such innovations helps 

diffuse capabilities beyond the major technology firms, offering a partial democratization 

of AI. Yet our analysis also highlighted the limits: incumbents quickly absorb these 

techniques into their toolkits, and efficiency gains often fuel rather than slow the broader 

compute arms race. In the end, DeepSeek narrowed the gap but did not fundamentally erase 

the structural advantage of those controlling the largest datasets and compute clusters. 

In drawing conclusions, it is important to stress that talent and algorithms continue to 

matter. Our argument is not that they are irrelevant, but rather that in the current paradigm 

of generative AI, talent and ingenuity cannot substitute for access to data and compute at 

scale. The world’s best researchers still require computing resources to test and validate 
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their ideas, and breakthroughs often emerge precisely from working with large models and 

vast datasets. This dynamic drives a geography of talent that aligns with the geography of 

infrastructure: top researchers migrate to, or collaborate with, the best-equipped labs. The 

result is a virtuous circle for established hubs such as Silicon Valley and Beijing, and a 

persistent hurdle for peripheral regions. 

For policymakers and stakeholders, the key takeaway is that access to AI’s critical inputs 

must be addressed directly. Training more experts or adopting ethical frameworks will not 

suffice without measures to broaden access to large-scale data and compute. This could 

involve investments in public AI infrastructure, the creation of international data commons, 

or the promotion of distributed and federated learning approaches that allow collaboration 

without centralizing data.  
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