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Abstract/Résumé 
 
The current literature on the economic cost of air pollution in the labor market primarily focuses on 
labor productivity, leaving the impact on working hours relatively unexplored. In this paper, we 
investigate the effects of air pollution on work hours using a nationally representative sample for Chile. 
To address the potential endogeneity of air pollution, we leverage the exogenous occurrence of wildfires 
between 2010 and 2018. We construct the smoke plumes originating from each wildfire to identify the 
causal impact of air pollution on hours worked. Our analysis reveals that an exogenous increase in fine 
particulate matter resulting from an extra smoky day leads to a 2% reduction in work hours for the 
average Chilean worker. The impact is more pronounced for male workers engaged in outdoor tasks, 
such as agriculture, and for economically disadvantaged households, where the negative effects of air 
pollution can be up to four times larger. Our findings imply that earlier studies focusing only on labor 
productivity may be underestimating the effect of air pollution on economic output by 11-13%. 
 
La littérature actuelle sur le coût économique de la pollution de l'air sur le marché du travail se 
concentre principalement sur la productivité du travail, laissant l'impact sur les heures de travail 
relativement inexploré. Dans cet article, nous étudions les effets de la pollution de l'air sur les heures de 
travail en utilisant un échantillon national représentatif du Chili. Pour traiter l'endogénéité potentielle 
de la pollution de l'air, nous tirons parti de l'occurrence exogène des incendies de forêt entre 2010 et 
2018. Nous construisons les panaches de fumée provenant de chaque incendie afin d'identifier l'impact 
causal de la pollution de l'air sur les heures travaillées. Notre analyse révèle qu'une augmentation 
exogène des particules fines résultant d'une journée de fumée supplémentaire entraîne une réduction 
de 2 % des heures de travail pour le travailleur chilien moyen. L'impact est plus prononcé pour les 
hommes qui travaillent à l'extérieur, comme dans l'agriculture, et pour les ménages économiquement 
défavorisés, où les effets négatifs de la pollution de l'air peuvent être jusqu'à quatre fois plus 
importants. Nos résultats impliquent que les études antérieures axées uniquement sur la productivité 
du travail pourraient sous-estimer de 11 à 13 % l'effet de la pollution de l'air sur la production 
économique. 
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1 Introduction

Air pollution has long been recognized as a pressing environmental issue, result-
ing in an extensive number of regulations aimed at controlling its sources across
the world. The economics literature has recently shifted its focus from the health
implications of air pollution (e.g., Chay & Greenstone, 2003) to its detrimental
effects on labor productivity (e.g., Graff Zivin & Neidell, 2012).1 However, to
comprehensively grasp the true impact of air pollution on the labor market, it be-
comes crucial to also examine its economic consequences on working hours. By
considering the combined effects on both labor productivity and working hours,
we can better understand the non-health-related repercussions of air pollution on
the labor market, thereby warranting more robust policy interventions (Deche-
zleprêtre et al., 2019).

The existing literature predominantly explores the impact of pollution on labor
productivity while assuming constant working hours. For instance, studies have
examined metrics such as the number of hourly crop units harvested (Graff Zivin
& Neidell, 2012) or the accuracy of umpire calls in baseball games (Archsmith
et al., 2018). However, it is important to recognize that air pollution may also
affect working hours through adverse health outcomes or avoidance behaviors.
These additional dimensions could magnify the overall economic consequences
of air pollution, with far-reaching implications for both the labor market and
the broader economy. Despite the potential significance of this topic, the body
of research examining the influence of air pollution on working hours remains
notably limited (e.g., Hoffmann & Rud, 2022). Thus, the primary objective of this
study is to quantify the importance of the working hours channel and shed light
on the extent to which focusing solely on labor productivity underestimates the
overall impact of air pollution.

In order to answer this question, we examine the impact of air pollution on hours
worked using administrative data from Chile, home to some of the most pol-
luted areas in the Americas, including the Santiago metropolitan area and sev-

1There has also been many economic studies on other non-health outcomes such as cognitive
ability (e.g., Ebenstein et al., 2016) and crime (e.g., Bondy et al., 2020). Aguilar-Gomez et al. (2022)
provides the latest summary on the economics literature on the non-health impact of air pollution.
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eral southern cities.2 Examining the causal relationship between pollution and
working hours poses challenges, as pollution is endogenous to labor supply and
working hours. On one hand, economic activity generates pollution, leading to a
significant reverse causality issue. On the other hand, pollution triggers avoidance
behaviors and simultaneity, such as adverse health effects. For instance, workers
may opt to reduce outdoor exposure when pollution levels are high, or, in the
long run, more productive and health-conscious workers may relocate to cleaner
neighborhoods. To address these challenges, we use the incidence of wildfires
as an exogenous source of variation in emission levels, enabling us to causally
identify the impact of air pollution on hours worked.

Wildfires, naturally occurring fires in forests or bushes, have intensified and ex-
panded worldwide over the past decade, driven by factors such as increased tem-
peratures, lightning prevalence, variable precipitation, and overall forest dryness
during summer periods (Úbeda & Sarricolea, 2016; Sankey, 2018). This global
phenomenon has heightened the importance of understanding the economic ram-
ifications of wildfires, including their impact on working hours.3 In Chile, the
2017 fire season was notably severe, burning approximately 587,000 hectares of
forest – roughly the size of Delaware (CONAF, 2017). These fires not only caused
extreme air pollution episodes (visible in satellite images) but also destroyed an
entire town, resulting in human casualties, displaced families, cattle, and wildlife.

We obtain data from the National Forestry Corporation (CONAF) in Chile, which
publishes statistics on wildfires, including the number of events, affected surface,
and the duration of each wildfire event. We construct a proxy for smoke plumes
downwind from the origin of each wildfire, considering the weather conditions
on the date of the incident, and calculate the area covered in smoke.4 We combine

2The country hosts the most polluted city in America (Coyhaique) and three of the top 10
most polluted cities on the continent (Padre las Casas, Osorno, and Linares) (measured by PM2.5,
according to WHO, 2022). The annual mean PM2.5 levels in the five most polluted Chilean cities
range from nearly nine to over thirteen times the recommended WHO guidelines.

3The scientific literature has extensively documented the increasing frequency and intensity
of wildfires (Westerling et al., 2003; Krawchuk et al., 2009). For instance, Abatzoglou & Williams
(2016) attributed half of the forest fire area in the western US over the past three decades to climate
change, with the 2018 California wildfires incurring costs amounting to 1.5% of California’s GDP
(Wang et al., 2021). Bayham et al. (2022) contains a more comprehensive review on the economics
of wildfires in the United States.

4While certain regions may exhibit a heightened likelihood of encountering wildfires, we main-
tain that, upon accounting for location-specific fixed effects, the residual variation can be regarded
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that with data on hours worked from the Supplementary Income Survey (ESI,
Encuesta Suplementaria de Ingresos), an additional module of the National Employ-
ment Survey from the Chilean Statistics Bureau. This module provides detailed
information about a household’s income and its sources. Crucially for our study,
ESI records the actual number of hours worked by each worker during the week
preceding the interview date and the number of contractually obligated hours.
In a reduced-form setting, we find that exposure to an average wildfire decreases
weekly working hours across all industries by approximately 2.5 percent for the
average Chilean worker, equating to roughly one hour per week. While we ob-
serve a modest rebound effect in the subsequent week, the aggregate effect of
wildfires on hours worked remains negative.

To examine the impact of air pollution on working hours, we gathered remote
sensing data on particulate matter from the European Centre for Medium-Range
Weather Forecasts (ECMWF) and employed the smoke plume we created as an
instrument for the air pollution measure. Our identification strategy hinges on
two assumptions: the exogeneity of wildfire occurrences and the random assign-
ment of the week in which each household was interviewed. Since the ESI data
are geo-referenced at the comuna level, we can associate them to other measures
related to the area where each household resides. We control for temperature
and precipitations, along with workers’ socioeconomic characteristics such as age
and education level. Additionally, we account for province fixed effects, region-
by-year fixed effects, and industry-by-year fixed effects to address unobserved
trends. We explore the short-term (contemporaneous) and medium-term (up to
three weeks post-fire) impacts of air pollution. In our analysis, we employ not
only particulate matter measurements but also an Air Quality Index (AQI) com-
prising six distinct pollutants, encompassing particulate matter.

We show that an increase in air pollution levels significantly reduces working
hours. In our preferred specification, an exogenous increase in the average PM2.5

level by one standard deviation in a week results in a reduction of the average
Chilean worker’s labor supply by approximately one hour. Alongside the inten-
sive margin (productivity), our findings demonstrate that air pollution also sub-

as exogenous. Our main identification rests on the random variation on occurrence of fire, wind
direction, as well as the random interview date from the labor market survey.
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stantially affects the extensive margin (supply) of the labor market.5 By combining
this negative effect on hours worked with the adverse effect on workers’ produc-
tivity documented in the literature, our results suggest that the total impact on
production through the labor market is likely stronger than what the literature
has proposed thus far. Employing the framework discussed in Dechezleprêtre
et al. (2019) and existing nationwide studies on the effect of air pollution on pro-
ductivity (Fu et al., 2021; Dechezleprêtre & Vienne, 2022), we determine that the
economic impact of air pollution on production through the labor market is 11–
13% larger than previously thought.

Our data also enable us to distinguish the impact of an increase in air pollution
across industries, occupations, and various socioeconomic characteristics. We find
that the effect varies substantially across sub-samples. The negative effect of air
pollution on working hours is considerably higher for populations working in the
agricultural and service sectors, as well as for occupations taking place outdoors.
Independent of the nature of the work, we also find that workers who are either
male, older, or poorer suffer up to four times more from air pollution compared
to the general population. This result sharply contrasts with Hoffmann & Rud
(2022), who find that higher-income households suffered more from air pollution
in an urban setting (Mexico City). The fact that the most affected workers are
poorer and older implies that air pollution mitigation policies can help reduce
income inequalities and the burden on the healthcare sector (see Banzhaf et al.,
2019).

This paper contributes to the literature in two main ways. First, it enriches the
literature on the impact of air pollution on workers’ health, labor productivity,
and labor supply (see for instance, Graff Zivin & Neidell, 2012; Hanna & Oliva,
2015; Archsmith et al., 2018; Chang et al., 2019; He et al., 2019). Our study offers
two distinct advantages in this context. By using a purely exogenous variation
in pollution levels, we can identify a causal effect. Rather than relying on fluc-

5The fluctuation in hours worked may stem from alterations in labor supply or demand. On the
supply side, employees may experience declining health, which hampers their ability to work, or
they may opt to stay indoors due to hazardous air quality. Conversely, on the demand side, a store
owner might choose to keep their establishment closed on days of heavy pollution, anticipating a
reduced influx of patrons. As the goal of this paper is to gauge the economic implications of air
pollution, it is unnecessary to differentiate between these two influences; the overall shift in hours
worked suffices.
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tuations of pollution within a given period, we focus on a significant, exogenous
shock to pollution levels due to wildfire incidents occurring upwind of the study
areas. Our data structure allows us to observe hours worked during the days
when wildfires are active. While most of the literature concentrates on specific
industries, we examine the entire economy, enabling us to determine an average
impact and industry-specific impacts. A notable exception is Hoffmann & Rud
(2022), which estimates the effect of air pollution on hours worked in Mexico City;
however, our study emphasizes the effect in rural areas instead of urban ones.6

Second, this paper introduces a novel instrument to examine the causal impact of
air pollution, particularly in rural settings. Recent studies have begun to quan-
tify the negative consequences arising from increased incidences of wildfires.7

Pakhtigian (2020) leverages wildfire occurrences in Indonesia to investigate the
impact of air pollution on health and behavior, determining that air pollution
reduces lung capacity and encourages the adoption of cleaner fuels, such as Liq-
uefied Petroleum Gas (LPG). Borgschulte et al. (2022) examines the influence of
air pollution and wildfire smoke on the US economy, using high-resolution satel-
lite remote sensing data to analyze the effect of wildfire smoke on the US labor
market. They observed significant reductions in annual income in regions of the
US impacted by wildfire smoke. By instrumenting air pollution with wildfire
smoke we are able to consistently estimate the dose-response function for policy
evaluation. This approach is also related to other studies employing agricultural
fires (via straw burning) as an instrument (Graff Zivin et al., 2020; Lai et al., 2022).

6Sarricolea et al. (2020) find that wildfires in Chile mainly affect the central and central-south
area of the country, from the Valparaíso to Araucanía regions. This area is the most populated
in the country, encompassing 78.9% of the country’s population (18.73 million people, Instituto
Nacional de Estadísticas, 2018b). Based on an analysis of 17 fire seasons, from 2000 - 2001 to 2016
- 2017, Sarricolea et al. (2020) found that the most burned land use and land cover types in Chile
are savannas, croplands, evergreen broadleaf forests, and woody savannas.

7Other papers investigate the economic impact of wildfire exposure. Mead et al. (2018) demon-
strated that over 60% of residents in Malaysia experienced harmful air quality levels following
episodes of wildfires in Indonesia and neighboring countries. Focusing on the United States,
Jones (2017) employed a life satisfaction approach to measure the willingness to avoid wildfires
and discovered that, on average, a representative household is willing to pay $373 to evade a
single day of wildfire. Kochi et al. (2010) emphasized the importance of considering the disutility
of wildfire smoke in addition to the detrimental effects of pollutants as by-products. Richardson
et al. (2012) found that, accounting solely for the cost of illnesses, the social cost per exposed
person per day increases from $9.5 to $84.42 after considering disutility and the cost of defensive
actions.
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The remainder of this paper is structured as follows. Section 2 presents a concep-
tual framework illustrating how air pollution impacts the economy through the
labor market. Section 3 provides an overview of the data sources and descriptive
statistics. In Section 4, we discuss our empirical strategies and present results for
both our reduced-form and instrumental variables models. Section 5 showcases
our findings using an alternative wildfire measure derived from remote sensing
data. In Section 6, we calculate the economic cost of air pollution, employing the
framework introduced in Section 2 along with estimates from the literature and
our results from Section 4. Finally, Section 7 offers concluding remarks.

2 Conceptual framework

To elucidate the influence of air pollution on labor supply, we utilize the con-
ceptual framework developed by Dechezleprêtre et al. (2019) as a foundation for
interpreting how our findings can predict the impact of air pollution on economic
output. In Section 6, this framework will serve to conduct a comprehensive anal-
ysis of our results on economic output. Envision a simple economy featuring
a representative firm responsible for output production, while a representative
consumer maximizes her utility by consuming the final output.

Output Y is produced according to the following production function:

Y = Y(K, L, P) (1)

where K is the level of capital, L represents the effective labor input, and P denotes
the pollution level. We can rewrite the effective labor input as L = N × φh, where
N is the total population, φ is the worker’s productivity level, and h is the labor
hours supplied by each worker. If we denote the total time available for each
worker as T and the number of sick days as s, we can rewrite h ≡ T − s and (1)
as follows:

Y = Y[K, N(P)φ(P)(T − s(P)), P] (2)

Equation (2) acknowledges that the pollution level can potentially influence the
labor market in three distinct ways: (1) the pollution level can impact the number
of productive workers N; (2) the pollution level can affect labor productivity φ;
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and (3) the pollution level can alter the number of hours worked h. Utilizing (2),
we can decompose the total effect of pollution on economic output as follows:

d log Y
dP

= ψ

[
∂ log N

∂P
+

∂ log φ

∂P
− θ

∂ log s
∂P

]
+

∂ log Y
∂P

(3)

where ψ and θ denote the elasticity of economic output with respect to effective
labor L, and the ratio of sick days to labor supply, respectively. d log Y

dP can be inter-
preted as the economic cost associated with a marginal increase in air pollution.

The empirical literature exploring the impact of air pollution on health outcomes
provides insights into the magnitude of the first channel (i.e., ∂ log N

∂P ). A well-
established body of medical research demonstrates the ways in which air pollu-
tion can affect lung functions and other health outcomes (e.g., Dockery et al., 1993;
Pope III et al., 2002). In Economics, numerous studies have identified a signifi-
cant negative impact of air pollution on infant mortality (e.g., Chay & Greenstone,
2003; Currie & Neidell, 2005; Jayachandran, 2009; Arceo et al., 2016), suggesting
mechanisms through which pollution levels can adversely affect N. Related re-
search also indicates how pollution influences productive labor by examining its
effect on migration (Chen et al., 2022; Khanna et al., 2021).

An expanding body of literature in both physical science and economics investi-
gates the ways in which particulate matter can influence labor productivity (i.e.,
∂ log φ

∂P ). Life sciences evidence suggests that PM2.5 can impact heart and brain
function, potentially affecting labor productivity (Ranft et al., 2009; Calderón-
Garcidueñas et al., 2014; Genc et al., 2012). Economists have studied the causal
effect of air pollution on labor productivity across various contexts, such as: pear
pickers in California (Graff Zivin & Neidell, 2012); farmers in Ghana (Aragón &
Rud, 2016); umpires in Major League Baseball (Archsmith et al., 2018); workers
in call centers in China (Chang et al., 2019); employees in manufacturing facili-
ties in India (Adhvaryu et al., 2019) and China (He et al., 2019); and members of
parliament in Canada (Heyes et al., 2019).

Our empirical findings enrich the understanding of how air pollution influences
working hours h. Related research has demonstrated a relationship between
school absenteeism and PM10 concentration (Ransom & Pope III, 1992; Currie
et al., 2009). Additionally, several studies have investigated work absenteeism,
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revealing that it is often linked to the presence of dependents at home, thereby
establishing a connection between school and work absenteeism (Holub et al.,
2016; Hanna & Oliva, 2015; Hansen & Selte, 2000; Aragón et al., 2017). By inte-
grating our results with the existing literature on how air pollution affects other
aspects of the labor market, we can calculate the economic cost of air pollution
using equation (3).

3 Data

In this section, we outline the data utilized in our paper. To conduct our analy-
sis, we gather information from a diverse array of sources. Labor supply data is
obtained from the National Statistics Bureau, while air pollution data is sourced
from the European Centre for Medium-Range Weather Forecasts (ECMWF). Wild-
fire data is acquired from the Chilean National Forest Corporation (CONAF), and
lastly, weather data is collected directly from the network of Chilean weather sta-
tions, which is compiled by the Center for Climate and Resilience Research in
Chile.

3.1 Labor data

Labor data comes from the Chilean Income Supplementary Survey (Encuesta Su-
plementaria de Ingresos, ESI), which is collected by the National Statistics Bureau
(INE). The survey’s primary objective is to characterize labor income for individ-
uals classified as occupied in the National Labor Survey (ENE) and to describe
other sources of household income. The ENE is conducted four times annually,
with ESI serving as an annual supplementary survey collected during the final
data gathering stage of ENE (i.e., in the fourth yearly round of ENE, individuals
respond to both ENE and ESI). The theoretical sample size of ESI is approximately
11,900 households per year (Instituto Nacional de Estadísticas, 2018a).8 The sur-
vey encompasses all individuals aged 15 and older within each household. ESI
has been conducted on an annual basis since 2001.

ESI is conducted annually between October and December and is representative at

8ESI’s exact sample size is determined using the average unemployment rates of the 5 previous
mobile trimesters, a measure estimated from prior ENE surveys.
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the regional level.9 The survey encompasses all regions of the country, covering
both urban and rural areas. Methodological documentation highlights weekly
sampling targets during the data collection process to ensure an even distribution
across the three months of fieldwork.10 This methodological aspect of the survey
is crucial to our identification strategy and bolsters the assumption of randomness
regarding the day each household was interviewed.

We analyze nine cross-sections of the survey, spanning from 2010 to 2018. ESI
comprises labor data from the week preceding the interview day (e.g., "last week,
that is from Monday to Sunday, did you work for at least an hour?"), in-depth income
details, and individual and household-level sociodemographic data. Owing to
the information provided by INE, we can ascertain the precise day each interview
occurred and, consequently, the week to which the respondents’ answers pertain.

Our primary variable of interest is the number of hours worked. ESI contains
three questions concerning the time spent working: the number of hours typically
worked per week, the number of hours effectively worked in the previous week,
and the number of weekly work hours stipulated by contract. If the number
of hours usually worked differs from the actual hours worked, respondents are
asked to explain the discrepancy. Potential reasons include climatic factors or
natural disasters, illnesses, and others.

Moreover, ESI labor data encompasses the interviewee’s job type (managerial,
executive, manual, etc.), the industry in which they are employed, and whether
they worked outdoors or indoors during the week preceding the interview. The
survey also offers information on whether the individual worked in the week
prior to the interview, as well as the reasons for any absence.

Panel A of Table 1 presents descriptive statistics for the dependent variables used
in our analysis, which include the effective (actual) number of hours worked in
the previous week, the usual number of hours, and the difference between the
two. On average, respondents worked approximately three hours less than usual,
with 38.54 hours instead of 41.62. Interestingly, these figures remain consistent for

9Chile comprises 15 regions, with a 16th region added in 2006; however, the analysis in this
paper is based on the original 15 regions.

10Sampling is randomized across months as per the survey administrator’s instructions. We did
not detect any specific sampling pattern that could bias our results.
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workers performing their tasks outdoors or indoors. Panel B displays descriptive
statistics for our control variables. The average survey respondent resides in a
household of around 3.7 members, is nearly 44 years old, has an average of 4 years
of education, and lives in a comuna encompassing an area of 2.7 thousand square
kilometers. Approximately half of the respondents are the primary breadwinners
in their households.

3.2 Wildfire data

We develop a measure of exposure to wildfire smoke using detailed data on each
wildfire (obtained from CONAF) as well as wind speed and direction data. We
concentrate on the initial phase of a fire, particularly the day it ignites, to de-
vise our smoke plume metric. We opt for this approach because households are
generally caught off guard by the sudden onset of a fire, resulting in minimal
avoidance behavior and limited immediate actions. Figure 1 illustrates how we
created a proxy for each fire’s smoke plume using this primary data. First, we
employ a circle to approximate the area affected by the fire (represented by the or-
ange circle in the figure), utilizing daily information on the fire’s size. Second, we
construct a 60-degree pie slice originating at the fire’s center and extending in the
wind’s direction, using daily data on wind speed and direction during the fire’s
occurrence. We correlate the distance traveled by the smoke (i.e., the pie slice’s ra-
dius) with the fire’s size and the maximum wind speed observed each day. Wind
speed and direction (at a 10m altitude) are sourced from the ERA5-Land hourly
dataset, which comprises data from 1950 to the present at a horizontal resolution
of 0.1◦ × 0.1◦ and hourly intervals (Muñoz Sabater, 2019).

In our baseline estimation, we concentrate on the top 2% of the wildfire distribu-
tion, which includes fires with a minimum radius of 373 meters.11 Smaller fires
do not generate a significant amount of smoke (particularly given Chile’s vast un-
inhabited areas). Moreover, smaller fires often result from burning crop residues
in agricultural areas, which may itself be endogenous (Lai et al., 2022). In our
baseline measure, we multiply the fire’s radius by a factor of 8, plus half the max-

11The sample comprises 426 fires with a median radius of 647 meters. To ensure the robustness
of our findings, we conduct various tests on this value, extending our analysis to include fires in
the top 10% of the distribution, i.e., fires with a minimum radius of 122 meters.
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imum wind speed measured in meters per second. The average fire radius in our
sample is 927.8 meters, and the average maximum wind speed is 4.22 m/s, yield-
ing an average plume length of approximately 9.3 kilometers.12 It is important to
consider that while these fires in Chile may be extensive in size, their direct im-
pacts on the economy are relatively limited due to the country’s low population
density. For instance, within our sample, the 426 fires resulted in the evacuation
of a total of 1,500 people and the destruction of 280 buildings. To provide a com-
parison, it is worth noting that the 2022 Mosquito fire in California alone led to
the evacuation of over 11,000 people and the destruction of 78 buildings.

The Chilean census divides each comuna into districts and each district into neigh-
borhoods (i.e., manzanas). Due to confidentiality concerns, the survey provides
only the comuna of residence and work for each respondent, but not the district or
neighborhood. Utilizing population census data from 2017, we first calculate the
daily smoke coverage share for each manzana. We then compute the population-
weighted share of each comuna affected by smoke. Finally, we aggregate these
shares on a weekly basis. The resulting value represents a comuna-week measure
of exposure to a wildfire’s smoke plume.

3.3 Pollution and weather data

We obtain satellite-based pollution information for each comuna using reanalysis
data from the European Centre for Medium-Range Weather Forecasts (ECMWF)
provided by the Copernicus Climate Change Service. For pollution data, we em-
ploy the CAMS global reanalysis (EAC4) dataset. This dataset includes pollution
data (PM1, PM2.5, PM10, and other pollutants such as sulfur dioxide and ozone)
for each 0.75◦ × 0.75◦ grid (approximately 75km x 75km at the equator) across the
globe every 3 hours. By utilizing the population-weighted centroid for each co-
muna, we calculate the average pollution concentration for each pollutant within
each comuna and week in our sample. Additionally, using the same air pollution
data, we construct Air Quality Indexes (AQI) for PM2.5 and PM10, following the
methodology of the U.S. Environmental Protection Agency (U.S. Environmental

12We perform a series of robustness tests, varying the percentage of the fire sample included,
the pie slice angle, the coefficient by which we multiply the fire radius, and the coefficient by
which we multiply the wind speed, and the result stay qualitatively the same.
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Protection Agency, 2018).

We aggregate daily temperature and precipitation data at the weather station
level – obtained from the Center for Climate and Resilient Research in Chile –
into weekly measures by averaging the temperature readings and summing pre-
cipitation totals for each week and for each comuna. Table 1 presents descriptive
statistics for precipitation, temperature, and pollution during the weeks preced-
ing the interview day, focusing solely on the months of October, November, and
December. These months are characterized by low precipitation levels, averaging
less than one centimeter, and moderate temperatures around 15 degrees Celsius.

4 Empirical strategy

In the empirical analysis, we first implement a reduced-form estimation to capture
the direct impact of exposure to a smoke plume on hours worked. Second, we
employ an instrumental variable approach to quantify the effect of air pollution
on hours worked. In this specification, we use exposure to a wildfire plume as a
source of exogenous variation in pollution levels.

4.1 Reduced form analysis

Wildfire smoke plumes provide us with a convenient source of exogenous vari-
ation in pollution levels. As a result, the first part of our analysis is based on a
straightforward reduced-form specification of the following form:

Hoursit = βWild f iresit + X′
itγ + αi + αt + δit + ηit + εit (4)

where, Hours represents the number of hours effectively or usually worked over
the week preceding the interview. Wild f iresit denotes our smoke exposure mea-
sure, which is a weighted sum of the share of the area of comuna i covered by
wildfire smoke during week t (the week prior to the interview). X is a vector of
controls, encompassing average precipitation and temperature, the area of the co-
muna, household size, whether the interviewee is the primary breadwinner, their
marital status, age, gender, and years of education. Furthermore, we control for
province, month, region-year, and industry-year fixed effects. These fixed effects
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allow us to capture time-invariant and time-varying regional effects, seasonal ef-
fects on labor demand, and distinct industry-specific trends that could impact
labor supply. ε represents the error term, clustered at the comuna level.

Results

Given the exogeneity of the smoke plumes, these reduced-form results can be in-
terpreted causally. We present these results in Table 2. In column (1), we control
only for province and year fixed effects, in addition to the wildfire smoke expo-
sure measure. These controls account for unobserved factors at the province and
year levels. We obtain a negative coefficient of -0.011, which is statistically signifi-
cant at the 1% level. This coefficient suggests that if an entire comuna is covered by
a smoke plume for a full day, workers will work on average 0.97 hours less, corre-
sponding to a reduction of approximately 2.5% of their working hours. In column
(2), we control for region by year fixed effects and month fixed effects, as wildfires
may be more frequent in specific months. Working hours in some industries may
vary over time; thus, in column (3), we control for a set of industry by year fixed
effects. The coefficient on wildfire smoke exposure is smaller in magnitude but
remains statistically significant at least at the 5% level across all the specifications.
In columns (4) and (5), we incorporate weather controls (temperature and precip-
itation) and individual-level controls. The coefficient of interest remains largely
unchanged. The preferred specification, in column (5), implies that a full day of
smoke exposure across a comuna results in a reduction of 0.36 hours worked, or a
0.94% decrease.

The first robustness test we perform on our identification involves re-running this
specification using contract hours as the dependent variable instead of effective
hours worked. If wildfire incidents are indeed randomly assigned, exposure to
their smoke plume should not be correlated with contract hours of work. The top
panel of Table 3 summarizes the results of this estimation using the same structure
as Table 2. Columns (1) and (2) show a statistically significant negative relation-
ship between the exposure measure and contract hours. However, columns (3)
to (5) do not display any statistically significant association between exposure to
wildfire smoke and contracted hours. This loss of statistical significance occurs
after conditioning on industry-year fixed effects. This finding suggests that work-

13



ers who are more likely to be exposed to wildfire smoke may be employed in
industries with lower contracted hours. After conditioning on industry-year fixed
effects, our results indicate that wildfire smoke is randomly assigned to workers,
validating the empirical design.

We also conduct our analysis using the difference between effective and contract
working hours as the dependent variable. In this context, the dependent variable
can be interpreted as absenteeism, representing hours missed by a worker in a
given week. The results for this regression are presented in the bottom panel
of Table 3. These findings are qualitatively similar to those observed in Table 2:
during weeks when workers are exposed to wildfire smoke, they record more ab-
sences. The magnitude of the coefficient remains highly stable across the various
specifications.

4.2 Instrumental variable analysis

Having established that exposure to wildfire smoke has a negative impact on the
working hours of Chilean workers, we proceed to quantify the effect of air pollu-
tion on their working hours by using exposure to wildfire smoke as an instrument.
The relationship between air pollution and hours worked may be subject to en-
dogeneity issues. Hours worked could potentially affect air pollution through
increased production, leading to reverse causality and a positive correlation be-
tween the two. Furthermore, there may be other omitted variables simultaneously
affecting hours worked and air pollution. To isolate the causal effect of air pol-
lution on hours worked, we use exposure to wildfire smoke as an instrumental
variable, enabling us to disentangle an exogenous component in the variation
in air pollution. We then employ a standard two-stage least squares approach.
Specifically, our estimation takes the following form:

Pollutionit = µWild f iresit + X′
itξ + α′i + α′t + δ′it + η′

it + vit (5a)

Hoursit = β ̂Pollutionit + X′
itγ + αi + αt + δit + ηit + εit (5b)

where the definitions of the fixed effects and controls follow those outlined in
Section 4.1.

Our benchmark results primarily focus on average PM2.5 levels, in accordance
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with the literature that examines the effect of air pollution on labor productiv-
ity. However, we also present results for maximum (hourly) PM2.5 levels in the
Appendix. Regression models for other pollutants reveal qualitatively similar
outcomes when compared to those derived from average PM2.5 levels.

Results

We initially show the endogeneity of air pollution on hours worked by estimating
equation (5b) without employing any instrument. The results can be found in
Table B.1, which follows the same structure as Table 2. In all specifications, air
pollution displays a positive and statistically significant correlation with hours
worked. This positive correlation may appear counter-intuitive; however, as we
previously noted, it can be attributed to reverse causality. Working hours are
correlated with economic output, which in turn increases the level of air pollu-
tion. This table highlights the necessity of an instrument to isolate an exogenous
variation in air pollution levels and estimate its causal effect on hours worked.

In the remainder of this section’s analysis, we instrument air pollution using ex-
posure to wildfire smoke. Table 4 presents the first and second stage results.13

The top panel of Table 4 displays first stage results. Our measure of exposure
to wildfire smoke exhibits a robust positive effect on the average PM2.5 level in
a comuna. This effect remains strong and consistent across all five specifications.
Furthermore, the first stage F-statistics indicate a powerful first stage. Column
(5) suggests that a one-day wildfire smoke exposure in a comuna raises the weekly
average PM2.5 level by 7.6 µg/m3. This increase is substantial, given the World
Health Organization’s recommendation of a 15 µg/m3 24-hour mean. This corre-
sponds to a 42.5% increase over the average PM2.5 levels observed in our sample
or approximately half a standard deviation, as seen in Table 1.

After establishing the strong predictive capacity of wildfire smoke for PM2.5 lev-
els, the lower section of Table 4 showcases the outcomes from the second-stage
analysis. Contrasting with the OLS-equivalent findings in Table B.1, the impact
of air pollution on labor supply now emerges as negative. This suggests that air
pollution leads to a decrease in hours worked. According to our preferred spec-

13In our baseline model, we present the effect of average PM2.5 level on hours worked. Employ-
ing PM1, PM10, or their maximum levels instead of averages produces similar outcomes. These
results are reported in Appendix A.
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ification (column 5), a one standard deviation increase in the average PM2.5 level
within a week (i.e., 15.83 µg/m3) leads to a reduction of approximately 0.76 hours
(or 2 percent) in hours worked – a notable economic effect.

These findings, when considered alongside the existing literature on air pollu-
tion’s influence on labor productivity, imply that air pollution affects the labor
market through both the extensive margin (hours worked) and the intensive mar-
gin (labor productivity).14 Furthermore, we replicate the reduced-form analysis
on contract hours and the disparity between actual and contract hours within an
instrumental variable framework. The corresponding outcomes can be found in
Table A.2 in the Appendix. These results are consistent with the observations
made in the reduced-form analysis.

In order to further assess the validity of our instrument, we follow existing litera-
ture (e.g., Arceo et al., 2016) by computing the average daytime thermal inversions
throughout the week. The outcomes utilizing this instrument are presented in Ta-
ble A.3 in the Appendix.15 In line with the literature, we observe that thermal
inversions amplify air pollution, and when accounting for their presence, wildfire
smoke demonstrates a comparable effect on air pollution to our baseline find-
ings (without thermal inversion). The overidentification tests cannot be rejected
across all specifications, implying that wildfire smoke serves as a valid instru-
ment – even though thermal inversions constitute a weaker instrument relative to
wildfire smoke.

When we employ both wildfire smoke and thermal inversions as instruments,
air pollution exhibits a more pronounced negative impact on working hours: a
one standard deviation increase in the average PM2.5 level in a week results in
a 1.7 hours reduction in working hours (or 4.5 percent).16 For the remainder of

14In Table A.1 of the Appendix, we assess our baseline model employing five alternate pollution
metrics: average PM1, PM10, and maximum levels of PM1, PM2.5, and PM10. All pollutants result
in a decrease in hours worked.

15A thermal inversion refers to an atmospheric layer where air temperature increases with alti-
tude rather than decreasing, which restricts ventilation and traps pollution. As naturally occurring
phenomena not caused by human activities, thermal inversions are considered suitable instrumen-
tal variables for air pollution in the literature. For additional information on the construction of
this type of instrument, see Arceo et al. (2016) and other sources.

16Similar results are obtained when using thermal inversion as the sole instrument (with a
considerably smaller F-statistic in the first stage). The outcomes involving contract hours and the
discrepancy between actual and contract hours are qualitatively akin to our baseline findings.
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this paper, we opt to concentrate on specifications with wildfire smoke as the
exclusive instrument to offer a more conservative estimate of the effect.

Particulate matter is not the sole pollutant with the potential to impact cognitive
functions and health outcomes. Thus, it is worthwhile to explore whether other
pollutants also influence the number of hours worked. To this end, we construct
the Air Quality Index (AQI) for our sample following the standards and formulae
employed by the United States Environmental Protection Agency (US EPA). This
index incorporates six types of pollutants: PM2.5, PM10, carbon monoxide (CO),
ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2). We then replicate
our analysis, substituting our PM2.5 measure with AQI, and present the results in
Table 5.17 Our wildfire instrument effectively predicts AQI, and we obtain sim-
ilar results indicating that a higher AQI (representing elevated pollution levels)
adversely affects actual working hours, but not contracted working hours.

4.3 Dynamic analysis

Our current specification captures the immediate impact of air pollution on work-
ing hours; however, our data also enables us to examine potential rebound effects
in the weeks directly following a wildfire. We match the air pollution levels from
two to four weeks prior to the interview and re-run the baseline IV specifica-
tion, incorporating one, two, and three lags of the pollution measure. The results
from these three regressions, as well as those from our baseline specification, are
depicted in Figure 2.18

In the figure, the blue dot represents the contemporaneous coefficient, while the
red, green, and orange dots correspond to the coefficients from the specifications
with one, two, and three lags, respectively. The figure reveals a rebound effect in
hours worked during the week following the wildfire, with the impact diminish-
ing thereafter – lags two and three are statistically indistinguishable from zero.
The rebound effect amounts to 0.065, and when combined with the contempo-

17Alternatively, we can also regress on individual components of AQI within the same speci-
fication, with the findings summarized in Table A.4. Four of the six pollutants yield significant
first-stage F-statistics and second-stage effects on hours worked. We did not observe strong pre-
dictive power for nitrogen dioxide and sulfur dioxide levels, which is consistent with the fact that
wildfire smoke is not a primary source of these pollutants.

18The coefficients can be found in Table A.5.
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raneous effect of -0.082, yields a long-term negative impact of -0.017. For a one
standard deviation increase in PM2.5, this corresponds to an overall reduction of
0.27 hours worked, equivalent to a 0.7% decrease.

4.4 Heterogeneous analysis

Our dataset enables us to explore the heterogeneous effects of air pollution on
hours worked. In this section, we introduce various sample divisions and exam-
ine how the individuals within these groups are influenced by pollution. The
outcomes of these estimations are provided in Table 6, where we present the co-
efficient for average PM2.5 pertaining to each subsample.

The first heterogeneity analysis we conduct focuses on gender. While female
workers appear to be unaffected by air pollution, male workers seem to experience
significant impacts. This outcome could be attributed to the larger proportion of
males engaged in agriculture (74.7%). A one standard deviation increase in PM2.5

results in a reduction of 2.7 hours worked for males, corresponding to a 6.5%
decrease.19

Next, we examine individuals working indoors and outdoors. At first glance,
the results may seem surprising, as both coefficients appear to be statistically in-
significant. However, the coefficient for individuals working outdoors is negative
and an order of magnitude larger than the one for individuals working indoors.
The outdoor coefficient is not precisely estimated but approaches statistical sig-
nificance at a 13.2% level, while the indoor workers’ coefficient is closer to zero
in value and statistically significant only at the 67.8% level – thus, not statistically
different from zero.20

The third set of heterogeneous results we explore pertains to the impact of air
pollution across age groups. As expected, we observe more pronounced effects
for older workers. For workers below 40 years old, the effect is not statistically
different from zero, while it turns negative and statistically significant at the 5%

19The average actual hours worked for men amount to 41.087 per week.
20If we run this estimation without household controls, both coefficients become negative and

statistically significant at the 1% level for outdoor workers and at the 5% level for indoor workers.
The coefficient for outdoor workers is three times larger than the one for indoor workers: -0.138
versus -0.042.
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level for workers aged between 40 and 54, and becomes three times larger and
statistically significant at the 1% level for workers over 55 years old. This finding
is important since older workers are more likely to require hospitalization and
experience other complications, resulting in a proportionally greater burden on
the healthcare sector.

Another crucial source of heterogeneity is income. The outcomes regarding whether
air pollution may exacerbate income inequality have implications for the environ-
mental justice literature. We present results for three distinct income groups, de-
fined by an individual’s income relative to the national income average. We find
that the impact of air pollution is concentrated on the poorest (workers earning
less than the national income average) and the median workers (workers with in-
come between once and twice the national income average). For both groups, the
coefficient is negative and statistically significant at the 1% level, suggesting that
a one standard deviation increase in PM2.5 reduces hours worked by 1.74 hours
per week. The result for the wealthiest households is puzzling, as it appears
that an increase in air pollution leads to an increase in hours worked, statistically
significant at the 10% level.

To better understand the origin of this result, we divide the sample between large
comunas (i.e., with more than 100,000 inhabitants, totaling 45 comunas) and small
comunas. Our data do not include information on whether a household resides
in an urban or rural area; thus, this division serves as a proxy for that distinc-
tion. Table 7 displays descriptive statistics for exposure to wildfire smoke across
this sample division. We immediately observe that the majority of the variation
in smoke exposure originates from small comunas; in large ones, where higher-
income individuals are likely more concentrated , there is no variation. This
lack of variation implies that we might be unable to correct for endogeneity in
larger urban areas, potentially explaining the positive coefficient for the wealthi-
est segment of the sample. Unsurprisingly, when we run the three income bracket
subsamples solely on the smaller comunas, the positive coefficient for the richest
households loses its statistical significance. We do not report the results for the
other part of the sample since the first-stage F-stat is lower than 10. Consequently,
our identification does not permit us to draw conclusions about urban areas, and
our paper can be viewed as presenting the untold half of the story examined by
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Hoffmann & Rud (2022).

4.5 Robustness

We conduct two distinct robustness tests. Firstly, we exclude from the sample all
regions that are typically unaffected by wildfires. Secondly, we perform a series
of placebo tests, in which we randomize the occurrence of wildfires across the
sample in various ways.

Regions

In Chile, not all regions are affected by wildfires; some, due to their specific
vegetation, never experience them. In Table A.8 of Appendix A, we present the
baseline estimation in the first column and progressively exclude more of the
15 regions comprising Chile. In column (2), we begin by eliminating the three
northernmost regions: Arica and Parinacota, Tarapacá, and Antofagasta, which
are virtually never affected by wildfires. In column (3), we exclude an additional
five regions: Atacama, Coquimbo, Los Lagos, Aysén of General Carlos Ibáñez del
Campo, Magallanes and Chilean Antarctica. Finally, in column (4), we eliminate
three more regions: Bío Bío, La Araucanía, and Los Ríos. Our results remain
robust to these exclusions.

Placebo

The variation in our instrument is based on the random timing and location of
wildfire occurrences. To test this design, we conduct a series of placebo estima-
tions using falsely-assigned wildfire plumes. For these placebo estimations, we
randomize exposure to wildfire plumes across the entire sample and replace the
baseline specification with this shuffled measure. We perform three distinct ran-
domizations: i) over the entire sample, ii) within each of the 15 regions, and iii)
within each of the 9 years. We anticipate that this exercise will produce mostly
statistically insignificant estimates for the variable of interest while leaving the
statistical significance of the estimates for other variables largely unchanged. We
repeat the exercise 1,000 times and, each time, collect the t-statistic for the coeffi-
cient of interest.
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The results of this exercise are displayed graphically in Figures 3, C.2, and C.3.
These figures present the histograms of the distribution of t-statistics for the co-
efficient of interest across the 1,000 repetitions. The red vertical line represents
the t-statistic of the baseline estimation (-2.74). As we can observe, the majority
of the distribution falls within the -1.96 and 1.96 boundaries, indicating that most
coefficients obtained through the falsely-attributed smoke plumes are statistically
insignificant. As expected, given the results of Table A.8, when we randomize
the variable within each region, the proportion of statistically significant results
increases. This outcome can be attributed to the fact that most wildfires are con-
centrated within a few regions.

5 Alternative wildfires measure

In this section, we employ an alternative methodology as a proxy for wildfire
smoke plumes to assess the robustness of our main findings.

5.1 Burned area data

In this section, we create an alternative representation of wildfire smoke using
data from the MODIS Burned Area product. This dataset divides the entire planet
into a grid of 500m x 500m cells, indicating whether each cell experienced burning
on a specific day. Figure C.1 in the Online Appendix illustrates an example of this
data, with red dots representing burned grid cells and marked circles serving to
help identify these burned cells. We gather this information for all the weeks in
our sample.

We construct a buffer area around the population-weighted centroid of each co-
muna. The population-weighted centroid of a comuna is calculated by weighting
the latitude and longitude components of the geometric centroid of each manzana
(neighborhood, as defined by the census) by the share of the comuna’s population
residing in it. Panel (a) of Figure 4a displays the difference between geometric
centroids (red crosses) and population-weighted centroids (blue stars). As can
be observed, the larger the surface area of a comuna, the more likely there is a
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difference between the two.21

First, we draw a circle with a radius of two kilometers around each population-
weighted centroid. Second, we multiply the horizontal radius of each circle by
0.5* windspeed (with a lower bound at a windspeed of 2m/s, i.e., the minimum
radius is equal to 2km), resulting in elliptical shapes. Third, we tilt the horizontal
radius (the longer one in the ellipse) in the direction of the wind and slide the
ellipse along this axis against the wind until the population-weighted centroid
is once again two kilometers from the boundary of the ellipse on the downwind
side. Panel (b) of Figure 4a depicts these elliptical shapes for a given day in the
area around Santiago. One observation is that Santiago experienced very slow
winds that day, causing some of the shapes to appear round.

At this stage, we compute the share of the ellipse that is burned for each day
by examining the burned raster cells. It is worth noting that, since the cells are
square and the buffer is an ellipse, if all cells are burned, the share of the buffer
burned could exceed 100%. The utilization of an elliptical shape enables us to
capture the probable path of the smoke plumes generated by these fires.

Panel D in Table 1 presents descriptive statistics for the share of the area burned
within the elliptical buffers. On average, when a buffer is affected by a wildfire,
approximately 6.4% of its area is burned. In our sample, a maximum of 58% of a
buffer’s area has been burned. From an identification perspective, the challenge
with this measure lies in the limited variation in the data, as only 523 observations
have a strictly positive value. One alternative would be to simply examine the
burned share of the entire comuna. However, the problem with this approach
arises from the vast size of comunas and the extensive uninhabited areas within
the country. Comunas can encompass up to 49 thousand square kilometers of
land. If we solely considered the share of surface burned, we might inadvertently
capture wildfires that did not impact any human beings. For this reason, we opt
for a more restrictive definition.

21In the robustness section, we address the possibility that in some comunas, the population
might be dispersed among several hamlets, making population-weighted centroids a less ideal
measure.
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5.2 Reduced form analysis

In line with our primary analysis, we conduct a reduced-form analysis as follows:

Hoursit = βBu f f erShareit + X′
itγ + αi + αt + δit + ηit + εit (6)

where, Hours represents the number of hours worked in the week preceding the
interview, and BufferShare indicates the proportion of burned area within the ellip-
tical buffers during a wildfire. The control vector X includes average precipitation
and temperature for the relevant week, the comuna’s area, household size, whether
the interviewee is the household’s primary breadwinner, marital status, age, gen-
der, and years of education. We also account for province, month, region-year, and
industry-year fixed effects to capture time-invariant and time-varying regional
influences, seasonal labor demand fluctuations, and industry-specific trends that
may impact labor supply. The error term is denoted by ε, and we cluster it at the
comuna level.

Considering the construction of the burned area variable around each comuna’s
population-weighted centroid (rather than the simple geometric centroid), we can
better ensure that the probability of a respondent living within the buffer is non-
zero. Considering the potentially substantial size of comunas, we enhance our es-
timations by devising a set of weights that reflect the probability of an individual
living in close proximity to the population-weighted centroid. These weights are
based on the proportion of a comuna’s population living within a two-kilometer
radius circular buffer. We choose a circular buffer for these weights since ellip-
tical buffers vary daily according to wind speed and direction. The weights are
calculated as follows:

wi =
Population in the Bufferi,2017

Total Population in Comunai,2017
(7)

Using neighborhood-level population data from the census, we compute these
shares, capturing all neighborhoods within a buffer and the proportion inside
the buffer for those on the edge, as demonstrated in Figure 5. We employ these
weights as estimation weights in all our regressions.
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Results

Table 8 presents the results for our baseline estimation, which is based on elliptical
buffers surrounding the population-weighted centroid of each comuna. In the ta-
ble, we sequentially include all fixed effects and controls at the comuna, household,
and individual levels. Column (5) displays the complete baseline specification.

The coefficient of the variable of interest remains consistent in terms of magni-
tude, sign, and statistical significance across the various specifications, suggesting
that when a portion of the elliptical buffer around a comuna’s population-weighted
centroid is burned, the labor supply for that week decreases. This coefficient
corresponds to an approximate 1.8% reduction in hours worked for the average
Chilean worker in the aftermath of a typical wildfire.22 The controls exhibit the
anticipated signs.

We also computed circular buffers without considering wind speed and direc-
tion at the population-weighted centroid of the comuna. By replacing the ellipti-
cal buffer with the circular buffer and re-estimating our equation, we obtain the
findings presented in Table 8. Although smaller in magnitude, this coefficient
corresponds to a reduction of approximately 2.4% in hours worked for the aver-
age Chilean worker following an average wildfire, which is closer to our baseline
reduced form results using our constructed wildfire smoke plume measure.23

The choice of a 2-kilometer radius for both the circular and elliptical buffers
(aligned with the downwind direction) has been made ad hoc. The risk associated
with a much larger buffer is that it would encompass numerous individuals not
directly affected by the fire or indirectly by its smoke. In Table B.2 in the Online
Appendix, we demonstrate the effect on the baseline specification when the buffer
size varies between 1 and 3 kilometers at 500-meter intervals.24 As anticipated,
the coefficient of interest is larger in magnitude for a smaller buffer, although less
precisely estimated. As the buffer expands, the coefficient stabilizes around -4 to
-5.

22This figure is derived as follows: (-11*0.064)/38.41, using the descriptive statistics provided in
Table 1.

23This figure is derived in the following way: (-4.4*0.213)/38.41, where 0.213 represents the
average share of wildfire in the circular buffer conditional on it being positive.

24Upon recalculating the buffer size, we also recompute the estimation weights.
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In this analysis, we examine the effect of wildfires on the number of hours typi-
cally worked by individuals. We expect no impact, as a sudden increase in pol-
lution levels should not influence contract working hours. Table 8 presents the
results for a specification where we replace actual working hours with the differ-
ence between contract and real hours worked. This difference can be interpreted
as the number of hours an individual chose not to work. A positive effect of simi-
lar magnitude to actual working hours is observed, consistent with the hypothesis
that wildfires have a limited effect on contract working hours. Comparable results
are obtained when using the round buffer instead of the elliptical buffer.

To explore whether workers shifted their working hours to the following week
instead of genuinely reducing their labor supply, we add a lagged term for the
share of wildfire exposure to our regression analyzing real working hours. The
coefficients for the contemporaneous term for wildfire exposure closely resemble
those estimated in our baseline specification, as shown in Figure 2.25 In the spec-
ification that includes both the contemporaneous and one-period lagged terms,
the one-period lagged term exhibits a positive and statistically significant coeffi-
cient, though with a smaller magnitude than the contemporaneous effect. This
suggests that workers respond to wildfire exposure by reducing working hours
during the affected week and attempt to compensate by working more the fol-
lowing week. However, our findings indicate that the overall effect of wildfires
remains negative. When a second lagged term is added, it yields a statistically
and economically insignificant result, while the contemporaneous and first lag co-
efficients are similar to the previous specification, albeit with reduced precision.

In Table A.9, we conduct a robustness check on our baseline results by excluding
all comunas with weights below 0.2, 0.3, 0.4, 0.5, and 0.6 respectively. The results
remain positive and statistically significant at the 1 percent level across all specifi-
cations, even with the substantial reduction in sample size. As anticipated, when
we exclude comunas with lower weights and increase the average weights in our
sample – corresponding to a higher probability that individuals are genuinely
affected by the fires – the observed effect becomes larger. The magnitude of the
coefficient increases from 11 in the baseline to 20 when we only include comunas
with weights above 0.6.

25Additional results estimated using the alternative wildfire measure are available upon request.
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6 Economic impact analysis

In this section, we conduct a back-of-the-envelope economic impact analysis to
estimate the GDP-cost of a 1 µg/m3 increase in PM2.5 attributable to a decrease
in hours worked.

Our calculations are based on the model developed in Dechezleprêtre et al. (2019),
specifically equation (3), which decomposes the effect of air pollution on the econ-
omy into four main components: the impact on the number of workers, their
productivity, their hours worked, and the direct impact of air pollution on pro-
duction. According to equation (3), to isolate the impact of air pollution on GDP
due to a decrease in the number of hours worked, we need our estimate (i.e.,
∂ log s

∂P ), the elasticity of output with respect to labor (i.e., ψ), and the ratio of hours
missed over hours worked (i.e., θ). From our data, we estimate θ = 0.08 by cal-
culating the average weekly difference between contract and real hours worked
divided by the average real hours worked. This number suggests that, on average,
8% of hours are missed for various reasons. We use the standard value used in
the literature of ψ = 0.7 (e.g., Golosov et al., 2014).

In this final step of the economic impact analysis, we obtain ∂ log s
∂P by estimating

our baseline IV specification, equation (5b), using the difference between usual
and real hours worked as the dependent variable instead of real hours worked.
This estimation reveals that a 1 µg/m3 increase in PM2.5 leads to a 0.04 increase in
the difference between usual and real hours worked. Considering that the average
worker works 38.5 hours per week (see Table 1), the 0.04 increase in the difference
between usual and real hours worked corresponds to a 1.3% increase.26

Utilizing the Chilean GDP figure from 2020 (252.9 billion US dollars) and equation
(3), we calculate the impact on GDP from a decrease in hours worked resulting
from a 1 µg/m3 increase in PM2.5 as follows: ψθ

∂ log s
∂P GDP. This calculation yields

0.184, indicating that every 1 µg/m3 increase in PM2.5 leads to a decrease in GDP
by 184 million dollars.

The economic impact analysis reveals a significant number, but it is crucial to com-
pare it with other impacts of air pollution, such as its effects on productivity. In

26 0.04
0.08x38.5 = 0.0129.
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the literature, there are two estimates of air pollution’s impact on productivity. Fu
et al. (2021), examining the Chinese manufacturing sector, discover that a 1 µg/m3

increase in PM2.5 decreases productivity by 0.82%. In contrast, Dechezleprêtre &
Vienne (2022) find a 0.93% decrease in productivity using data from European
firms. By employing equation (3) again, these estimates imply a GDP reduction
for Chile between 1.45 and 1.65 billion dollars. This suggests that considering
the effect on the equilibrium amount of hours worked increases the labor cost of
air pollution by 11-13% – a non-negligible amount. As expected, the impact on
productivity is more substantial since it applies to all hours worked.

7 Conclusions

In this paper, we determine the causal impact of air pollution on hours worked
by utilizing wildfire occurrences to generate exogenous variations in air pollution
levels. We analyze labor supply and wildfire data from Chile, a country with sig-
nificant pollution. We gather week-comuna level pollution data for the period of
interest using satellite reanalysis data. Then, we estimate the effect of air pollution
on hours worked, employing wildfire exposures as an instrumental variable. To
construct our instrument, we estimate the smoke plume resulting from wildfire
exposures by considering the fire’s size and data on wind speed and direction.

By instrumenting air pollution using wildfire exposures and leveraging satellite
data, we isolate the causal effect of air pollution on hours worked, demonstrating
that elevated air pollution levels lead to a substantial reduction in hours worked
in Chile, imposing a considerable economic cost. Specifically, the average Chilean
worker across all industries reduces their working hours by approximately two
percent following an increase in air pollution due to a wildfire. We observe that
the effect varies significantly across income groups, age, gender, and types of
work performed by the workers. Our results are robust to alternative wildfire
measures employing remote sensing data on fire.

While much of the empirical work on air pollution has concentrated on worker
productivity (the "intensive margin" of air pollution’s impact on labor supply),
this paper focuses on hours worked (the "extensive margin"). Combining these
two effects suggests that air pollution’s impact on production could be consider-
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ably larger than previously believed. Our findings emphasize the need for further
research and discussion on vulnerable individuals who experience significantly
more harm from air pollution.
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Tables

Table 1: Summary statistics

Variable Mean Std. Dev. Min. Max. N

Panel A: Working hours
Real hours worked 38.41 17.04 0 84 265,572
Contract hours worked 42.63 10.56 1 84 196,228
Difference 3.07 11.48 -67 84 196,228

Panel B: Household characteristics
Household size 3.69 1.69 1 17 265,572
Years of education 4.09 1.90 0 11 265,572
Age 43.49 14.21 15 95 265,572
Main breadwinner† 0.53 0.50 0 1 265,572
Married† 0.58 0.49 0 1 265,572
Gender† 0.57 0.50 0 1 265,572

Panel C: Weather, pollution and wildfires
Area comuna (1000km2) 2.519 5.773 0.006 48.695 265,572
Average precipitations 0.684 1.495 0 9.109 265,572
Average temperature 15.26 3.02 6.921 21.80 265,572

Wildfire smoke 0.059 3.592 0 294.8 265,572
Wildfire smoke if > 0 4.858 32.11 0.002 294.8 3,250
Average hourly PM2.5 17.86 15.83 0.906 138.2 265,572
Maximum hourly PM2.5 42.00 39.64 2.103 702.7 265,572

Average AQI (all pollutants) 77.26 38.60 24.43 192.9 221,691
Average PM2.5 AQI 56.38 37.04 3.429 178.6 221,691
Average PM10 AQI 22.10 17.59 0.143 104.2 221,691
Average CO AQI 1.75 1.96 0 10.79 221,691
Average O3 AQI 71.93 35.65 22.5 177.7 221,691

Panel D: Elliptical buffers
Share of wildfire in buffer 0.0002 0.0065 0 0.5791 207,301
Share of wildfire in buffer if > 0 0.0640 0.1122 0.0063 0.5791 523
Note: † denotes indicator variables.
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Table 2: Reduced-form analysis: Real hours worked

Real hours worked during the week

(1) (2) (3) (4) (5)

Wildfire smoke -0.0097∗∗∗ -0.0088∗∗∗ -0.0058∗∗∗ -0.0060∗∗∗ -0.0036∗∗

(0.0017) (0.0018) (0.0018) (0.0016) (0.0016)

Average precipitations (week) -0.15∗∗∗ -0.15∗∗∗

(0.046) (0.046)

Average temperature (week) 0.17∗∗∗ 0.18∗∗∗

(0.032) (0.032)

Area of a comuna (1000 km2) -0.019 -0.025
(0.032) (0.032)

No. of people in HH 0.32∗∗∗

(0.028)

Main breadwinner of HH 3.02∗∗∗

(0.098)

Years of education 0.10∗∗∗

(0.023)

Married -0.22∗∗∗

(0.030)

Age -0.025∗∗∗

(0.0046)

Gender 4.63∗∗∗

(0.12)

Province FE yes yes yes yes yes
Year FE yes no no no no
Month FE no yes yes yes yes
Region-year FE no yes yes yes yes
Industry-year FE no no yes yes yes

Observations 265,576 265,576 265,576 265,576 265,576
Notes: Standard errors in parentheses are clustered at the comuna level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Reduced form analysis: Contract hours

Contract hours during the week

(1) (2) (3) (4) (5)

Wildfire smoke -0.0055∗∗∗ -0.0050∗∗∗ -0.00047 -0.00048 0.00041
(0.0013) (0.0012) (0.0011) (0.0011) (0.0012)

Average precipitations (week) -0.020 -0.016
(0.024) (0.024)

Average temperature (week) -0.029∗ -0.023
(0.017) (0.018)

Area of a comuna (1000 km2) -0.021 -0.022
(0.017) (0.017)

Difference in hours worked during the week

Wildfire smoke 0.0032∗∗∗ 0.0024∗ 0.0033∗∗∗ 0.0034∗∗∗ 0.0027∗∗

(0.0011) (0.0012) (0.0012) (0.0012) (0.0012)

Average precipitations (week) 0.15∗∗∗ 0.15∗∗∗

(0.034) (0.034)

Average temperature (week) -0.21∗∗∗ -0.21∗∗∗

(0.026) (0.026)

Area of a comuna (1000 km2) -0.0014 -0.00057
(0.017) (0.017)

Province FE yes yes yes yes yes
Year FE yes no no no no
Month FE no yes yes yes yes
Region-year FE no yes yes yes yes
Industry-year FE no no yes yes yes

Observations 196,232 196,232 196,232 196,232 196,232
Notes: Standard errors in parentheses are clustered at the comuna level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Causal effect of air pollution on real hours worked

First stage: PM2.5 (µg/m3)

(1) (2) (3) (4) (5)

Wildfire smoke 0.068∗∗∗ 0.076∗∗∗ 0.077∗∗∗ 0.077∗∗∗ 0.076∗∗∗

(0.002) (0.003) (0.003) (0.003) (0.003)

Average precipitations (week) -0.27∗∗∗ -0.27∗∗∗

(0.074) (0.074)

Average temperature (week) -0.60∗∗∗ -0.60∗∗∗

(0.095) (0.095)

First-stage F-stat 1,212.9 823.3 820.9 818.7 819.6

Second stage: Real hours worked during the week

(1) (2) (3) (4) (5)

Average PM2.5 (µg/m3) -0.14∗∗∗ -0.12∗∗∗ -0.076∗∗∗ -0.078∗∗∗ -0.048∗∗

(0.022) (0.024) (0.023) (0.021) (0.021)

Average precipitations (week) -0.18∗∗∗ -0.16∗∗∗

(0.047) (0.046)

Average temperature (week) 0.12∗∗∗ 0.15∗∗∗

(0.034) (0.034)

Area of a comuna (1000 km2) -0.011 -0.020
(0.037) (0.035)

HH controls no no no no yes
Province FE yes yes yes yes yes
Year FE yes no no no no
Month FE no yes yes yes yes
Region-year FE no yes yes yes yes
Industry-year FE no no yes yes yes

Observations 265,572 265,572 265,572 265,572 265,572
Notes: All models are estimated using two stage least square using wildfire smoke as the
exogenous instrument. The Kleibergen-Paap rk Wald F statistics are reported as first stage
F-stat. Standard errors in parentheses are clustered at the comuna level. Some controls in
the first and second stage regressions are suppressed for exposition purposes. *** p<0.01, **
p<0.05, * p<0.1.

38



Table 5: Causal effect of the Air Quality Index (AQI)

Dependent variable: Real hours Contract hours Hours difference

(1) (2) (3)

AQI index weekly average -0.059*** 0.0033 0.036***
(0.020) (0.0099) (0.0096)

Average precipitations (week) -0.26*** -0.026 0.25***
(0.055) (0.029) (0.043)

Average temperature (week) 0.17*** -0.027 -0.19***
(0.036) (0.020) (0.029)

Area of a comuna (1000 km2) 0.011 -0.017 -0.014
(0.038) (0.018) (0.021)

Estimator IV IV IV
Household controls yes yes yes
Province FE yes yes yes
Year FE yes yes yes
Month FE yes yes yes
Region-year FE yes yes yes
Industry-year FE yes yes yes
First stage F-statistic 329.2 566.2 566.2
Observations 221,691 163,841 163,841
Notes: All models are estimated using two stage least square using wildfire smoke as the
exogenous instrument. The Kleibergen-Paap rk Wald F statistics are reported as first stage
F-stat. Standard errors in parentheses are clustered at the comuna level. Some controls in
the first and second stage regressions are suppressed for exposition purposes. *** p<0.01, **
p<0.05, * p<0.1.
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Table 6: Heterogenous impact of air pollution on labor supply

Dependent variable: Real hours worked during the week

Baseline / Overall sample: -0.048∗∗ (0.021)

Gender Female 0.046 (0.029)
Male -0.17∗∗∗ (0.025)

Indoor/outdoor Outdoor -0.070 (0.047)
Indoor 0.0090 (0.022)

Age group Age below 40 0.012 (0.087)
Age 40-54 -0.045∗∗ (0.019)
Age above 55 -0.12∗∗∗ (0.046)

Income brackets Poorest -0.11∗∗∗ (0.040)
Median -0.11∗∗∗ (0.037)
Richest 0.070∗ (0.039)

Size of the comuna Big 0.198a (0.143)
Small -0.041∗ (0.023)

Income brackets Poorest -0.10∗∗ (0.042)
(small comuna subsample) Median -0.10∗∗∗ (0.039)

Richest 0.039 (0.058)

HH controls yes
Province FE yes
Month FE yes
Region-year FE yes
Industry-year FE yes
Notes: All models are estimated using two stage least square using wildfire smoke
as the exogenous instrument. All coefficients in tables are coefficients on the average
weekly PM2.5 regressor. Poorest contains individuals earning less than minimum wage,
Median includes individual making between minimum wage and twice the minimum
wage and, Richest contains all individuals making more than twice minimum wage.
We define small comuna as comuna with fewer than 100,000 inhabitants (based on 2002
population census). All other controls are suppressed for exposition purposes. Stan-
dard errors in parentheses are clustered at the comuna level. *** p<0.01, ** p<0.05, *
p<0.1.

a: the first-stage F-stat for this coefficient is below 10.
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Table 7: Summary statistics for wildfire smoke for comunas above and below 100K
inhabitants

Mean Std. dev. Min Max Obs.

Comunas below 100K 0.112 4.930 0 294.833 140,920
Comunas above 100K 0.0002 0.006 0 0.262 124,656
Notes: The population of the different comunas comes from the census of
2002.
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Table 8: Ellipse buffer

Elliptical buffer – real hours worked

(1) (2) (3) (4) (5)

Share burned -12.2∗∗∗ -10.6∗∗∗ -11.6∗∗∗ -11.6∗∗∗ -11.0∗∗∗

(3.41) (2.88) (3.78) (4.06) (2.73)
Observations 245,841 245,841 245,841 245,841 245,841

Elliptical buffer – difference in hours worked

(1) (2) (3) (4) (5)

Share burned 11.0∗∗∗ 9.29∗∗∗ 9.12∗∗∗ 9.21∗∗∗ 9.16∗∗∗

(0.85) (1.31) (1.42) (1.10) (1.40)
Observations 245,841 245,841 245,841 245,841 245,841

Round buffer – real hours worked

(1) (2) (3) (4) (5)

Share burned -4.70∗∗∗ -4.41∗∗∗ -4.65∗∗∗ -4.61∗∗∗ -4.41∗∗∗

(1.10) (0.89) (1.19) (1.26) (0.89)

Observations 257,933 257,933 257,933 257,933 257,933

Round buffer – difference in hours worked

(1) (2) (3) (4) (5)

Share burned 4.30∗∗∗ 3.92∗∗∗ 3.83∗∗∗ 3.79∗∗∗ 3.81∗∗∗

(0.18) (0.33) (0.37) (0.31) (0.39)

Observations 257,933 257,933 257,933 257,933 257,933

Weather controls no no no yes yes
Household controls no no no no yes
Province FE yes yes yes yes yes
Year FE yes no no no no
Month FE no yes yes yes yes
Region-year FE no yes yes yes yes
Industry-year FE no no yes yes yes
Notes: The introduction of 2 digit industry classification causes the loss of
139,372 observations. All specification contain estimation weights for the prob-
ability that an individual is within the buffer affected by the wildfire. Standard
errors in parentheses are clustered at the comuna level. *** p<0.01, ** p<0.05, *
p<0.1.
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Figures

Figure 1: Smoke plume from wildfires

Notes: This figure shows all the wildfires (in red circles) recorded between 18 and 23 December
2016 and the corresponding computed smoke plumes (in pink rays).
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Figure 2: Lag coefficients

Notes: The figure reports the coefficients on PM2.5 and its lags in different specifications.
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Figure 3: Placebo with randomization over the whole database
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Note: The histogram depicts the distribution of the t statistics for the coefficient on the
smoke plume for the 1000 placebo replications. In each replication we randomized the
occurrences of wildfires over the whole sample. As one can see the largest mass of the
histogram falls between -1.96 and 1.96, meaning that the coefficient is not statistically
significant at the 5% level. The red line shows the t statistic obtained in our baseline
regression (-2.74).
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Figure 4: Population-weighted centroids with elliptical buffers

(a) Population-weighted centroids (b) Elliptical buffers

Notes: Geometric (red crosses), population weighted (blue stars) centroids and elliptical buffers
of interest for burned areas (green).

Figure 5: Calculation of weights

Notes: Analytical weights are constructed as the share of population of a comuna living inside a
buffer zone. The population inside the buffer is constructed started from the population in each
manzana.
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Appendix

A Additional tables and figures

Table A.1: IV results: different pollution measures

Dependent variable: Real hours worked during the week

(1) (2) (3) (4) (5)

Baseline pollution measure:
Average PM2.5 (µg/m3) -0.14∗∗∗ -0.12∗∗∗ -0.076∗∗∗ -0.078∗∗∗ -0.048∗∗

(0.022) (0.024) (0.023) (0.021) (0.021)

Alternative pollution measures:
Average weekly PM1 (µg/m3) -0.16∗∗∗ -0.13∗∗∗ -0.086∗∗∗ -0.089∗∗∗ -0.054∗∗

(0.025) (0.027) (0.026) (0.024) (0.023)
Average weekly PM10 (µg/m3) -0.10∗∗∗ -0.084∗∗∗ -0.055∗∗∗ -0.057∗∗∗ -0.034∗∗

(0.016) (0.017) (0.016) (0.015) (0.015)
Maximum hourly PM1 (µg/m3) -0.021∗∗∗ -0.020∗∗∗ -0.013∗∗∗ -0.014∗∗∗ -0.0084∗∗

(0.0033) (0.0039) (0.0038) (0.0035) (0.0035)
Maximum hourly PM2.5 (µg/m3) -0.019∗∗∗ -0.018∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.0074∗∗

(0.0029) (0.0034) (0.0033) (0.0031) (0.0031)
Maximum hourly PM10 (µg/m3) -0.014∗∗∗ -0.013∗∗∗ -0.0085∗∗∗ -0.0088∗∗∗ -0.0053∗∗

(0.0021) (0.0025) (0.0024) (0.0022) (0.0022)

HH controls no no no no yes
Province FE yes yes yes yes yes
Year FE yes no no no no
Month FE no yes yes yes yes
Region-year FE no yes yes yes yes
Industry-year FE no no yes yes yes

Observations 265,572 265,572 265,572 265,572 265,572
Notes: All models are estimated using two stage least square using wildfire smoke as the exogenous
instrument. Standard errors in parentheses are clustered at the comuna level. Other controls are
suppressed for exposition purposes. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.2: The effect of air pollution on contracted hours

Contracted hours during the week

(1) (2) (3) (4) (5)

Average PM2.5 (µg/m3) -0.059∗∗∗ -0.048∗∗∗ -0.0046 -0.0047 0.0040
(0.013) (0.012) (0.011) (0.011) (0.011)

Average precipitations (week) -0.021 -0.015
(0.024) (0.024)

Average temperature (week) -0.032∗ -0.021
(0.019) (0.019)

Area of a comuna (1000 km2) -0.021 -0.023
(0.017) (0.016)

Difference in hours worked

(1) (2) (3) (4) (5)

Average PM2.5 (µg/m3) 0.034∗∗∗ 0.023∗ 0.032∗∗∗ 0.033∗∗∗ 0.026∗∗

(0.011) (0.012) (0.012) (0.011) (0.011)

Average precipitations (week) 0.16∗∗∗ 0.16∗∗∗

(0.035) (0.035)

Average temperature (week) -0.19∗∗∗ -0.19∗∗∗

(0.026) (0.026)

Area of a comuna (1000 km2) -0.0047 -0.0032
(0.019) (0.018)

Estimator IV IV IV IV IV
Household controls no no no yes no
Province FE yes yes yes yes yes
Year FE yes no no no no
Month FE no yes yes yes yes
Region-year FE no yes yes yes yes
Industry-year FE no no yes yes yes

Observations 196,232 196,232 196,232 196,232 196,232
Notes: All models are estimated using two stage least squares using wildfire smoke as an
exogenous instrument. Standard errors in parentheses are clustered at the comuna level. ***
p<0.01, ** p<0.05, * p<0.1.
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Table A.3: Causal effect of air pollution on real hours worked with an additional
instrument

First stage: PM2.5 (µg/m3)

(1) (2) (3) (4) (5)

Wildfire smoke 0.074∗∗∗ 0.077∗∗∗ 0.078∗∗∗ 0.078∗∗∗ 0.078∗∗∗

(0.002) (0.003) (0.003) (0.003) (0.003)

Thermal inversion 4.89∗∗∗ 1.67∗∗∗ 1.68∗∗∗ 2.26∗∗∗ 2.26∗∗∗

(0.622) (0.514) (0.513) (0.559) (0.559)

Average precipitations (week) -0.20∗∗ -0.20∗∗∗

(0.080) (0.080)

Average temperature (week) -0.73∗∗∗ -0.73∗∗∗

(0.101) (0.101)

First-stage F-stat 1090.5 396.3 398.0 382.0 382.3
Overid. p-value 0.34 0.62 0.52 0.55 0.38

Second stage: Real hours worked during the week

(1) (2) (3) (4) (5)

Average PM2.5 (µg/m3) -0.037 -0.079 -0.029 -0.11∗∗ -0.11∗∗

(0.024) (0.062) (0.057) (0.051) (0.050)

Average precipitations (week) -0.19∗∗∗ -0.18∗∗∗

(0.049) (0.049)

Average temperature (week) 0.095∗∗ 0.11∗∗∗

(0.040) (0.040)

Area of a comuna (1000 km2) -0.0074 -0.014
(0.040) (0.039)

HH controls no no no no yes
Province FE yes yes yes yes yes
Year FE yes no no no no
Month FE no yes yes yes yes
Region-year FE no yes yes yes yes
Industry-year FE no no yes yes yes

Observations 265,572 265,572 265,572 265,572 265,572
Notes: All models are estimated using two stage least square using wildfire smoke and
average daytime thermal inversion occurrence as the exogenous instruments. The Kleibergen-
Paap rk Wald F statistics are reported as first stage F-stat. We have also reported the p value
of the Hanson J-statistics for overidentification test as the ‘overid. p-value’. Standard errors
in parentheses are clustered at the comuna level. Some controls in the first and second stage
regressions are suppressed for exposition purposes. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.4: The Air Quality Index (AQI) and individual components

Dependent variable: Real hours Contract hours Hours difference

(1) (2) (3)

AQI index weekly average -0.059*** 0.0033 0.036***
(0.020) (0.0099) (0.0096)

PM2.5, AQI index weekly average -0.064** 0.0031 0.035***
(0.025) (0.0095) (0.0094)

PM10, AQI index weekly average -0.062*** 0.0034 0.037***
(0.023) (0.010) (0.0097)

CO, AQI index weekly average -1.04** 0.058 0.65***
(0.41) (0.18) (0.18)

O3, AQI index weekly average -0.15*** 0.0081 0.090***
(0.043) (0.025) (0.025)

Estimator IV IV IV
Household controls yes yes yes
Province FE yes yes yes
Year FE yes yes yes
Month FE yes yes yes
Region-year FE yes yes yes
Industry-year FE yes yes yes

Observations 221,691 163,841 163,841
Notes: All models are estimated using two stage least square using wildfire smoke as the ex-
ogenous instrument. Standard errors in parentheses are clustered at the comuna level. Some
controls in the first and second stage regressions are suppressed for exposition purposes. ***
p<0.01, ** p<0.05, * p<0.1.
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Table A.5: IV results: rebound effects

Dependent variable: Real hours worked during the week

(1) (2) (3) (4)

Baseline pollution measure:
PM2.5, weekly average, contemporaneous -0.048∗∗ -0.082∗∗∗ -0.080∗∗∗ -0.083∗∗∗

(0.021) (0.024) (0.023) (0.022)

PM2.5, weekly average, lag 1 week 0.065∗∗∗ 0.060∗∗∗ 0.064∗∗∗

(0.014) (0.0095) (0.0091)

PM2.5, weekly average, lag 2 weeks 0.0080 0.015
(0.010) (0.011)

PM2.5, weekly average, lag 3 weeks -0.012∗

(0.0071)

Estimator IV IV IV IV
HH controls yes yes yes yes
Province FE yes yes yes yes
Month FE yes yes yes yes
Region-year FE yes yes yes yes
Industry-year FE yes yes yes yes
Observations 265,572 265,572 265,572 265,572
Notes: All models are estimated using two stage least square using wildfire smoke as the
exogenous instrument (for the contemporaneous pollution). Standard errors in parentheses
are clustered at the comuna level. Other controls are suppressed for exposition purposes. ***
p<0.01, ** p<0.05, * p<0.1.
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Table A.6: The causal effect of air pollution, by industry

Dep var. real work hours Industry
Agriculture Manufacturing Service

Average weekly PM2.5 (µ/m3) -0.099∗ 0.23∗∗∗ -0.28∗∗∗

(0.057) (0.026) (0.024)

Average precipitations (week) -0.36∗∗∗ -0.12∗ -0.17∗∗∗

(0.13) (0.061) (0.050)

Average temperature (week) 0.22∗∗∗ 0.35∗∗∗ -0.037
(0.082) (0.056) (0.047)

Area of a comuna (1000 km2) 0.12 -0.041 -0.0015
(0.14) (0.044) (0.035)

Estimator IV IV IV
HH controls yes yes yes
Province FE yes yes yes
Month FE yes yes yes
Region-year FE yes yes yes
Industry-year FE yes yes yes

Observations 33,007 60,505 172,059
Notes: The dependent variable is the real number of hours worked. All models
are estimated using two stage least squares using wildfire smoke as an exogenous
instrument. The ‘Manufacturing’ group also includes some primary sectors such
as mining, construction and utilities sectors. Standard errors in parentheses are
clustered at the comuna level. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.7: The causal effect of air pollution, by occupation

Dep. var.: real work hours Support Service Trade Machine Unskilled

Average PM2.5 (µg/m3) 0.21∗∗∗ -0.44∗∗∗ 0.35∗∗∗ 0.083 -0.0072
(0.050) (0.093) (0.038) (0.078) (0.030)

Average precipitations (week) 0.032 -0.19∗∗ -0.16∗∗ -0.024 -0.30∗∗∗

(0.077) (0.089) (0.070) (0.088) (0.065)

Average temperature (week) 0.36∗∗∗ -0.16∗ 0.49∗∗∗ 0.18∗∗ 0.16∗∗∗

(0.069) (0.095) (0.072) (0.089) (0.052)

Area of a comuna (1000 km2) -0.057 0.063 -0.0085 -0.017 -0.016
(0.045) (0.064) (0.041) (0.099) (0.11)

Estimator IV IV IV IV IV
HH controls yes yes yes yes yes
Province FE yes yes yes yes yes
Month FE yes yes yes yes yes
Region-year FE yes yes yes yes yes
Industry-year FE yes yes yes yes yes

Observations 22,981 39,704 36,756 23,376 66,418
Notes: The dependent variable is the real number of hours worked. All models are esti-
mated using two stage least squares using wildfire smoke as an exogenous instrument. We
have included occupation groups where we are able to obtain a statistically significantly
strong first stage. The occupation groups (abbreviated at the heading) are, respectively,
’Clerical support workers’ (Support), ’Service and sales workers’ (Service), ’Craft and re-
lated trades workers’ (Trade), ’Plant and machine operators and assemblers’ (Machine), and
’Elementary occupations’ (Unskilled). Standard errors in parentheses are clustered at the
comuna level. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.8: Robustness – regions

Baseline Excluding regions
1, 2, 15 1, 2, 3, 1, 2, 3,

4, 10, 11, 12, 4, 8, 9, 10,
Dep. var.: real work hours 15 11, 12, 14, 15

Average weekly PM2.5 (µ/m3) -0.048∗∗ -0.047∗∗ -0.046∗∗ -0.044∗∗

(0.021) (0.021) (0.020) (0.018)

Average precipitations (week) -0.16∗∗∗ -0.17∗∗∗ -0.14∗∗∗ -0.28∗∗∗

(0.046) (0.047) (0.047) (0.051)

Average temperature (week) 0.15∗∗∗ 0.15∗∗∗ 0.22∗∗∗ 0.18∗∗∗

(0.034) (0.034) (0.035) (0.039)

Area of a comuna (1000 km2) -0.020 0.073 0.022 0.17
(0.035) (0.056) (0.14) (0.11)

Estimator IV IV IV IV
HH controls yes yes yes yes
Province FE yes yes yes yes
Month FE yes yes yes yes
Region-year FE yes yes yes yes
Industry-year FE yes yes yes yes

Observations 265,572 238,176 191,243 137,486
Notes: The first column contains the baseline. In the second second column we eliminate the
three northernmost regions of the country: Tarapacá, Antofagasta and, Arica and Parinacota. In
the third column we also eliminate: Atacama, Coquimbo, Los Lagos, Aysén of General Carlos
Ibáñez del Campo, Magallanes and Chilean Antartica. In the fourth column we also eliminate:
Bío Bío, La Araucanía and, Los Rvíos. All specification is estimated using two stage least square
with wildfire smoke as the exogenous instrument. Standard errors in parentheses are clustered
at the comuna level. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.9: Robustness – weights

Weight >
Dep. var.: real work hours 0.2 0.3 0.4 0.5 0.6

Share burned -11.8∗∗∗ -11.8∗∗∗ -21.5∗∗∗ -21.2∗∗∗ -19.7∗∗∗

(2.98) (3.09) (2.82) (3.38) (3.53)

Average precipitations (week) -0.089∗ -0.082 -0.071 -0.11∗ -0.10
(0.047) (0.052) (0.058) (0.066) (0.10)

Average temperature (week) 0.22∗∗∗ 0.23∗∗∗ 0.23∗∗∗ 0.23∗∗∗ 0.24∗∗∗

(0.037) (0.041) (0.045) (0.053) (0.059)

Area of a comuna (1000 km2) 0.070∗∗∗ 0.078∗∗∗ 0.065∗∗∗ 0.056∗∗ -1.01∗

(0.025) (0.016) (0.020) (0.023) (0.53)

HH controls yes yes yes yes yes
Province FE yes yes yes yes yes
Month FE yes yes yes yes yes
Region-year FE yes yes yes yes yes
Industry-year FE yes yes yes yes yes

Observations 188,825 150,563 122,969 81,851 47,676
Notes: The number of observations decreases as we increase the probability that an individual
lives within the buffer area considered for wildfires. All specification contain estimation
weights for the probability that an individual is within the buffer affected by the wildfire.
Standard errors in parentheses are clustered at the comuna level. *** p<0.01, ** p<0.05, *
p<0.1.
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Table B.1: Effect of air pollution on real hours worked: OLS

Real hours worked during the week

(1) (2) (3) (4) (5)

PM2.5 (µg/m3) 0.011∗∗ 0.017∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 0.018∗∗∗

(0.0050) (0.0057) (0.0056) (0.0055) (0.0054)

Average precipitations (week) -0.24∗∗∗ -0.24∗∗∗

(0.054) (0.054)

Average temperature (week) 0.14∗∗∗ 0.15∗∗∗

(0.034) (0.034)

Area of a comuna (1000 km2) -0.0078 -0.013
(0.030) (0.031)

No. of people in HH 0.32∗∗∗

(0.029)

Main breadwinner of HH 2.99∗∗∗

(0.10)

Years of education 0.10∗∗∗

(0.025)

Married -0.22∗∗∗

(0.033)

Age -0.023∗∗∗

(0.0047)

Gender 4.68∗∗∗

(0.13)

Province FE yes yes yes yes yes
Year FE yes no no no no
Month FE no yes yes yes yes
Region-year FE no yes yes yes yes
Industry-year FE no no yes yes yes

Observations 202,576 202,576 202,576 202,576 202,576
R2 0.0059 0.0085 0.034 0.034 0.061
Notes: Standard errors in parentheses are clustered at the comuna level. *** p<0.01, **
p<0.05, * p<0.1.
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Table B.2: Real hours worked – 1-3 km round buffer

Buffer size:
Dep. var.: real work hours 1 km 1.5 km 2 km 2.5 km 3 km

Share of wildfire in buffer -12.8∗ -5.25∗∗∗ -4.41∗∗∗ -4.91∗∗∗ -5.43∗∗∗

(6.62) (1.87) (0.91) (1.02) (1.32)

Average precipitations (week) -0.10∗ -0.11∗∗ -0.10∗∗ -0.10∗∗ -0.11∗∗

(0.055) (0.050) (0.046) (0.044) (0.044)

Average temperature (week) 0.21∗∗∗ 0.22∗∗∗ 0.21∗∗∗ 0.21∗∗∗ 0.21∗∗∗

(0.041) (0.038) (0.035) (0.033) (0.032)

Area of a comuna (1000 km2) 0.014 0.053∗ 0.069∗∗∗ 0.081∗∗∗ 0.093∗∗∗

(0.058) (0.028) (0.025) (0.026) (0.029)

HH controls yes yes yes yes yes
Province FE yes yes yes yes yes
Month FE yes yes yes yes yes
Region-year FE yes yes yes yes yes
Industry-year FE yes yes yes yes yes

Observations 259,928 260,266 260,266 260,322 260,322
Notes: All specification contain estimation weights for the probability that an individual is
within the buffer affected by the wildfire, the weights are recomputed every time the size
of the buffer changes. Standard errors in parentheses are clustered at the comuna level. ***
p<0.01, ** p<0.05, * p<0.1.
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C Figures

Figure C.1: Measuring exposure to fire

Notes: MODIS Burned Area product, the red dot are burned raster cells, while the round
buffer are meant to help identify the burned areas.
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Figure C.2: Placebo with randomization within regions
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Note: The histogram depicts the distribution of the t statistics for the coefficient on the
smoke plume for the 1000 placebo replications. In each replication we randomized
the occurrences of wildfires within each of the 16 regions of Chile. As one can see the
largest mass of the histogram falls between -1.96 and 1.96, meaning that the coefficient
is not statistically significant at the 5% level. The red line shows the t statistic obtained
in our baseline regression (-2.74).
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Figure C.3: Placebo with randomization within year
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Note: The histogram depicts the distribution of the t statistics for the coefficient on the
smoke plume for the 1000 placebo replications. In each replication we randomized the
occurrences of wildfires within each of the 9 years of our sample. As one can see the
largest mass of the histogram falls between -1.96 and 1.96, meaning that the coefficient
is not statistically significant at the 5% level. The red line shows the t statistic obtained
in our baseline regression (-2.74).
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Figure C.4: Population weighted centroids, high accuracy – Peñaflor

Notes: Example of a high accuracy buffer area. The buffer contains a large share of the popula-
tion of this comuna.

Figure C.5: Population weighted centroids, low accuracy – Tiltil

Notes: Example of a low accuracy buffer area. The buffer contains a small share of the population
of this comuna.
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