
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STORMS, EARLY 
EDUCATION AND 
HUMAN CAPITAL 

MARTINO PELLI 
JEANNE TSCHOPP 

2023s-10 
WORKING PAPER 



 
 
The purpose of the Working Papers is to disseminate the results of research conducted by CIRANO research members in order 
to solicit exchanges and comments. These reports are written in the style of scientific publications. The ideas and opinions 
expressed in these documents are solely those of the authors.  
 

Les cahiers de la série scientifique visent à rendre accessibles les résultats des recherches effectuées par des chercheurs membres du 
CIRANO afin de susciter échanges et commentaires. Ces cahiers sont rédigés dans le style des publications scientifiques et n’engagent 
que leurs auteurs.  
 

CIRANO is a private non-profit organization incorporated under the Quebec Companies Act. Its infrastructure and research 
activities are funded through fees paid by member organizations, an infrastructure grant from the government of Quebec, and 
grants and research mandates obtained by its research teams. 
 

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de son 
infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d’une subvention 
d’infrastructure du gouvernement du Québec, de même que des subventions et mandats obtenus par ses équipes de recherche. 
 

CIRANO Partners – Les partenaires du CIRANO 
 

Corporate Partners – Partenaires corporatifs 
Autorité des marchés financiers  
Bank of Canada 
Bell Canada 
BMO Financial Group 
Business Development Bank of Canada  
Caisse de dépôt et placement du Québec  
Desjardins Group  
Énergir 
Hydro-Québec 
Innovation, Science and Economic Development Canada  
Intact Financial Corporation 
Manulife Canada  
Ministère de l’Économie, de l’Innovation et de l’Énergie 
Ministère des finances du Québec 
National Bank of Canada  
Power Corporation of Canada  
PSP Investments 
Rio Tinto 
Ville de Montréal 
 

Academic Partners – Partenaires universitaires 
Concordia University 
École de technologie supérieure 
École nationale d’administration publique 
HEC Montréal 
McGill University 
National Institute for Scientific Research 
Polytechnique Montréal 
Université de Montréal 
Université de Sherbrooke 
Université du Québec 
Université du Québec à Montréal 
Université Laval 
 

CIRANO collaborates with many centers and university research chairs; list available on its website. Le CIRANO collabore avec de 
nombreux centres et chaires de recherche universitaires dont on peut consulter la liste sur son site web. 
 

© March 2023. Martino Pelli and Jeanne Tschopp. All rights reserved. Tous droits réservés. Short sections may be quoted 
without explicit permission, if full credit, including © notice, is given to the source. Reproduction partielle permise avec citation 
du document source, incluant la notice ©. 
 

The observations and viewpoints expressed in this publication are the sole responsibility of the authors; they do not represent 
the positions of CIRANO or its partners. Les idées et les opinions émises dans cette publication sont sous l’unique responsabilité 
des auteurs et ne représentent pas les positions du CIRANO ou de ses partenaires. 

 
ISSN 2292-0838 (online version) 



Storms, Early Education and Human Capital* 
 

Martino Pelli †and Jeanne Tschopp ‡  
 
 

Abstract/Résumé 
 
This paper explores how school-age exposure to storms impacts the education and primary 
activity status of young adults in India. Using a cross-sectional cohort study based on wind 
exposure histories, we find evidence of a significant deskilling of areas vulnerable to climate 
change-related risks. Specifically, our results show a 2.4 percentage point increase in the 
probability of accruing educational delays, a 2 percentage point decline in post-secondary 
education achievement, and a 1.6 percentage point reduction in obtaining regular salaried jobs. 
Additionally, our study provides evidence that degraded school infrastructure and declining 
household income contribute to these findings. 
 
Cet article étudie l'impact de l'exposition aux tempêtes à l'âge scolaire sur l'éducation et le 
statut d'activité primaire des jeunes adultes en Inde. À l'aide d'une étude de cohorte 
transversale basée sur l'historique de l'exposition au vent, nous trouvons des preuves d'une 
déqualification significative des zones vulnérables aux risques liés au changement climatique. 
Plus précisément, nos résultats montrent une augmentation de 2,4 points de pourcentage de la 
probabilité d'accumuler des retards dans l'éducation, une baisse de 2 points de pourcentage de 
la réussite dans l'enseignement post-secondaire et une réduction de 1,6 point de pourcentage 
de l'obtention d'un emploi salarié régulier. En outre, notre étude montre que la dégradation 
des infrastructures scolaires et la baisse des revenus des ménages contribuent à ces résultats. 
 
Keywords/Mots-clés: climate change, storms, education, human capital / changement 
climatique, tempêtes, éducation, capital humain 
 
 
JEL Codes/Codes JEL: Q54, I25, O12 
 
 
Pour citer ce document / To quote this document 
Pelli, M., & Tschopp, J. (2023). Storms, Early Education and Human Capital (2023s-10, 
Cahiers scientifiques, CIRANO.) https://doi.org/10.54932/HOUF2464  

                                                 
* We are grateful to the Social Sciences and Humanities Research Council (SSHRC, grant number 039367), and the Swiss National Foundation 
(SNF, grant number 100018 192553) for their financial support. We thank, without implicating them, Teevrat Garg, Blaise Melly, Ben Sand, Eric 
Strobl. All remaining errors are ours. 
†Department of Economics, University of Sherbrooke, 2500 Blvd de l’Universit´e, Sherbrooke, Q.C., Canada, CIREQ, CIRANO, and GREDI; 
Martino.Pelli@USherbrooke.ca  
‡Department of Economics, University of Bern, Schanzeneckstrasse 1, 3001 Bern, Switzerland; jeanne.tschopp@unibe.ch  

https://doi.org/10.54932/HOUF2464
mailto:Martino.Pelli@USherbrooke.ca
mailto:jeanne.tschopp@unibe.ch


1 Introduction

Low- and middle-income nations confront an inordinately elevated risk of natural catas-

trophes, as they are both more exposed to climate-related hazards and possess diminished

resilience (Dell et al., 2014).1 This deficiency in resilience renders children particularly sus-

ceptible, a concerning fact given that extreme weather events are anticipated to escalate due

to climate change (Emanuel, 2021). Our study delves into the enduring adverse consequences

of school-age exposure to tropical storms and cyclones on education and pursuits during early

adulthood in India. We scrutinize potential causal pathways spanning the school years, a

crucial phase demonstrated to shape lifetime earnings (e.g. Oreopoulos, 2007; Angrist &

Krueger, 1991).

In this paper, we begin by evaluating the ramifications of storm exposure during school-

age on educational outcomes in both the short and long run, using a cross-sectional cohort

study based on the 2018 release of the Periodic Labour Force Survey (PLFS). We assess

educational outcomes by considering years of schooling and the highest educational level

achieved. To capture the cumulative effects of storms throughout school years, we devise

a continuous treatment that aggregates wind exposure histories for each district and co-

hort born between 1985-1995. Contrasting with other environmental impact studies (e.g.

Ebenstein et al., 2016; Deuchert & Felfe, 2015), our focus centers on long-term exposure to

storms, which enables us to gauge the consequences of climate change as opposed to mere

weather variability. Our results indicate that long-run storm exposure during school years

causes educational delays, and exerts significant lasting effects on educational attainment

and career choices in early adulthood.

An average storm exposure during school years yields an increased likelihood of expe-

riencing an educational delay by 2.4 percentage points, which translates to a 7.25% rise in

the fraction of delayed individuals. We also observe a notable decline in the number of indi-

viduals attaining post-secondary education. An average exposure leads to a decrease in this

probability by 2 percentage points, corresponding to a 7.35% reduction in the proportion of

individuals with this level of education.

Furthermore, we identify detrimental effects of storm exposure on labor market outcomes.

An average school-age exposure results in a 1.6 percentage-point decrease in the proportion

of individuals employed as regular workers, while concurrently causing a similar increase in

the share of individuals occupied with domestic duties. These statistics equate to an 8%

reduction in the share of individuals employed as regular workers and a 4.8% rise in the

1Developing countries’ reduced resilience stems from factors such as insufficient infrastructure, weak social
safety nets, market failures like absent credit and insurance markets, and an absence of effective early warning
systems and comprehensive disaster risk management.
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share of individuals involved in domestic duties. Additionally, we observe that an average

exposure incurs a 3.9% reduction in hourly wages. Severe tropical storm, once uncommon

but now progressively prevalent due to climate change, amplify all these findings.

Our results remain robust through a series of checks, encompassing a falsification test and

alternative specifications of school-age exposure to storms. We also demonstrate that our

estimates are not influenced by early-life exposure to storms or other environmental factors

such as precipitation and temperature during ages 5-15.

These findings show that prolonged exposure to extreme environmental shocks during

school years may contribute to the progressive deskilling of regions more susceptible to

climate-change related risks. This degradation of skills will exacerbate inequalities, un-

derscoring additional costs of climate change that have not been extensively examined thus

far. To devise appropriate mitigating policies, we must comprehend the underlying pathways

that drive our primary results.

In the second part of the paper, we employ supplementary datasets (Consumer Pyramids

and District Information System for Education) to probe the short-term mechanisms by

which storms may influence long-term educational outcomes, focusing on their impact on

household income and school infrastructure damage. Our findings reveal the presence of

both demand and supply shocks in the schooling sector. Firstly, using panel local projections,

we find that following an average storm, household income progressively declines, reaching

levels approximately 8% below pre-disaster incomes 10 months post-shock. Secondly, we

show that school closures significantly escalate in the aftermath of an average storm, with

the proportion of closed schools surging by 7.4% within two years. However, the impact of

an average exposure on the proportion of well-maintained classrooms and reliable electricity

availability at schools is modest, albeit statistically significant. Lastly, we observe a reduction

in primary school attendance and a decline in academic performance among middle school

students, which is consistent with a negative income shock and a reduction in schooling

demand.

These findings offer indirect evidence that the enduring consequences of storms on edu-

cation extend beyond the mere physical damages to schools, highlighting the significance of

broadening post-disaster policies beyond reconstruction efforts and enhancing social safety

nets (see Deryugina, 2017, for the importance of social safety nets in developed countries).

Specifically, our results propose that financial transfers ought to be paired with policies advo-

cating sustained education and post-disaster school enrollment, potentially by conditioning

cash transfers on school attendance. Furthermore, social policies, such as unemployment

insurance, could prove instrumental in fostering resilience and risk management in urban

areas, which are observed to be particularly vulnerable following storms.
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Our paper enhances the body of research examining the economic consequences of en-

vironmental disturbances during childhood in developing nations. Thus far, the literature

on this subject has concentrated on three primary analytical approaches. Firstly, a signifi-

cant portion of research investigates the short-term effects of concurrent shocks (e.g. Spencer

et al., 2016; Björkman-Nyqvist, 2013; Jensen, 2000).

Secondly, another branch of literature explores the deleterious repercussions of environ-

mental shocks experienced in utero or early life (up to 4 years old). These shocks have been

linked to a range of short and long-term outcomes, including various aspects of adult life,

such as health, education, wealth, and offspring outcomes (e.g. Chang et al., 2022; Hyland

& Russ, 2019; Rosales-Rueda, 2018; Akresh et al., 2017; Dinkelman, 2017; Maccini & Yang,

2009).

The third analytical approach delves into the long-term consequences of short-term in-

cidents occurring later in life, beyond ages 0-4. This line of research typically focuses on

either singular events, as illustrated by Deuchert & Felfe (2015) and Groppo & Kraehnert

(2017), or on short-term occurrences coinciding with crucial moments for individuals, such

as high-stakes exam days, as seen in studies by Park (2022) and Ebenstein et al. (2016).

Our paper makes two main contributions to this body of research. First, by examining

long-term exposure, our findings indicate a potential progressive deskilling in areas more sus-

ceptible to climate change-related risks – an additional cost associated with climate change

that has not yet been emphasized in the literature. Second, we concentrate on the impact of

these risks during the school-age years, highlighting the significance of this period in shaping

human capital formation. Recognizing the distinction between infancy and school-age expo-

sure is crucial, as the mechanisms through which adverse shocks affect long-term education

likely differ. While in utero disruptions are known to influence human capital via children’s

health, natural disasters during school-age years are more likely to impact long-term educa-

tional attainment through changes in household income and schooling infrastructure.

Our study is most closely related to Deuchert & Felfe (2015), which investigates the

short- and long-term effects of Super Typhoon Mike on educational outcomes in Cebu Island,

Philippines. The study reveals a negative and enduring impact on education, alongside a

gradual reallocation of funds from education to reconstruction efforts. We build upon these

findings by concentrating on long-term exposure through a continuous measure rather than a

binary damage indicator, offering valuable insights into the labor market outcomes of affected

children in early adulthood and presenting an in-depth analysis of the factors underlying

long-term educational delays.2

2In a related study, Shah & Steinberg (2017) employs rainfall as a proxy for wages in rural India, demon-
strating that higher rainfalls, which correlate with higher wages, influence human capital accumulation
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Lastly, our study contributes to the literature by conducting an extensive examination

of the mechanisms connecting school-age exposure to storms with long-term human capital

degradation, specifically focusing on income and schooling infrastructure channels. To our

knowledge, these channels have predominantly been explored independently (see Baez et al.,

2010, for a review).

Our findings on the income channel relate to the body of research that reveals the nega-

tive impact of economic recessions on education (e.g. Stuart, 2022). The majority of studies

addressing this channel have employed difference-in-difference estimations. In contrast, local

projections offer advantages in cases of multiple treatments, making them a suitable alterna-

tive to the difference-in-difference approach for addressing dynamic treatment effects.3 Apart

from Barattieri et al. (2023), which investigates employment and wage effects in Puerto Rico,

we are unaware of other papers that utilize this methodology to study environmental shocks.

Regarding the infrastructure channel, there is limited evidence on the impacts of natural

disasters on educational facilities. Our results indirectly highlight the importance of adequate

school infrastructure for long-term education and labor market outcomes, thus contributing

to the literature on the effects of constructing new schools in developing countries (Damon

et al., 2018; Glewwe & Kremer, 2006). For a recent study that focuses on the construction

of disaster-resistant schools, see Herrera-Almanza & Cas (2021). The authors demonstrate

that building typhoon-resistant secondary schools in the Philippines can help alleviate the

long-term detrimental effects of extreme weather events on the education and labor market

outcomes of school-age children.

The remainder of the paper is organized as follows. Section 2 describes the PLFS data

and the construction of our main measure of school-age exposure to storms. In Section 3 we

discuss the extent to which storms can be considered as exogenous and examine the potential

measurement error generated by storm-related migration. Section 4 examines the long-term

effects of school-age exposure to storms on educational delays, educational attainment and

the type of labor market activity performed by young adults. The main results are presented

in Section 4.1 and robustness tests in Section 4.4. Finally, Section 5 discusses the channels

through which storms may affect education in the long-run and Section 6 concludes.

differently depending on the child’s age. This research is part of a broader literature on the impact of eco-
nomic downturns on education (e.g. Stuart, 2022). While the study also scrutinizes the school-age period,
its primary objective differs from ours, as it seeks to evaluate how favorable economic conditions alter the
opportunity cost of schooling and, consequently, the incentives for children to attend school.

3Local projections have been first proposed by Jorda (2005). They have been used widely in empirical
macroeconomics and more recently in the context of environmental economics (see e.g., Barattieri et al.,
2023; Naguib et al., 2022; Roth Tran & Wilson, 2021). As discussed by Dube et al. (2022), they can be
used as an alternative methodology to deal with the issue of dynamic treatment effects that arises with the
difference-in-difference approach in the case of multiple treatments.
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2 Data

In our primary empirical analysis, we rely on two data sources: i) the 2018 release of the

PLFS, which provides measurements for educational delays and labor market variables, and

ii) tropical storm data from the NOAA, employed to construct a school-age exposure index

for storms.

2.1 Individual and Household Data

The PLFS is an individual- and household-level representative survey of the Indian popu-

lation collected by the National Sample Survey Office (NSSO) of the Ministry of Statistics

and Program Implementation. This survey offers a range of information on individual char-

acteristics, including age, gender, educational level, and the number of years spent in school.

In India, children typically begin school at the age of 6, with compulsory schooling lasting

for 9 years, until they reach 15 years old. Table D.1 in the Online Appendix outlines the

Indian schooling system, including the various pathways to higher education.4 Column (1)

displays the number of years required to complete each individual category of schooling.

For graduate and postgraduate levels, the figures correspond to the modal duration across

disciplines. Column (2) presents the total cumulative number of years needed to complete

any given level of education. For example, middle school spans 3 years, and by the end of

middle school, a child should have accumulated 8 years of education – 5 years of primary

and 3 years of middle school. The PLFS provides data on the highest level of education

completed as well as whether an individual earned a diploma or certificate, enabling us to

infer the path of those who pursued higher education.

For each individual, we measure educational delay by comparing the actual number of

years spent in formal education to the minimum number of years required within the school-

ing system to attain the reported level of education. For instance, consider an individual

who reports seven years of formal schooling but has only completed primary school. This

individual would have a two-year educational delay, stemming from either grade repetition

or dropping out from a higher educational level (middle school, in this specific example).5

Consequently, our analysis sheds light on whether storms increase educational delays, but it

does not offer insights into the likelihood of repeating grades versus dropping out of school.

As an alternative, we also construct an indicator variable for educational delay, which takes

4For more details on the Indian educational system and its comparison to other systems, please visit:
https://wenr.wes.org/2018/09/education-in-india

5Although it would be intriguing to differentiate between the two types of delays, the PLFS lacks sufficient
information to do so. In Section 5.3, we utilize auxiliary data to investigate the impact of storms on school
attendance and performance.
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the value of 1 for individuals with positive delays and 0 otherwise.

The PLFS supplies information on individuals’ primary activity status.6 This data re-

veals whether an individual’s primary engagement is in regular work (i.e., work associated

with a formal job and an employment contract), casual work (i.e., work with a daily or

periodic contract only), self-employment, unpaid family work (e.g., working in the family

business/farm without pay), or domestic duties (e.g., collecting vegetables, firewood, cattle

feed, sewing, etc.). Additionally, the survey includes labor market indicators such as hours

worked and earnings; however, this information is only available for individuals engaged in

paid activities and who report being part of the labor force.

Crucially, the PLFS offers information on individuals’ district of residence, which, when

combined with their age, allows us to create a unique measure of school-age exposure to

storms that varies by birth-year cohort and district. As we discuss further below, our measure

is a continuous treatment that considers the intensity of the storms experienced by children

from a specific cohort living in a particular district throughout their schooling years. Given

the very small proportion of individuals migrating outside of their birth district (see, for

instance, Edmonds et al., 2010; Topalova, 2010; Munshi & Rosenzweig, 2009), we assume

that individuals completed their compulsory schooling in the same district where they reside

in 2018. This assumption is critical for constructing the school-age storm exposure index

and is further explored in Section 3.

We select the age of an individual upon completing postgraduate education (master’s

degree) as the benchmark for early adulthood. Without educational delays, obtaining a

postgraduate degree takes 17 years (path 4 in Table D.1 of the Online Appendix). Children

typically start school at the age of 6, so early adulthood is reached at the age of 23. Con-

sequently, the youngest cohort considered in this paper was born in 1995 and should have

completed compulsory schooling in 2010. The oldest cohort examined is determined by the

availability of WMO-sanctioned North Indian Ocean data, which only goes back to 1990

(Knapp et al., 2010). As a result, the oldest cohort we consider was born in 1985 and is 33

years old in 2018 (refer to Figure E.1 in the Online Appendix for an illustration).

Our analysis concentrates on individuals born between 1985 and 1995 (i.e., cohorts aged

23-33 in 2018) and storms occurring between 1990 and 2010. We focus on individuals who

have received at least some formal education. This includes those who attended school but

did not complete primary education, while excluding individuals who were never enrolled

in the schooling system. As a result, our analysis does not capture the effects on the most

vulnerable children (e.g., those belonging to scheduled castes). Moreover, we exclude indi-

6Details and definitions can be found here (p.35): http://mospi.nic.in/sites/default/files/publi
cation$_$reports/Annual$_$Report$_$PLFS$_$2018$_$19$_$HL.pdf
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viduals who dropped out of school and were exposed to tropical storms after leaving school;

individuals who were never exposed or were exposed before dropping out are included in the

sample. This ensures that our storm measure accurately reflects cohort-district exposures

while attending school. This restriction affects fewer than 1% of the observations aged 23-33

in 2018.

2.2 School-age Exposure to Tropical Storms

To investigate the impact of school-age exposure to storms on long-term education levels

and labor market outcomes, we create an index based on storm wind speeds, which varies

by birth-year cohort and district.7 Our measure accounts for storms occurring during the

first nine years of compulsory schooling (starting at age six) and the pre-school year. By

including the pre-school year, we accommodate children born early in the year who may

begin school earlier.

School-age exposure to storms is computed as follows:

Cbd =
t=b+15∑
t=b+5

xdt, (1)

where b represents a birth-year cohort, d indicates a district, and t denotes a year. The

variable xdt represents a yearly district exposure to storms index, taking into account the

force exerted by winds on physical structures. It is determined by the following quadratic

specification:

xdt =
∑
h∈Ht

(wdh − 50)2

(wmax − 50)2
if wdh > 50, (2)

whereHt represents the set of storms in year t, and wdh is the maximum wind speed associated

with storm h to which district d was exposed. We compute wdh using a wind field model,

as detailed in Section A of the Online Appendix. The term wmax refers to the highest wind

speed observed throughout the entire sample. We assume a quadratic damage function in

order to capture the force exerted by winds on structures, following e.g. Pelli & Tschopp

(2017).8 Considering the poor quality of construction materials in India, infrastructures and

7As of August 1, 2022, India was composed of 766 districts. With a surface area of approximately 3.3
million square kilometers, the average district spans roughly 4,300 square kilometers or a square of 65 x 65
kilometers.

8In Section 4.4, we demonstrate that our baseline estimates remain robust under various alternative
specifications of district exposure to storms. Specifically, we employ a cubic damage function, conduct
robustness tests using other wind field models, and suggest a different aggregation of exposures across years
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buildings are vulnerable even at low wind intensities. Thus, we focus on a threshold of 50

knots, as in Emanuel (2005), rather than 64 knots – the threshold for a category 1 cyclone

according to the Saffir-Simpson scale. By definition, xdt ∈ (0, | Ht |), where a value of 0

indicates zero district exposure to storms (i.e., winds in district d are below the threshold

limit), and | Ht | represents the number of elements (storms) in set Ht.

Consider, for example, the timeline of the oldest cohort (born in 1985). As depicted in

Figure E.1 of the Online Appendix, the index of school-age exposure to storms, Cbd, sums dis-

trict exposure to storms from 1990 (the pre-school year) up to 2000; i.e., C1985,d =
∑t=2000

t=1990 xdt.

Variation in the index within birth-year cohorts across districts arises due to differences in

wind speed intensities at various locations during the same storm, while some areas remain

sheltered. Incorporating wind speed provides a continuous treatment that varies spatially,

offering significant advantages in terms of identifying variation compared to using dummy

variables or categorical treatments (e.g., a measure taking the value of one if an individual

was exposed to a storm during the period of compulsory schooling). Variation within dis-

tricts across birth-year cohorts results from different cohorts being subject to distinct storms

over the course of compulsory schooling.

In our sample, 70.5% of individuals have an exposure index of zero, indicating no exposure

to storms during the compulsory schooling period. On the other hand, 22.5% experienced

only one storm, and 6% were hit by two storms between ages 5-15. A mere 1% of individuals

encountered three or four storms during this time. Among those with a positive exposure,

75.5% were affected by a single storm, 20.5% experienced two storms, and 4% faced three or

four storms.

The left panel of Figure E.2 in the Online Appendix displays the measure of school-age

exposure to storms at the state level for our sample.9 Children residing in 28 out of the 35

Indian states experienced tropical storms between the ages of 5 and 15. Notably, the boxplots

exhibit significant variation in school-age exposure to storms both within and across states,

with Andhra Pradesh, Gujarat, Maharashtra, Orissa, and Telangana displaying the highest

median exposures.

The right panel of Figure E.2 offers a visualization of the distribution of Cbd across

districts for the 1987 birth cohort. Darker shades of red represent higher exposures, with the

darkest shade indicating districts where the index of school-age exposure to storms exceeds

the 90th percentile in the distribution of Cbd for individuals born in 1987. Each shade

encompasses 15% of the districts with a positive exposure. The northern landlocked region

of India demonstrates virtually zero exposure, which aligns with storm best track data,

of compulsory schooling.
9Only states with positive exposures are included.
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typically highlighting a high concentration of storms along coastal areas. The map reveals

that the 1987 cohort residing in the remaining areas of India experienced positive exposure

to storms, with districts along the South-Eastern coast being most affected.

Table D.2 in the Online Appendix presents summary statistics for the main variables

used in the paper. Panel A shows that 20,750 out of the 70,003 individuals in the sample,

approximately 30%, experienced exposure to storms throughout compulsory schooling. In-

dividuals accumulate up to 6 years of delay, with 33% reporting at least a one-year delay

(Panel B). Panel C displays summary statistics of dummy variables for the highest cate-

gory of schooling completed by individuals in our sample, excluding those with no formal

schooling. Approximately 3% of the sample did not complete primary school (but received

some primary education), 10% completed at most primary school, 24% middle school, and

37% secondary school. The remaining individuals received education beyond secondary level,

obtaining either a diploma (certificate course) or a post-/graduate degree. Binary variables

for the primary activity status of individuals in our sample, shown in Panel D, indicate that

the largest share, 33%, engages in domestic duties, while only 20% have a formal job with a

regular employment contract and salary. For the subsample with available data, individuals

earn, on average, a log hourly wage of 3.7 rupees and work 54 hours per week (Panel E).

The bottom of the table lists individual controls used in the analysis. The sample is nearly

evenly split across genders, predominantly comprising Hindu households, with 30% being

first-born individuals.10

3 Exogeneity of Storms and Migration

In this section, we discuss two potential concerns that may affect the validity of our results.

First, we examine the extent to which storms can be considered exogenous. Second, we

investigate the possibility of measurement error in storm exposure due to migration.

Exogeneity of Storms One potential concern with our empirical strategy is the possibility

that storms are not random. Figure E.3 in the Online Appendix displays hazard-prone

districts based on the frequency of cyclones and their severity. The figure shows that most

storm activity occurs on both coasts of the country, with certain areas being more susceptible

to storms than others. However, despite being more prone to storms, these areas are also

characterized by a high level of industrialization and economic activity.

To obtain a conditionally exogenous measure of storm exposure, we include district fixed

10The set of controls that we can use is restricted because most household- and individual-level controls
are likely to be affected by storms and would, therefore, be bad controls.
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effects (FE) in all of our specifications. Earlier studies have demonstrated that the occur-

rence of a cyclone does not provide any information on the probability of observing a similar

event in the same location in the future (see e.g. Pielke et al., 2008; Elsner & Bossak, 2001).

Therefore, it is impossible to predict the occurrence and exact path of storms, conditional

on location. By using district FE, we are left with random realizations of storms, purging

any correlation between locational economic decisions and the local distribution of storm

exposure.11 Furthermore, our use of winds exclusively to construct exposures can be con-

sidered exogenous. Although other storms’ hazards include floods and surges, their impacts

are affected by land management and deforestation, which have been shown to factor into

people’s settling decisions (Petkov, 2018).

Measurement Error in Storm Exposure One potential source of bias is measurement error

in storm exposure due to migration. We construct storm exposure using individuals’ place

of residence at the time of the survey, as we do not observe their place of birth or residence

during their school years. If individuals migrate out-of-district by 2018, the measure may

contain error if either the origin or destination districts were exposed to storms during

their compulsory schooling. This error could bias our results if migration is selective, such

as if a particular educational group systematically moves out-of-district or if movers are

concentrated in a specific educational category. Additionally, our estimates could be biased

if the probability of moving to another district increases after a storm. We alleviate this

concern in three ways, using alternative data sources.

First, we provide evidence that out-of-district migration is negligible in India. Using

the 64th round of the National Sample Survey (NSS) for the years 2007-2008, we estimate

that only 3.5% of households (out of 125,578) had migrated within the last 365 days, and

only 1.3% had migrated permanently, out of which only about half migrated out-of-district.

We also use the Pyramids Dx (panel People of India) dataset, a panel survey of individuals

belonging to approximately 200,000 households interviewed three times a year, to compute

migration figures for the period 2020-2021 (see Section 5.1 for more details on the Pyramids

Dx data). To be consistent with the PLFS estimation sample, we focus on individuals aged

5-33 years old. We find that less than 3% (10,424 out of 367,378) of individuals in the sample

moved across districts over a two-year period, and the yearly share of movers is 1.75% on

average. These results are consistent with Topalova (2010), who finds that less than 4%

(13%) of rural (urban) individuals migrate out-of-district.

Second, we use the same sample from the Consumer Pyramids Dx to show that mobility

11Evidence suggests that, even with climate change, any signal will appear in the distribution of storm
activity very gradually (see e.g. Emanuel, 2011). Therefore, it is unlikely that economic agents are aware of
changes in the local distribution of storm exposure.
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is not concentrated among any particular category of education. Table D.3 in the Online

Appendix displays the number of individuals by category of schooling as a share of out-of-

district movers (Column 2) and the share of out-of-district movers within each category of

education (Column 4). The table reveals that only 0.7% of movers have no education, with

about 6.8%, 9.3%, 44.6%, and 38.6% of movers being in primary, middle, secondary, and

graduate-level education, respectively. As expected, the share of movers is higher in the

12th grade and at the graduate level, corresponding to moments where students move for

higher education or specific graduate programs. Moreover, the share of movers within each

schooling category is small, representing less than 2% of individuals within each grade that

falls below middle school, less than 3% of individuals within each grade at the secondary

level, and about 6% of graduates.

Overall, although we cannot completely rule out the possibility of measurement error in

exposure for some individuals, the low levels of migration suggest that any such error is likely

to be small. Consequently, we can reasonably assume that the current district of residence is

a good proxy for the place of residence during school age. Furthermore, since mobility does

not appear to be concentrated among any particular educational category, any measurement

error is unlikely to be systematically biased towards a particular group of education. Hence,

we do not expect measurement error to substantially affect our estimates.

Third, we present additional evidence suggesting that any selection bias from endogenous

migration responses to disaster shocks is likely to be small, if not absent. Using the same

auxiliary database, we estimate the probability of impacted individuals migrating out of

their district of residence within a year following the shock. As described in Section B of the

Online Appendix, we find that storm exposure does not increase the likelihood of moving to

another district. In fact, our estimates indicate that individuals tend to migrate less after a

storm.

We interpret this result as indicating that the period following a strike is typically not

an opportune time for individuals to start anew, severing ties with their support networks,

family, and friends. As we demonstrate in Section 5.1, storms typically do not entirely destroy

people’s homes and possessions, but they do cause substantial income losses that diminish

individuals’ ability to move. Therefore, we do not anticipate post-disaster migration to bias

our estimates.

This finding aligns with recent studies indicating that natural disasters and migration

have a negative or statistically insignificant relationship (e.g., Shakya et al., 2022; Beine

et al., 2019; Gröschl & Steinwachs, 2017; Cattaneo & Peri, 2016). Mueller et al. (2014) and

Gray & Mueller (2012) show that persistent and slowly worsening natural disasters, such as

heat, may result in migration, while floods and storms do not significantly alter individuals’
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propensity to migrate. This may be because, during times of distress, individuals who are

economically disadvantaged are often reluctant to abandon their local adaptation capacity.

4 Educational Delay and Long-term Effects

Below we examine the long-term effects of school-age exposure to storms on educational

delays, educational attainment and the type of labor market activity pursued by young

adults.

4.1 Educational Delay

Specification To assess the impact of storm exposure during school years on educational

delays, we run the following specification:

Yi = α0 + α1Cbd +X′
iβ + δd + δb + ξd + ϵi, (3)

where i denotes an individual. While we drop subscripts where possible, note that i = (b, d),

where b denotes a cohort and d the district. The variable Yi measures educational delay,

either as the number of years of delay or as a dummy variable indicating at least one year

of delay. Cbd is our cohort-district-specific measure of exposure to storms between the ages

of 5-15. X′
i is a vector of individual characteristics, including dummy variables indicating if

the individual is a female, a first-born child and Hindu respectively.12 δd and δb are sets of

district FE and cohort FE, respectively. Although our data are cross-sectional, we introduce

a district-specific linear relationship across cohorts, ξd, that accounts for differential trends

in district-level education policies and regional disparities in economic growth. Finally, ϵi is

the error term.13

We use the PLFS survey weights to weight our observations, and we cluster standard

errors at the state level. Clustering at the state level is appropriate because education fund-

ing and programs are primarily administered at the state level.14 State-level clustering also

takes into account spatial correlations within a state and time correlations in the exposure

12We do not include controls for household headship, marital status, rural residency, or household size, as
each of these variables could be affected by school-age exposure to storms and may lead to a bad-control
issue if included.

13It is worth noting that our outcomes are observed only once for each individual in the cross-sectional
PLFS dataset, and thus our specifications are neither dynamic nor staggered difference-in-differences models
despite the inclusion of different cohorts. Instead, we adopt a cross-sectional cohort study approach, where
we retrospectively evaluate individuals’ exposure histories between ages 5-15.

14http://countrystudies.us/india/37.htm
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index resulting from the fact that the same storm affects multiple birth-year cohorts simul-

taneously.15

Results In Table 1, Panels A and B present the results for equation (3). Panel A reports

the results for educational delay measured as the difference between the reported years of

schooling and the expected number of years based on reported educational attainment.

Column (1) presents the baseline results, which suggest that exposure to storms leads

to a statistically significant delay in completing a given level of education. The estimated

delay for a child with unit exposure is 0.43 years on average, which translates to roughly

a 5-month delay. The left panel of Figure E.2 of the Online Appendix shows that while

unit values in the exposure index are exceptional in our sample period, they are observed

in Orissa due to the 1999 BOB 06 super cyclone, the most severe and destructive tropical

cyclone recorded in India from 1990 to 2000. Although extremely severe cyclonic storms are

rare, recent events such as storms Phailin and Fani in Orissa in 2013 and 2019 respectively,

super cyclone Amphan in West Bengal in 2020, and severe cyclonic storms Tauktae and Yaas

in Gujarat and West Bengal and Orissa respectively in 2021, indicate an increasing frequency

of such events. Therefore, it is important to provide an interpretation of our estimates for

large (unit) values of the exposure index, as it informs on the educational long-term delays

that the current generation of school-attending kids may face. If we use the average exposure

in the sample to interpret our results, we find that the educational delay is approximately

nine school days.16

We examine the robustness of our results by using different sets of fixed effects (FE) in

columns (3) and (4). In column (3), we include state-cohort FE, which allows the economic

conditions of a state at the time of a cohort’s birth to affect long-term educational delays.

Although the estimate is less precise and smaller than the baseline, it remains qualitatively

similar. In the last column, we add state-policy FE, which account for the introduction of

the new National Policy on Education in 1986 under the government of Rajiv Gandhi and its

amendment in 1992. The policy aimed to provide compulsory education for all children up

to the age of 14 and was effectively adopted at the state level. The interaction term covers

cohorts born in 1985, those born between 1986 and 1991, and those born after 1991. Results

are similar to those in column (2) and remain statistically significant at the 5% level.

In Panel B of Table 1, we estimate a linear probability model to examine the impact of

school-age exposure to storms on the likelihood of experiencing an educational delay of at

15We work with 35 clusters, including 28 states and 7 union territories. Tables D.5 and D.6 in the Online
Appendix show that our results remain consistent when using district clustering or district-cohort clustering.

16With an average storm exposure of 0.1 in our sample, 42 weeks per year, and a 5-day school week, this
number is computed as 0.43 · 0.1 · 42 · 5.
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least one year. The results are consistent across specifications and indicate that exposure to

storms during schooling years increases the likelihood of experiencing an educational delay.

Specifically, in the baseline specification (column 1), a unit exposure (which is likely to be

driven by severe events) is associated with a 24 percentage point increase in the probability

of accumulating an educational delay (i.e. repeating a year or dropping out). On the other

hand, an average exposure increases this probability by 2.4 percentage points. In our sample,

the proportion of individuals with an educational delay of at least one year is 0.331 (as shown

in Panel B of Table D.2 of the Online Appendix). Based on the baseline estimate in Panel

B, we can infer that this proportion would increase by approximately 72.5% (to a share of

0.571) in the case of an extreme cyclonic storm exposure, and by 7.25% (to a share of 0.355)

in the case of an average exposure.

4.2 Educational Attainment

In Panel C of Table 1, we investigate whether storms not only cause educational delays, but

also affect the likelihood of completing a given level of education. We use an ordered logit

model with a categorical variable representing reported educational attainment (0=below

primary, 1=primary school, 2=middle school, 3=secondary education, 4=above-secondary

education), where category 0 includes individuals who received some education but did not

complete primary school. The same set of variables as in equation (3) is included as controls.

The first column of the table displays the ordered logit estimates, while columns (2)-(6)

report the marginal effects of school-age exposure to storms for each category of schooling. All

of the estimates are statistically significant and represent the percentage point changes in the

probability of completing a certain level of education in the case of unit school-age exposure to

storms. In general, positive exposure to storms increases the probability of not completing

primary school and completing at most primary and middle school, while decreasing the

probability of achieving secondary and post-secondary education. Specifically, our findings

show that unit exposure reduces the likelihood of achieving post-secondary education by

20 percentage points. This translates to a 2 percentage point reduction in the event of an

average exposure.

To give a sense of the scale of our findings, let us consider children who experienced

the 1999 BOB 06 super cyclone during their schooling years (i.e., Cbd = 1). Based on

the educational attainment proportions in Table D.2 of the Online Appendix, the estimates

in Panel C of Table 1 suggest that the percentage of individuals who did not complete

primary school (with at most primary education) would increase from 2.7% to 7.3% (or

9.8% to 20.8%), while the percentage of individuals who obtained post-secondary education
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(with at most secondary education) would decline from 27.2% to 7.2% (or 36.5% to 31%).

Therefore, it can be inferred that exposure to the 1999 super cyclone likely resulted in

a significant increase in individuals lacking basic education. Even for an average storm

exposure, these percentages remain significant. For example, the proportion of individuals

with post-secondary education would decrease by 7.35%, while the percentage of individuals

with only primary school education would increase by 11%.

In Figure E.4 in the Online Appendix, we utilize the estimates obtained from the or-

dered logit model to visualize the predicted probabilities of achieving a particular level of

education across the range of storm exposures from 0 to 1, along with their 95% confidence

intervals. The overall findings from this analysis reveal that storms result in a leftward shift

in the distribution of educational attainment, which is particularly concerning for developing

nations such as India, where the distribution of skills is already heavily skewed to the left.

4.3 Type of Activity

We expect that the educational disruption caused by storms during compulsory schooling

would affect the type of labor market activities individuals perform in early adulthood, as

certain types of jobs require higher levels of education or at least basic reading, writing,

and computing skills. To investigate this issue, we estimate a reduced-form specification of

school-age exposure to storms on an indicator variable for each type of activity in Panel A

of Table 2. For example, in column (1), the dependent variable is a dummy variable equal

to 1 if the main activity of individual i is regular work. We include the same set of controls

as in equation (3) for each type of activity.

Our estimates suggest that individuals who were exposed to storms during their schooling

years are less likely to work as regular salaried workers and more likely to perform domestic

duties. However, we find no statistically significant effect on the likelihood of being a casual

worker, self-employed, or an unpaid family worker. To illustrate the magnitude of our results,

let us consider the labor market impacts associated with the average positive exposure in

our sample (i.e., Cbd = 0.1). The estimate in column (1) implies a 1.6 percentage point

reduction in the probability of being a regular worker. According to Panel D of Table D.2 of

the Online Appendix, 19.6% of individuals in our sample are engaged in regular work. Thus,

the estimate in column (1) implies an 8% decrease in the probability of being employed as a

regular worker. The estimate in column (5) indicates a 1.6 percentage point increase in the

likelihood of performing domestic duties as the primary activity in early adulthood, which

corresponds to a 4.8% change when taking the share of individuals involved in domestic

duties (i.e., a share of 0.33) as a baseline. These effects are more pronounced for children
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who experienced more severe exposures. For example, with unit exposures and taking the

same baseline shares, the estimates imply changes of approximately 80% and 48% for regular

work and domestic duties, respectively.

In summary, an average storm increases the probability of experiencing a schooling

delay by 2.4 percentage points, while concurrently reducing the likelihood of completing

post-secondary education by 2 percentage points. These findings are congruent with a 1.6

percentage-point decrease in the probability of securing a regular salaried position, suggesting

that both delays in schooling and a skill reduction are likely contributing factors.

In Panel B of Table 2, we investigate whether positive exposure to storms is associated

with lower wages and longer hours of work. In column (1), we restrict the sample to workers

who receive a salary, which explains the drop in sample size. We find no evidence that,

conditional on being employed as a regular worker, school-age exposure to storms has a

permanent effect on wages. However, the subsample of workers with a positive salary is a

selected one since exposure to storms reduces the probability of being a regular worker (see

column 1 of Panel A). To address this issue, we run a Tobit estimation and report the average

marginal effect (AME) on wages, evaluated at the means of the covariates, in column (2) of

Panel B. The estimate shows a negative effect on wages, which is statistically significant at

the 10% level. This suggests that, on average, a super storm causes a 39% decline in hourly

wages, or taking the average exposure, a 3.9% wage drop. This result is consistent with the

fact that storms increase educational delays and reduce the probability of completing higher

education.

Column (3) of Panel B shows the results on hours of work, focusing on individuals re-

porting positive hours of work and a positive salary, as in column (1). In column (4), we

report the corresponding AME from a Tobit estimation, once again evaluated at the means

of the covariates. We find no evidence that school-age exposure to storms has a permanent

effect on hours of work.

The disruption of education caused by storms is likely to widen income and social dis-

parities across different districts and age groups in the long run. Our findings suggest that

this increase in inequality is primarily driven by changes in qualifications and types of em-

ployment, leading to less secure and potentially lower-paying work. Additionally, disparities

along the income distribution may further increase as those who experience the largest delays

in education often come from vulnerable social groups.
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4.4 Robustness

In this section, we present a series of robustness checks. We focus on the results related to

education and refer readers to Online Appendix C for an analysis of the primary activity

status of individuals.

Early-life Exposure to Storms It is well-documented in the literature that shocks experi-

enced in early life can have long-lasting negative impacts on health, education, and labor

market outcomes (see, e.g., Almond et al., 2018, for a recent survey of this literature). To

verify that our findings are attributable to shocks during school-age years rather than earlier

shocks, we augment our baseline specification by incorporating a measure of storm exposure

during the early years of life (0-4 years old), a period considered critical for skill formation

in developmental psychology, epidemiology, and economics (see, e.g., Duque et al., 2019;

Heckman, 2008; Knudsen et al., 2006). The measure is similar to our baseline index (see

equation 1), but specifically focuses on early life.

Table 3 presents results from this exercise. In column (1), we present our baseline speci-

fication. Including storms which took place in early years reduces the sample to birth-year

cohorts 1990-1995. Column (2) shows that restricting the sample to individuals born af-

ter 1989 does not affect our baseline results. In column (3), we replace school-age (Cbd)

with early-life exposure. Estimates are statistically insignificant for all outcomes, except for

educational attainment, suggesting that for individuals who actually received some formal

schooling, storms in early life have little impact on educational delays. However, this does

not necessarily mean that early-life exposure to storms has no impact on education; it may

still reduce the probability of receiving a formal education, which we are unable to assess.

Finally, in column (4), we include both early-life and school-age exposures simultaneously.

The inclusion of the early-life measure does not impact the estimates of interest, suggest-

ing that our results are not driven by storm shocks that occurred in years 0-4, and that

school-age years are crucial for long-term human capital formation.17

Falsification Test To confirm the validity of our identification strategy, we conduct a falsifi-

cation test by randomly assigning storms to the sample. We shuffle the measure of exposure

to storms across the entire sample and substitute this randomized variable for the actual

exposure measure in the baseline specification. We anticipate that the results of this exercise

will yield mostly statistically insignificant estimates for the variable of interest, while leaving

17We also control for after-school storm exposure by summing yearly exposures over the after-school period
up to 2018 in the analysis of primary activity status (see Table D.8 in the Online Appendix). Our baseline
estimates remain unchanged even after adding this control.
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the statistical significance of the estimates for other variables largely unchanged. We repeat

this process 1,000 times and record the t-statistics and p-values for each iteration.

We present the results of the falsification test in Figure 1, which visually shows the distri-

bution of t-statistics for the coefficient of interest. Panel A focuses on the regression on years

of educational delay, while Panel B considers educational delay as a binary variable. Panel

C shows the results for educational attainment. The histograms represent the distribution

of t-statistics across the 1,000 repetitions of the falsification exercise, with the red vertical

line indicating the t-statistic of the baseline estimates (3.01, 2.96, and -3.79, respectively).

We observe that the majority of the distribution falls within the -1.96 and 1.96 boundaries,

indicating that most of the coefficients obtained through the falsely-attributed storms are

statistically insignificant.

Removing Extreme Exposures Table 4 examines the sensitivity of our results to extreme

values of exposure. The baseline results are shown in column (1). In column (2), we exclude

individuals from Orissa, which has unusually high values of exposure due to the 1999 super

cyclone BOB 06. The results obtained from this subsample are similar to the baseline

estimates. Finally, in column (3), we exclude all winds with values above the 95th percentile

of the wind speed distribution. As anticipated, this leads to smaller effect sizes and less

precise estimates.

Climate Controls To account for the potential influence of general climate conditions during

childhood on human capital formation and long-term outcomes, we include controls for local

climate effects such as precipitation and temperature in columns (4) and (5) of Table 4.

To this end, we augment the baseline specification by introducing a district-specific vari-

able measuring the average annual precipitation (in millimeters) between ages 5-15. Addi-

tionally, we include controls for the average temperature (in ◦C) and the number of days that

children in a particular district were exposed to different temperature ranges (0-10, 10-20,

20-30, and above 30◦C) during their school-age years. We obtain the raw temperature and

precipitation data from the ERA5-Land archive, accessed through the Google Earth Engine,

and then aggregate them at the district level.18

Results are shown in columns (4) and (5) of Table 4. Column (4) reports the baseline

specification estimated on the subset of the sample for which climate variables are available.

In column (5), we include controls for precipitation and temperature, as described earlier.

18The ERA5-Land data is generated by researchers at the European Centre for Medium-Term Weather
Forecasting (Muñoz Sabater et al., 2019). It is a climate reanalysis dataset that provides hourly weather
information with a spatial resolution of 0.1×0.1 degrees, which is approximately 10×10 kilometers, covering
the period from 1981 to the present.
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Across all panels, the coefficient of interest remains precisely estimated and qualitatively

similar to the baseline results, albeit with a slightly smaller size effect.

Education Controls To account for the fact that individuals within educational categories

may share observable characteristics or have similar abilities that make them more or less

likely to experience educational delay, we propose two alternative approaches.19

The first approach involves using the predicted probability of completing a reported level

of education, conditional on observable individual characteristics, as a proxy for educational

attainment. Specifically, we estimate a linear probability model on a set of individual char-

acteristics, such as the individual’s gender, year of birth, whether they are a first-born child,

and their religion (Hindu or non-Hindu) as predictors, along with interactions of these vari-

ables. To avoid a bad control issue in the final regression, we focus on a subsample of states

with zero exposure to storms between 1990 and 2010, and restrict ourselves to individual

characteristics that are unlikely to be affected by storms. We use these estimates to predict

the probability of completing each level of education for each individual in the full (baseline)

sample and use the corresponding probability as a proxy for educational attainment in the

final regression. The result of this exercise is presented in column (2) of Table 5 and is highly

comparable to the baseline estimates presented in column (1).

Second, we propose including fixed effects capturing parental education, which has been

shown to be a significant predictor of children’s educational achievements (Björklund & Sal-

vanes, 2011; Guryan et al., 2008). Parental education is less likely to be affected by children’s

exposure to storms, although there is a possibility that parents enrolled in university may

have young children attending primary school. This may be particularly true for relatively

young parents. However, it is implausible that parental education overlaps with children’s

compulsory schooling at low levels of education.

One potential drawback of this approach is that parental education is only observable if

both the individual and their parents live in the same household. Additionally, since married

women often move in with their husbands’ families, the sample may include relatively more

males than in the baseline. We begin by replicating the baseline approach on the subset

of the sample with available data on parental education (column 3 of the table). Despite

the smaller sample size (representing only 45% of the initial sample), the coefficients are

very similar to the baseline estimates. In column (4), we include fixed effects for parental

education, and the estimates remain nearly identical across specifications.

19Since school-age exposure to storms impacts both educational delay and educational attainment, using
educational categories fixed effects would cause a bad-control problem
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Alternative Measures of School-age Exposure to Storms In Table 6, we explore alternative

specifications of Cbd. The first alternative measures exposure by summing over the squares

of yearly exposures (i.e.,
∑t=b+15

t=b+5 x2
dt), which assigns more weight to stronger exposures. In

contrast, the baseline measure simply sums over exposures, treating a district-cohort exposed

to multiple small storms the same as a district-cohort exposed to one violent and potentially

destructive storm. By summing across squares, we can differentiate between storm intensities

when aggregating over the years. However, multiple exposures over time in a given district

are rare (75.5% of individuals with positive exposure experienced only one storm between

ages 5-15), so we do not expect this alternative specification to substantially alter our results.

Second, we experiment with a different functional form to capture the relationship be-

tween the force exerted by winds on structures and wind speed exposure. Emanuel (2011)

notes that there are physical reasons to believe that damages to building infrastructure are

related to wind speed exposure in a cubic manner. To account for this, we use a cubic spec-

ification in columns (2) and (4) of Table 6, where we replace the square in Equation 2 with

a cube.

Third, we modify the wind speed threshold that defines a storm. In the paper, we use a

benchmark threshold of 50 knots, based on Emanuel (2011), which is likely to cause damages.

However, in columns (3) and (4) of Table 6, we raise the threshold to 64 knots, equivalent

to a category 1 cyclone on the Saffir-Simpson scale. In column (5) of Table 6, we eliminate

the threshold altogether and include all winds that occur during a cyclone event.

Finally, in column (6) of Table 6, we compute the maximum wind speed hitting each

district using the HURRECON wind field model (see Online Appendix A.2 for more details),

following Boose et al. (2004) instead of Deppermann (1947).

Overall, the estimates in Table 6 largely resemble the baseline results, except for column

(5), where measuring exposure directly with winds introduces a downward bias. This is likely

due to the assignment of non-zero exposure values for districts with only mild wind speeds,

which hardly cause any damage.

5 Income and Infrastructure Channels

Our study indicates that for school-age children, exposure to storms leads to educational

delays and has negative long-term consequences for both academic achievements and career

prospects. This is concerning, as a decline in human capital formation contributes to a

deskilling of the population, potentially impeding economic growth.

To develop effective policy recommendations addressing the consequences of storms, we

next explore the ways in which education may be impacted. Storms can affect human capital
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through two primary channels: shifts in schooling demand and changes in schooling supply.20

Demand shifts can occur due to the harmful effects of storms on i) household income (or

consumption) and ii) children’s mental health. For instance, a storm might cause a negative

income shock by destroying crops and farms in rural areas or damaging production facilities

in both rural and urban settings. These shocks can be temporary, lasting until physical assets

are restored, or permanent, as when the loss of a season’s crop puts a farming household

in debt and causes financial hardship for years. As a result, children may have less time

to study and complete homework if they need to work to supplement their family’s income.

In extreme cases, parents may no longer be able to afford sending their children to school,

causing them to drop out.

Financial stress may also lead to malnutrition, which can hinder learning, although mal-

nutrition’s effects are more pronounced among younger children. It is essential to emphasize

that our study concentrates on school-age shocks, which are less likely to influence long-term

educational outcomes through children’s health than prenatal or early-life events. However,

storms may still impact children’s mental health and trigger Post-Traumatic Stress Disorder

(PTSD), a condition known to hamper academic and career performance (see, for example,

Neria et al., 2008).

On the supply side, disasters can damage public infrastructure, such as roads and schools,

causing temporary disruptions in schooling due to the inability to attend classes. Storms

may also reduce electricity supply to schools, degrade classroom conditions, or even destroy

buildings, preventing children from attending school and teachers from providing instruction

in suitable environments.

In what follows, we examine the income and schooling supply channels. Unfortunately,

we cannot explore the PTSD channel due to a lack of publicly available mental health data in

India. To better understand the links between storm exposure and long-term human capital

losses, we utilize auxiliary data and investigate the short-term effects of storms on household

income, school infrastructure, and academic outcomes. Additional data are necessary be-

cause the PLFS database does not offer detailed information on school and household income

for individuals during their school-age years.

5.1 Income Channel

We begin by examining the impact of storms on income, focusing on the dynamic income

effects over a two-year period. Our data is sourced from the Consumer Pyramid Dx database,

a comprehensive panel containing monthly income information for approximately 200,000

20See Baez et al. (2010) for a comprehensive review of the literature on the channels through which disasters
damage human capital.
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households between 2014 and 2021.21 The panel differentiates between rural and urban

households, offers details on income sources (such as monthly household wages and business

profits), and includes information on each household’s district location.

Income data, presented in lakhs of rupees, is converted in real terms using the Indian Con-

sumer Price Index (CPI), base year 2010, from the World Development Indicators. Summary

statistics for these variables can be found in Panel I of Table D.13 of the Online Appendix.

We investigate the short-term dynamic income effects of storms using panel local pro-

jections over a 24-month period. Specifically, we conduct a series of k-step ahead panel

predictive regressions:

∆Yh,τ+k = αk + γk
1xdτ + δdt + δτ + δh + ϵdh,τ+k, (4)

where ∆Yh,τ+k ≡ log Yh,τ+k− log Yh,τ−1 and Y represents the monthly income of household h

(located in district d) at time τ (a month-year pair). Thus, ∆Yh,τ+k denotes the cumulative

growth of households’ monthly income from time τ − 1 to time τ + k, signifying that our

estimates capture cumulative effects up to period k. xdτ captures district storm exposure

at time τ . Similar to the school-age exposure to storms, xdτ is calculated using a quadratic

damage function of winds and a 50 knots threshold (refer to Section 2.2 for details). δdt,

δτ and δh represent district-year, time and household fixed effects. Our object of interest,

γk
1 , captures the average response of households’ monthly income at horizon k to a storm at

time τ . In combination, the sequence of γk
1 up to k = 24 traces the dynamic response to

the disaster shock. We weight each regression using household weights and cluster standard

errors at the state level.

Results are presented in the first panel of Figure 2. The figure plots the estimated

coefficients γk
1 at the different time horizons k ∈ [0, 24], normalized for the average storm

exposure in our sample (i.e., 0.023). Consequently, at each point in time, the local projection

(the blue line) provides the estimated direct total impact of the average storm. The shaded

area represents the 95% confidence interval. The figure shows that the income effects of an

average storm are substantial.

Panel (a) of Figure 2 reveals that, following an average storm, household income expe-

riences a brief yet statistically significant increase. After the initial peak, household income

gradually declines, reaching levels nearly 8% below the no-disaster counterfactual 10 months

after the disaster. This effect is negative and statistically significant between the 10th and

15th months following the storm. Considering that this captures the impact of an average

storm, 8% is an economically significant figure. Subsequently, income recovers, returning to

21The Consumer Pyramid Dx database is produced by the Center for Monitoring the Indian Economy
(CMIE).
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pre-disaster levels 15 months after the shock. Panels (b) and (c) of Figure 2 demonstrate

that this initial result conceals some heterogeneity, as differentiating between urban and rural

households suggests that only rural income may revert to pre-disaster levels.

Panel (b) of Figure 2 indicates that in urban areas, household income declines immediately

and continues to fall until the 5th month, where the total effect reaches 12%. In the second

semester, income recovers slightly and then stabilizes at a level 8% below pre-disaster levels

around the 14th month. After two years, income still has not recovered, suggesting that

storms may act as a permanent income shock for urban households. Rural areas, in contrast,

adjust differently. Income initially increases sharply and begins to fall gradually after 3

months, which aligns with immediate aid and the fact that the destruction of agricultural

land may only be felt during the subsequent growing season. After 10 months, income starts

to rebound, reaching pre-disaster levels after approximately 21 months.

Figure E.5 in the Online Appendix offers a more comprehensive analysis of income by

source, displaying impulse response functions (IRFs) for wages in the top panels and business

profits (i.e., self-employment) in the bottom panels. Panels (a) and (c) reveal that the

decline in urban incomes is primarily driven by a decrease in wages. In contrast, Panels

(b) and (d) demonstrate that in rural areas, as wages begin to fall, income from small

business activities rises. This shift could result from a substitution effect, where individuals

experiencing wage loss increase their involvement in small business activities or start new

businesses. Alternatively, it could be due to new business opportunities arising from the

storm. Profits generated by these activities can help compensate, at least in part, for lost

wages, enabling recovery for individuals in rural areas, unlike those in urban areas.

In summary, Figure E.5 in the Online Appendix demonstrates that wages in both urban

and rural areas decline within a year following a storm. A decrease in household wages

does not necessarily indicate job loss, reduced hours worked, or a drop in hourly wages;

it may also signify a shift in the types of jobs held by household members. Nevertheless,

despite the potential expansion of some industries due to reconstruction efforts, the data

suggests that such growth is unable to prevent a decline in household wages. Consequently,

increased demand might be insufficient to accommodate workers from shrinking industries.

Furthermore, workers could encounter mobility barriers due to challenges in transferring

skills between jobs or geographic constraints, an hypothesis that aligns with the migration

results presented in Online Appendix B.

The existing literature on the short-term dynamic effects of natural disasters on household

income in developing countries is sparse. However, our results align with Feng et al. (2016),

who finds that the 2008 Wenchuan earthquake in rural Sichuan decreased household incomes

by 14%. In developed countries, Deryugina (2017) shows that government transfers, such
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as unemployment insurance, can fully counteract the potential income effects of natural

disasters. Our findings for urban wage income in India suggest that implementing similar

policies could considerably alleviate the negative impacts as well.22

5.2 School Infrastructure Channel

We next investigate the impact of storms on school infrastructure, using data from the

District Information System for Education (DISE) collected by the National Institute of

Educational Planning and Administration (NIEPA). This comprehensive dataset covers all

schools offering elementary education in India between 2010 and 2018, including information

on classroom conditions, school attendance, and examination results at the school and aca-

demic year levels.23 The data also includes the school code identifier and the block, postal

code (pincode), village and district in which the school is located.24

At the school level, our primary variables of interest include the number of classrooms

in good condition, the school’s access to electricity (reliable, unreliable, or none), whether

the school is under construction, and the school’s construction date. To suit our analysis,

we aggregate pertinent school data at the postal code-academic year level and match it with

a storm exposure index. This index’s construction is similar to that of xdt but is calculated

using wind speed exposures at the postal code level during an academic year (refer to Section

2.2 for more details). Summary statistics for the main variables can be found in Panel II of

Table D.13 of the Online Appendix.

To estimate the first-order contemporaneous effects of storm exposure on school facilities

and infrastructure, we regress outcomes on the storm exposure index, postal code fixed

effects, and district-year fixed effects, with standard errors clustered at the state level.

Panel A of Table 7 investigates the impact of storms on school facilities. In column

(1), the dependent variable is the log average number of classrooms in good condition. The

coefficient obtained is negative and precisely estimated, indicating that classroom conditions

22Several studies have examined the local labor market impacts of hurricanes in the U.S., focusing exclu-
sively on the effects of hurricane evacuee in-migration (see e.g. De Silva et al., 2010). For an analysis of
long-term effects on earnings in affected regions, see Groen et al. (2020). Much of the literature on wages in
developed countries employs more aggregated measures (see e.g. Belasen & Polachek, 2009). Research on de-
veloping countries primarily focuses on aggregate outcomes as well. For example, Keerthiratne & Tol (2018)
in Sri Lanka discover that natural disasters reduce income inequalities as higher-income groups experience a
larger share of damages.

23DISE covers all schools, including unrecognized schools. Recognized establishments can be managed by
the Department of Education, the Local Body, the Social/Tribal Welfare Department, and by a Private-Aided
or -Unaided Body.

24In comparison to the Annual Status of Education Report survey (ASER), the DISE data enables a more
extensive analysis, encompassing all of India and using panel data at a highly granular geographic level
(postal code). Conversely, the ASER survey primarily targets rural areas, is not released annually, and only
offers district-level information.
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worsen following a storm. The average number of classrooms in good condition declines by

0.5% after an average storm (with a force of 0.053). This reduction increases to 3% following

a storm at the 95th percentile of the distribution (with a value of 0.3) and to 10% after a

super storm (with a value of 1).

The remaining columns in the table examine the proportion of schools with electricity

(column 2), without electricity (column 3), and with unreliable electricity (column 4).25

The estimates are consistently precise, indicating that storms raise the percentage of schools

without electricity or with unreliable electricity. Specifically, we find that the share of schools

with electricity drops by 5.6 percentage points (a 7.7% decrease) following a super storm.

For the average storm, this reduction is 0.28 percentage points.

In Panel B of Table 7, we explore the extent to which storms lead to school destruction.

Columns (1)-(3) examine the number of school closures (exits), expressed as a percentage of

the total number of schools in 2010. The results indicate that the share of school closures

rises in the year following a storm, with this effect persisting over two periods, as evident

in column (3). For an average storm, the cumulative effects up to two periods suggest an

increase in the share of school closures by approximately 0.37 percentage points, translating

to a 7.4% rise in the probability of exit. For a super storm, the cumulative effects result in

a 7.3 percentage point increase, equating to a 146% surge in the probability of exit.

Columns (4)-(6) concentrate on the proportion of school buildings under construction.

The findings reveal that this share decreases immediately after a storm and persists in the

following year, resulting in a total effect of -0.35 percentage points following an average

storm. This corresponds to a 39% reduction in the share of buildings under construction.

The immediate effect is expected, as construction sites can be severely damaged even at

relatively low wind intensities. Additionally, construction may decelerate if the projects’

initial budgets need revising. The negative impact of storms endures for an additional year,

implying that school (re)construction only resumes after two years and that destroyed school

buildings may not be immediately rebuilt. This contrasts with Pelli et al. (2023), which finds

that firms quickly rebuild and replace destroyed capital within a year after the storm. Our

results suggest that rebuilding public infrastructures takes a longer time.

In summary, our results show that storms disrupt daily school operations by damaging

classrooms and causing power outages. Furthermore, storms lead to school closures and a

decrease in school buildings under construction, potentially preventing teachers from con-

ducting and students from attending classes for an extended period. While we are not aware

of studies specifically estimating school destruction due to natural disasters, our findings

align with the general understanding that natural disasters increase children’s vulnerability

25The number of observations decreases between column (1) and (2) due to singleton observations.
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in developing countries by diminishing the availability of adequate schooling infrastructure,

and consequently, the supply of education. Unless the resilience of school buildings improves

over time, the infrastructure channel will likely become increasingly significant as the fre-

quency and severity of natural disasters rise. To date, only a few studies have provided

direct evidence that constructing more resistant schools can mitigate the detrimental effects

of natural disasters on long-term education and labor market outcomes. For example, see

Herrera-Almanza & Cas (2021) and Cas (2016) for studies examining the impact of building

typhoon-resistant schools in the Philippines.

5.3 Scholastic Outcomes on Impact

The results presented in Section 4 suggest that exposure to storms during school-age increases

the likelihood of educational delays. However, it remains unclear whether these delays are

caused by a higher probability of dropping out or failing a course of study, as the PLFS data

does not contain the necessary information to determine the exact cause. To shed light on

these possible mechanisms, we turn to the DISE data and analyze school attendance and

examination results at the postal code-academic year level, using the same measure of postal

code exposure to storms as before.26 Panel II of Table D.13 in the Online Appendix presents

summary statistics for the relevant variables.

Our analysis reveals a stark contrast in how children in different stages of schooling

respond to natural disasters. Specifically, for those attending primary school, the adjustment

occurs at the extensive margin, reflected in changes to attendance rates. In contrast, for

middle school students, the adjustment takes place at the intensive margin, resulting in

changes to their academic performance.

Panel A of Table 8 examines school attendance by examining the log average number of

children in each postal code-year and school level, ranging from primary to middle school.

The findings demonstrate that storms have a substantial impact on attendance for primary

school children in levels C3 to C5, corresponding to ages 8 to 11. The estimated reductions

in attendance are sizable, with a drop of approximately 15% for a super storm and 0.75% for

an average storm. However, no statistically significant impacts on attendance are observed

for any other levels.

Overall, our findings align with previous research indicating that weather shocks and nat-

ural disasters lead to a drop in school enrollments in developing countries (see, for instance,

Jensen, 2000). Furthermore, our findings lend support to the idea that a disaster-induced

negative income shock prompts parents to withdraw their children from school. This could

26It is worth noting that the DISE data only covers elementary schools, limiting our ability to examine
attendance and performance at the secondary or upper-secondary level.
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be due to financial constraints, as families may no longer have the means to afford schooling,

or because their children are required to work to supplement the household income. This

hypothesis that natural disasters increase the incidence of working children is well-supported

by the literature (see, for instance, Baez et al., 2010; De Janvry et al., 2006, for a review).

The imprecise estimates for levels C1 and C2 suggest that children at these levels may

remain in school because they are either too young to work or unable to contribute to

reconstruction efforts due to physical limitations. Additionally, the lack of effects on levels

C6-C8 may be attributed to the dedication of poorer parents whose children have advanced to

this level to ensure that their children complete middle school. Furthermore, since wealthier

children are more commonly found in middle school, they may be less affected by the income

shock, as our income shock story suggests.

Despite the lack of impact on attendance at the middle school level, older students may

still be compelled to work or work more frequently after school and on weekends. This may

reduce the amount of time available for studying, increase fatigue, reduce concentration in

school, and ultimately lead to a decline in academic performance. We explore this possibility

in Panel B of Table 8, which examines examination results in the final year of primary (C5)

and middle (C8) school.27 Columns (1) and (2) focus on the log average number of students

who appeared for the exam, while the subsequent two columns examine those who passed

the exam. Columns (6) and (7) show the effect on the log average number of students who

scored above 60

Our results indicate that there is no effect on exam appearance or performance for stu-

dents at level C5. However, in accordance with our income shock narrative, we discover

that middle school students experience a decline in academic performance. Fewer students

appear for the exam, and even fewer pass it. Additionally, the number of students who pass

with a grade above 60% also decreases following a storm.

The estimates are consistent across columns, and unlike the results for school attendance,

they reveal substantial effects of about 15% for an average storm. This implies that even a

moderate storm can have significant impacts on education. These findings are particularly

important given that a decline in grades may ultimately result in educational delays, although

we cannot formally investigate this possibility with our available data.

Taken together, our results suggest that the primary reason for the estimated long-term

educational delays is the significant decrease in income, resulting in reduced attendance for

primary school children and decreased academic performance for middle school children.

While the decline in attendance for an average storm is relatively small, the deterioration

of academic performance is substantial. Specifically, the average storm results in a 15%

27Examination results for other years of schooling are not available.
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reduction in the number of children who appear for the exam, pass the exam, and receive a

good grade. These results align with previous research that has demonstrated the adverse

contemporaneous effects of natural disasters and extreme weather shocks on education in

developing countries (see, e.g., Deuchert & Felfe, 2015; Spencer et al., 2016).

6 Conclusion

In this study, we examine the impact of storm exposure during school years on long-term

educational attainment and primary activity status among young adults in India. Our find-

ings indicate that individuals who experienced a storm during these critical years are more

likely to experience educational delays and less likely to complete higher education. Further-

more, we observe a decrease in the likelihood of securing regular salaried employment and

an increase in the probability of engaging in domestic duties as a primary activity.

Our results also provide indirect evidence that the enduring effects of school-age storm

exposure can be attributed to both the degradation of educational infrastructure and a

decline in household demand for schooling due to reduced income. These findings align with

the notion that adverse income shocks can lead to an increase in working children, manifested

as decreased school attendance for primary students and diminished academic performance

for middle schoolers.

Overall, our study underscores the importance of robust social safety nets and the need

to extend post-disaster policies beyond mere reconstruction efforts. Such policies should

integrate financial transfers with educational initiatives, such as cash transfers conditional on

school attendance and enhanced school support. Local projections of household income reveal

that social policies, including unemployment insurance, could be instrumental in building

resilience and managing risk in urban areas, which are particularly vulnerable following

storms.

While our results offer valuable insights, two caveats warrant consideration, suggesting

that our findings should be interpreted as lower bounds of the true effects. First, our esti-

mations do not account for the poorest individuals who are likely not enrolled in school due

to their families’ low-income status. Including this segment, which tends to be dispropor-

tionately affected by natural disasters, would likely yield larger estimates. Second, our data

only accounts for individuals who survived the storm and its aftermath until 2018. Although

storm-related fatalities have been relatively contained in recent years, it is important to rec-

ognize that our results may be subject to survivorship bias. However, we do not anticipate

this issue to significantly affect our findings.
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Table 1: Educational Delay and Educational Attainment

Educational delay
(1) (2) (3)

Panel A: # of years
School-age exposure 0.43∗∗∗ 0.22∗ 0.28∗∗

(0.14) (0.13) (0.10)

Panel B: yes=1, no=0
School-age exposure 0.24∗∗∗ 0.20∗∗ 0.18∗∗

(0.080) (0.084) (0.072)

Individual controls Yes Yes Yes
District FE Yes Yes Yes
Cohort FE Yes Yes Yes
District trends Yes No No
State-cohort FE No Yes No
State-policy FE No No Yes
Observations 70003 70003 70003
Panel A: Mean dep. var. 0.52 0.52 0.52
Panel B: Mean dep. var. 0.33 0.33 0.33

Educational attainment
Logit Below Primary Middle Secondary Above-secondary

estimates primary school school education education

(1) (2) (3) (4) (5) (6)

Panel C: Educ. attainment
School-age exposure -1.18∗∗∗ 0.046∗∗∗ 0.11∗∗∗ 0.096∗∗∗ -0.055∗∗∗ -0.20∗∗∗

(0.31) (0.011) (0.029) (0.027) (0.015) (0.052)

Individual controls Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes Yes Yes
District trends Yes Yes Yes Yes Yes Yes

Observations 70003 70003 70003 70003 70003 70003
Mean dep. var. 0.027 0.098 0.239 0.365 0.272

Notes: Panel A and B show results on educational delay. In Panel A, educational delay is calculated as the difference
between the reported years of schooling and the minimum number of years required in the schooling system to attain the
reported educational level. In Panel B, educational delay is measured using a dummy variable that takes a value of one
if the delay is at least one year. In Panel C, educational attainment is a categorical variable indicating the reported level
of education (0=no formal schooling, 1=primary school, 2=middle school, 3=secondary education, 4=above-secondary
education), with category 0 including individuals who received some education but did not complete primary school.
Column (1) shows the results from an ordered logit estimation where the dependent variable is a categorical variable
indicating the reported educational attainment. Columns (2) to (6) report the marginal effects of childhood exposure to
storms for each category of schooling. Individual controls include dummy variables indicating if the individual is female,
the first-born child, and Hindu. Policy FE used in the interaction terms include three FE corresponding to cohorts born
in 1985, those born between 1986 and 1991, and those born after 1991. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard
errors are clustered at the state level.
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Table 2: Type of Activity, Wages and Hours Worked

Regular work Casual labor Self-employed Unpaid family work Domestic duties

(1) (2) (3) (4) (5)

Panel A: Type of activity
School-age exposure -0.16∗∗ -0.0093 -0.046 0.016 0.16∗∗∗

(0.076) (0.075) (0.059) (0.067) (0.056)

Individual controls Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes Yes
District trends Yes Yes Yes Yes Yes

Observations 70003 70003 70003 70003 70003
Mean dep. var 0.196 0.093 0.132 0.079 0.329

Log hourly wages Hours of work
Log hourly wages AME Tobit Hours of work AME Tobit

(1) (2) (3) (4)

Panel B: Wage & hours worked
School-age exposure 0.018 -0.393∗ 3.57 -4.33

(0.18) (0.230) (3.70) (4.684)

Individual controls Yes Yes Yes Yes
District FE Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes
District trends Yes Yes Yes Yes
Observations 29089 70003 29089 70003
Mean dep. var 3.71 53.60

Notes: In Panel A, the dependent variable is a dummy variable that takes a value of 1 if the main activity of the indi-
vidual is to perform regular work (column 1), casual labor (column 2), self-employment (column 3), work as an unpaid
family worker (column 4), or perform domestic duties (column 5). In Panel B, the dependent variable is the individual’s
logarithm of (real) hourly wage in rupees (columns 1 and 2) and hours worked (columns 3 and 4). Columns (1) and (3)
estimate the effect of childhood exposure to storms using a subsample of individuals who report wages and hours worked.
This subsample mainly consists of individuals engaged in regular work and casual labor, and the number of observations
may differ slightly from that presented in the summary statistics due to singleton observations. In columns (2) and (4),
we report the average marginal effects (AME) on wages and hours worked, respectively, evaluated at the means of the co-
variates, using a Tobit estimation. Individual controls include dummy variables indicating if the individual is female, first-
born child, and Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are clustered at the state level.
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Table 3: Controlling for Early-life Exposure (Education)

Baseline Sub-sample Early-life School & early-life

(1) (2) (3) (4)

Panel A:
Educ. delay: # of years
School-age exposure 0.43∗∗∗ 0.35∗∗ 0.35∗∗

(0.14) (0.15) (0.14)

Early-life exposure -0.16 -0.16
(0.14) (0.14)

Panel B:
Educ. delay: yes=1, no=0
School-age exposure 0.24∗∗∗ 0.38∗∗∗ 0.38∗∗∗

(0.080) (0.088) (0.087)

Early-life exposure -0.086 -0.088
(0.080) (0.080)

Panel C:
Educ. attainment
School-age exposure -1.18∗∗∗ -1.22∗∗∗ -1.22∗∗∗

(0.31) (0.44) (0.43)

Early-life exposure 0.82∗∗∗ 0.83∗∗∗

(0.13) (0.15)

Individual controls Yes Yes Yes Yes
District FE Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes
District trends Yes Yes Yes Yes

Observations 7003 41892 41892 41892
Panel A: Mean dep. var. 0.52
Panel B: Mean dep. var. 0.33

Notes: The table presents results when controlling for early-life exposure to storms. In Panel A, educational delay is calculated as
the difference between reported years of schooling and the minimum number of years required in the schooling system to attain
the reported educational level. In Panel B, educational delay is measured using a dummy variable that takes a value of 1 if the
delay is at least one year. In Panel C, educational attainment is a categorical variable indicating the reported level of education
(0=no formal schooling, 1=primary school, 2=middle school, 3=secondary education, 4=above-secondary education), with cate-
gory 0 including individuals who received some education but did not complete primary school. Column (1) shows baseline esti-
mates, while column (2) presents results for the baseline specification estimated on a subsample of individuals born after 1989. In
columns (3) and (4), the focus is on the same subsample. Column (3) replaces the school-age exposure measure with the early-life
exposure index, and column (4) includes both measures simultaneously. Individual controls include dummy variables indicating
if the individual is female, first-born child, and Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are
clustered at the state level.
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Table 4: Removing Extreme Exposures and Controlling for Climate Variables (Education)

Excl. Excl. Sub- Climate
Baseline Orissa extremes sample controls

(1) (2) (3) (4) (5)

Panel A:
Educ. delay: # of years
School-age exposure 0.43∗∗∗ 0.53∗∗ 0.29∗∗ 0.44∗∗∗ 0.22∗∗

(0.14) (0.22) (0.15) (0.16) (0.097)

Panel B:
Educ. delay: yes=1, no=0
School-age exposure 0.24∗∗∗ 0.23∗ 0.15∗ 0.24∗∗∗ 0.18∗∗

(0.080) (0.14) (0.077) (0.084) (0.071)

Panel C:
Educ. attainment
School-age exposure -1.18∗∗∗ -0.74∗∗∗ -0.65# -1.30∗∗∗ -0.81∗∗

(0.31) (0.27) (0.41) (0.24) (0.39)

Individual controls Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes Yes
District trends Yes Yes Yes Yes Yes
Climate controls No No No No Yes

Observations 70003 67770 70003 66702 66702
Panel A: Mean dep. var. 0.52
Panel B: Mean dep. var. 0.33

Notes: The table presents results after removing extreme exposures and controlling for climate variables. In
Panel A, educational delay is calculated as the difference between reported years of schooling and the min-
imum number of years required in the schooling system to attain the reported educational level. In Panel
B, educational delay is measured using a dummy variable that takes a value of 1 if the delay is at least one
year. In Panel C, educational attainment is a categorical variable indicating the reported level of education
(0=no formal schooling, 1=primary school, 2=middle school, 3=secondary education, 4=above-secondary
education), with category 0 including individuals who received some education but did not complete primary
school. Column (1) shows baseline estimates, while column (2) presents results for the baseline specification
estimated on a subsample of individuals located outside Orissa. In column (3), we recompute the exposure
index by removing all winds with values above the 95th percentile of the wind distribution. Column (4)
replicates the baseline specification on a subsample for which climate variables are available. In column (5),
we include climate controls, such as a district-specific measure capturing the average yearly precipitation (in
millimeters) experienced between ages 5-15. Additionally, we include the average temperature (in ◦C) and
the number of exposure days within temperature bins (0-10, 10-20, 20-30, and above 30◦C) to which children
of a given district were exposed during school age. Individual controls include dummy variables indicating
if the individual is female, first-born child, and Hindu, respectively. # p < 0.012, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01. Standard errors are clustered at the state level.
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Table 5: Educational Controls (Education)

Predicted Parental
Baseline educ. attainment Sub-sample education

(1) (2) (3) (4)

Panel A:
Educ. delay: # of years
School-age exposure 0.43∗∗∗ 0.43∗∗∗ 0.37∗ 0.37∗∗

(0.14) (0.15) (0.19) (0.18)

Panel B:
Educ. delay: yes=1, no=0
School-age exposure 0.24∗∗∗ 0.24∗∗∗ 0.24∗∗ 0.24∗∗

(0.080) (0.080) (0.11) (0.11)

Panel C:
Educ. attainment
School-age exposure -1.18∗∗∗ -1.17∗∗∗ -0.79 -0.91∗

(0.31) (0.31) (0.59) (0.47)

Individual controls Yes Yes Yes Yes
District FE Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes
District trends Yes Yes Yes Yes
Predicted educ. attainment No Yes No No
Parental education No No No Yes

Observations 70003 70003 31243 31243
Panel A: Mean dep. var. 0.52
Panel B: Mean dep. var. 0.33

Notes: The table presents results on educational delay with the addition of educational controls. In Panel A, educational delay
is calculated as the difference between reported years of schooling and the minimum number of years required in the schooling
system to attain the reported educational level. In Panel B, educational delay is measured using a dummy variable that takes a
value of 1 if the delay is at least one year. In Panel C, educational attainment is a categorical variable indicating the reported
level of education (0=no formal schooling, 1=primary school, 2=middle school, 3=secondary education, 4=above-secondary ed-
ucation), with category 0 including individuals who received some education but did not complete primary school. Column (1)
shows baseline estimates, while column (2) controls for the individual’s predicted probability of completing the reported level of
education. Column (3) replicates the baseline specification on a subsample for which parental education is available. In column
(4), the same sample as in column (3) is used, and parental education is additionally controlled for. Individual controls include
dummy variables indicating if the individual is female, first-born child, and Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01. Standard errors are clustered at the state level.
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Table 6: Alternative Measures (Education)

Baseline Sum of squares 50, cubic 64, square 64, cubic All winds HURRECON

(1) (2) (3) (4) (5) (6) (7)

Panel A:
Educ. delay: # of years
School-age exposure 0.43∗∗∗ 0.43∗∗ 0.48∗∗ 0.48∗∗ 0.42∗∗ 0.077∗∗∗ 0.39∗∗

(0.14) (0.19) (0.21) (0.18) (0.19) (0.024) (0.16)

Panel B:
Educ. delay: yes=1, no=0
School-age exposure 0.24∗∗∗ 0.30∗∗∗ 0.30∗∗∗ 0.29∗∗∗ 0.30∗∗∗ 0.044∗∗∗ 0.27∗∗∗

(0.080) (0.077) (0.084) (0.078) (0.076) (0.014) (0.064)

Panel C:
Educ. attainment
School-age exposure -1.18∗∗∗ -1.69∗∗∗ -1.65∗∗∗ -1.59∗∗∗ -1.68∗∗∗ 0.013 -1.24∗∗∗

(0.31) (0.27) (0.14) (0.11) (0.26) (0.085) (0.39)

Individual controls Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes Yes Yes Yes
District trends Yes Yes Yes Yes Yes Yes Yes

Observations 70003 70003 70003 70003 70003 70003 70003
Panel A: Mean dep. var. 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Panel B: Mean dep. var. 0.33 0.33 0.33 0.33 0.33 0.33 0.33

Notes: The table presents results on educational delay with the use of alternative specifications of the school-age exposure to storms. In Panel A, ed-
ucational delay is calculated as the difference between reported years of schooling and the minimum number of years required to attain the reported
level of education. In Panel B, educational delay is measured using a dummy variable that takes a value of 1 if the delay is at least one year. In Panel
C, educational attainment is a categorical variable indicating the reported level of education (0=no formal schooling, 1=primary school, 2=middle
school, 3=secondary education, 4=above-secondary education), with category 0 including individuals who received some education but did not com-
plete primary school. Column (1) shows baseline estimates, while columns (2)-(7) present results based on alternative specifications of storm exposure.
Specifically, in column (2), storm exposure is calculated using the sum of the squares of yearly exposures. In column (3), storm exposure is calculated
using a threshold of 50 knots and a cube. In column (4), exposure is calculated using a threshold of 64 knots and a square, and in column (5), exposure
is calculated using a threshold of 64 knots and a cube. Column (6) computes exposure using all winds, and finally, in column (7), exposure is computed
using the HURRECON model, a threshold of 50 knots, and a square. Individual controls include dummy variables indicating if the individual is female,
first-born child, and Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are clustered at the state level.
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Table 7: Damages to School Facilities and School Destruction

Log avg. # of classrooms Share of schools with:
in good conditions electricity w/o electricity unreliable electricity

(1) (2) (3) (4)

Panel A:
Damages to school facilities
Storm exposure -0.101∗∗ -0.056∗∗∗ 0.045∗∗∗ 0.011∗∗

(0.047) (0.0082) (0.011) (0.0045)

Postal code FE yes yes yes yes
District-year FE yes yes yes yes

Observations 153789 153789 153789 153789
Mean dep. var. 4.36 0.688 0.285 0.026

Exit share of schools Share of buildings under construction

(1) (2) (3) (4) (5) (6)

Panel B:
School destruction
Storm exposure -0.0068 -0.0046 0.0084 -0.019∗∗∗ -0.025∗∗∗ -0.029∗∗∗

(0.0089) (0.0091) (0.011) (0.0023) (0.0036) (0.0048)

Storm exposure(t−1) 0.016∗∗∗ 0.029∗∗∗ -0.053∗∗∗ -0.056∗∗∗

(0.0036) (0.0054) (0.0084) (0.0093)

Storm exposure(t−2) 0.067∗∗∗ -0.023∗∗∗

(0.019) (0.0056)

Postal code FE yes yes yes yes yes yes
District-year FE yes yes yes yes yes yes

Observations 109831 92918 76109 109831 92918 76109
Mean dep. var. 0.026 0.008

Notes: Panel A presents results on damages to school facilities. In column (1), the dependent variable is the log of the average number of classrooms in
good conditions, with the average taken across schools at the pincode-year level. In columns (2) and (3), the dependent variable is the share of schools
with and without electricity, respectively, in a postal code-year. In the last column, the dependent variable is the share of schools with unreliable elec-
tricity. Panel B shows results on school destruction. The dependent variable is the share of existing schools and the share of school buildings under
construction in columns (1)-(3) and (4)-(6), respectively, with shares expressed relative to the number of schools in 2010 and taken within a postal
code-year. In both panels, storm exposure is computed from wind exposures at the postal code level using a quadratic damage function and a 50 knots
threshold. In Panel B, the number of observations differs slightly from that presented in the summary statistics due to singleton observations that are
dropped in the estimations. In column (1) of Panel A, the mean dependent variable at the bottom of the table is presented without logs. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are clustered at the state level.
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Table 8: School Attendance and Examination Results

Log avg. # of kids Log avg. # of kids
in primary school in middle school

C1 C2 C3 C4 C5 C6 C7 C8

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A:
School attendance
Storm exposure -0.022 -0.18 -0.11∗ -0.15∗∗∗ -0.15∗ -0.075 -0.054 -0.47

(0.085) (0.16) (0.062) (0.035) (0.085) (0.16) (0.17) (0.44)

Postal code FE yes yes yes yes yes yes yes yes
District-year FE yes yes yes yes yes yes yes yes

Observations 143579 143579 143579 143579 143579 143579 143579 143579
Mean dep. var. (w/o logs) 20.102 19.588 19.524 19.264 19.11 17.917 17.603 16.388

Log avg. # of kids who
appeared at exam. passed exam. got a grade > 60%

C5 C8 C5 C8 C5 C8

(1) (2) (3) (4) (5) (6)

Panel B:
Examination results
Storm exposure -0.17 -3.73∗∗∗ -0.19 -3.74∗∗∗ 0.032 -3.85∗∗∗

(0.14) (0.63) (0.14) (0.59) (0.14) (0.76)

Postal code FE yes yes yes yes yes yes
District-year FE yes yes yes yes yes yes

Observations 126737 65195 126737 65195 126737 65195
Mean dep. var. (w/o logs) 8.140 0.976 8.048 0.912 5.665 0.473

Notes: Panel A shows results on school attendance. In columns (1)-(5), the dependent variable is the log average number of pri-
mary school children in levels C1-C5, while in columns (6)-(8), the dependent variable is the log average number of middle school
children in levels C6-C8. Averages are taken across schools at the postal code-year level. Storm exposure is computed from wind
exposures at the postal code level using a quadratic damage function and a 50 knots threshold. Panel B presents results on chil-
dren’s examination results. In column (1) (column 2), the dependent variable is the log average number of children who appeared
at the C5 primary school level (C8 middle school level) examination. In column (3) (column 4), the dependent variable is the log
average number of children who passed the examination at the C5 level (C8 level). Finally, in column (5) (column 6), the depen-
dent variable is the log average number of children who passed the C5 level (C8 level) examination with a grade above 60%. In
both panels, averages are taken across schools at the postal code-year level. Storm exposure is computed from wind exposures
at the postal code level using a quadratic damage function and a 50 knots threshold. The number of observations differs slightly
from that presented in the summary statistics due to singleton observations that are dropped in the regressions. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01. Standard errors are clustered at the state level.
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Figure 1: Falsification Tests – Distribution of t-statistics

(a) Educ. delay: # of years (b) Educ. delay: dummy

(c) Educ. attainment

Note: The figures display the distribution of t-statistics across 1,000 replications, while the red vertical
lines show the t-statistics from our baseline regressions. Panel (a) shows the results for educational delay
measured in number of years (baseline t-statistics = 3.01); Panel (b) shows the results for educational
delay measured with a dummy variable (1=yes, 0=no, baseline t-statistics = 2.96); finally, Panel (c)
shows the result for the ordered logit estimation on educational attainment (baseline t-statistics = -3.79).
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Figure 2: Local Projections on Household Income
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(a) Household income
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(b) Household income, urban areas
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(c) Household income, rural areas

Note: The figure shows the results of local projections (direct effect) on household income, both overall
(Panel a) and by urban/rural area (Panels b and c), on a 24-month time horizon for the average cyclone
exposure. The analysis includes district-year FE, time FE, and household FE. Storm exposure is computed
from wind exposures at the district-month level using a quadratic damage function and a 50 knots
threshold. The figure presents 95% confidence intervals.
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A Appendix. Computing Wind Speed

A.1 Baseline Wind Field Model: the Rankine-combined Formula (Dep-

permann, 1947)

In this appendix, we explain how we calculate wdh, which represents the maximum wind

speed associated with storm h in district d. We use data from the National Oceanic and

Atmospheric Administration (NOAA) Tropical Prediction Center, specifically the best tracks

of storms in the North Indian and South Indian basins from 1990 to 2010 (Knapp et al.,

2010). The best tracks provide a comprehensive record of each storm, including latitude,

longitude, date, and wind speed at 6-hour intervals for the eye of the storm.

We begin by linearly interpolating the best tracks of storms at every kilometre, resulting

in a set of landmarks k, each with a set of coordinates and a corresponding wind speed at the

eye of the storm, denoted as ek. Next, for each district falling within the vortex associated

with a landmark, we use the Rankine-combined formula (Deppermann, 1947) to compute

the winds at the district’s centroid. This formula describes wind fields as follows:

wdk = ek ·
(

Ddk

26.9978

)
if Ddk ≤ 26.9978

wdk = ek ·
(
26.9978

Ddk

)0.5

if Ddk > 26.9978,

where Ddk is the distance between the centroid of district d and landmark k. The number

26.9978 corresponds to the Simpson and Riehl radius of maximum wind speed in knots, which

is the distance between the eye and the point where wind reaches its maximum speed.1

According to this formula, winds first increase exponentially up to a maximum and then

decrease rapidly.

Finally, we obtain a single wind speed measure per district and storm by selecting the

maximum wind speed to which the district was exposed, i.e.:

wdh = max
k∈Ht

{wdk}.
1In reality, the radius of maximum wind speed for each cyclone varies, and is calculated using the difference

in barometric pressure between the center and the outskirts of the storm. However, cyclone data are often
characterized by a high number of missing data when it comes to barometric pressure. Therefore, we follow
the approach of Simpson & Riehl (1981) and Hsu & Zhongde (1998) and apply the average radius of maximum
wind speed, 50 km, to all the cyclones considered in this paper.

2



A.2 AlternativeWind Field Model: the HURRECONModel (Boose et al.,

1994)

As an alternative wind field model, we use the HURRECON model (see Boose et al., 1994,

2001, 2004). The model uses information on the track, size, intensity, and cover type (land

or water) of a hurricane to describe sustained wind velocity at any point within a cyclone’s

vortex. Specifically, the computation of sustained wind velocity at each district centroid is

done using the following equation:2

wdk = F

[
Vk − S(1− sinT )

Vf

2

] [(
Rm

R

B

e1−[
Rm
R ]

B
)]1/2

where F is a scaling parameter capturing the effect of friction. Usually this parameter is set

to 1 for points over water and to 0.8 for points over land. In our case, F = 0.8. Vk captures

the wind velocity at the eye at landmark k, which we linearly interpolate from the best track

data. S is a scaling parameter for the asymmetry due to the forward motion of the storm,

set to 1 as in Boose et al. (2001); T is the clockwise angle between the forward path of the

hurricane and a radial line connecting the eye of the hurricane to the centroid of a district;Vf

denotes the forward velocity of the hurricane; Rm is the radius of maximum winds, set as

in the baseline at 26.9978; R is the Euclidean distance from the center of the hurricane to

the centroid of a district. Finally, the parameter B controls for the shape of the wind profile

curve and is set at 1.35. The parameters of this equation are chosen following Boose et al.

(2004) who parameterized and validated the model.

2Velocity and wind direction are measured relative to the surface of the Earth, and angles are measured
in degrees.
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B Appendix. Storms and Migration

As discussed in Section 3 of the paper, one of the threats to our identification is the possibility

that people may migrate out of their district in response to storms. In this section, we use

the Pyramids Dx dataset to investigate whether individuals do in fact migrate after storms.

While the Pyramids Dx only introduced migration questions in their survey in 2020, we still

have a panel of 367,378 individuals aged 5 to 33, who are interviewed every four months,

providing us with six observations over the two years of available data.

We run the following specification:

Miτ = ζ0 + ζ1xdτ + ζ2xdτ−1 + ζ3xdτ−2 + δi + δτ + δdt + εi,

where i denotes an individual and τ denotes time (a quadrimester-year pair). Mit is a

dummy equal to one if the individual migrated out of their district of residence in the last

four months, and xdτ (xdτ−1) captures district storm exposure over the period τ − 1 to τ

(τ−2 to τ−1). δi, δτ and δdt represent individual, time, and district-year FE, respectively. ζ1

captures the percentage points changes in the contemporaneous probability of out-of-district

migration. We use weights provided by Pyramids Dx and cluster standard errors at the state

level.

Table D.4 displays the results from estimating the above equation. Panel A pertains to

individuals aged 5 to 33, while Panel B focuses on children aged 5 to 15, the compulsory

schooling age range. Column (1) shows the contemporaneous effect of storm exposure on the

probability of migration. In column (2), we add the first lag of storm exposure (4 months

prior), and in column (3), we include a second lag (8 months prior). The negative coefficients

are generally precisely estimated, indicating that the occurrence of a storm reduces the

probability of migration.
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C Appendix. Robustness

In this Appendix, we show the robustness results for the type of activity performed by

individuals once they reach early adulthood.

Table D.7 evaluates the importance of early-life exposure to storm on individuals’ type

of activity. The measure is constructed as described in Section 4.4 of the paper. Panel A

presents the baseline specification, Panel B reports results on the restricted subsample of

individuals born after 1989. Panel C replaces school-age (Cbd) with early-life exposure, and

Panel D includes both early-life and school-age exposures simultaneously. Notably, compared

to the subsample, the inclusion of a measure that accounts for early-life shocks does not affect

the estimate on the school-age exposure index, indicating that the period of school years is

also highly responsive to shocks.

Table D.9 presents the results of the falsification test and reports the proportion of replica-

tions that yield statistically significant estimates at the 1%, 5%, and 10% levels, respectively.

Overall, the results suggest that our coefficients do not capture spurious correlations. The

numbers in column (1) indicate that statistically significant estimates at the 1% level are pro-

duced in only 1.8% (Panel E) to 2.7% (Panel B) of the cases. As expected, the proportion

of significant estimates increases when considering higher levels of statistical significance,

reaching a maximum of 8.5% (Panel D) at the 5% level and 13.8% (Panel B) at the 10%

level.

In Table D.10, we explore the sensitivity of our results to extreme values of exposure.

Panel A shows the baseline results, and Panel B excludes individuals residing in Orissa. In

Panel C, we recompute the exposure index by removing winds at the top 5% of the wind

distribution. The estimates obtained in Panel B and C are consistent with the baseline

results in Panel A. The last two panels of the table control for climate variables, constructed

as described in Section 4.4 of the paper. Panel D runs the baseline specification on the

subsample for which rainfall and temperature data are available, and Panel E includes the

climate controls in the regression. Adding these additional variables does not change the

estimates of interest.

In Table D.11 we account for individuals’ education as described in Section 4.4 of the

paper. Panel A of the table shows the baseline results and Panel B includes the predicted

probability of completing the reported level of education as a control variable. The inclusion

of this variable does not affect the baseline estimates; exposure to storms during compul-

sory schooling reduces the probability of being employed as a regular worker and increases

the likelihood of performing domestic duties in a statistically significant manner. Panel C

replicates the baseline regression on the subsample that includes information on parental

5



education. The estimate of the probability of performing regular work is slightly less precise

in this subsample. However, including parental education as a control variable (Panel D)

produces estimates that are very similar to those obtained in Panel C.

Finally, Table D.12 shows results obtained with using alternative specifications of our

measure of school-age exposure to storms. While the magnitudes of the estimates are similar

to the baseline, they are generally less precise. Notably, the impact on casual labor, unpaid

family work, and involvement in domestic duties is consistent across all specifications. How-

ever, we find that the negative and statistically significant effect on regular work is estimated

imprecisely when the definition of storm is altered. In terms of self-employment, we obtain

negative and precise estimates with all alternative measures except for the one computed

from all winds.
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D Appendix. Tables

Table D.1: Schooling System in India

Cumulated Years
Duration of Education

(1) (2)

Lower education:
Primary 5 5
Middle 3 8
Secondary 2 10
Higher secondary 2 12

Higher education:
Path 1:
Diploma/certificate course 1 13
Path 2:
Graduate 3 15
Path 3:
Diploma/certificate course 1 13
Graduate 3 16
Path 4:
Graduate 3 15
Postgraduate and above 2 17
Path 5:
Diploma/certificate course 1 13
Graduate 3 16
Postgraduate and above 2 18

Notes: Column (1) shows the duration of each category of schooling, which is
the standard time required to complete each level of education. For categories
such as Graduate and Postgraduate, the duration corresponds to the mode
across disciplines. Column (2) gives the total number of years of education
accumulated after completion of each category of schooling (and path in the
case of higher education).
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Table D.2: Summary Statistics

Mean Std. Dev. Min Max N
(1) (2) (3) (4) (5)

A. School-age exposure to storm
Cbd 0.029 0.095 0 1.003 70,003
Cbd > 0 0.098 0.154 1.23e-08 1.003 20,750

B. Educational delay
Educational delay (# of years) 0.52 0.89 0 6 70,003
Educational delay (yes=1, no=0) 0.331 0.471 0 1 70,003

C. Educational attainment (yes=1, no=0)
Below primary 0.027 0.161 0 1 70,003
Primary 0.098 0.297 0 1 70,003
Middle 0.239 0.427 0 1 70,003
Secondary 0.365 0.481 0 1 70,003
Above secondary 0.272 0.445 0 1 70,003

D. Primary activity status (yes=1, no=0)
Regular work 0.196 0.397 0 1 70,003
Casual labor 0.093 0.29 0 1 70,003
Self-employment 0.132 0.338 0 1 70,003
Unpaid family work 0.079 0.269 0 1 70,003
Domestic duties 0.329 0.47 0 1 70,003

E. Wages and hours worked
(Real) log hourly wage 3.713 0.654 -1.142 7.796 29399
Weekly hours worked 53.603 13.148 2 105 29399

F. Controls (yes=1, no=0)
Female 0.472 0.499 0 1 70,003
First born 0.308 0.462 0 1 70,003
Hindu 0.740 0.439 0 1 70,003

Note: The category below primary refers to individuals who received some education but did not complete primary school.
This category excludes illiterate individuals and those without any formal education. Wages are reported in rupees.
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Table D.3: Migration by Educational Attainment

Movers Share of movers Individuals Share of individuals
(1) (2) (3) (4)

No education:
No education 69 0.7 5,447 1.3

Primary:
1st grade 82 0.8 8,137 1.0
2nd grade 99 1.0 10,413 0.9
3rd grade 115 1.1 11,638 1.0
4th grade 151 1.5 11,785 1.3
5th grade 252 2.4 18,591 1.3

Middle:
6th grade 249 2.4 17,430 1.4
7th grade 243 2.3 18,157 1.3
8th grade 483 4.6 24,847 1.9

Secondary:
9th grade 383 3.7 20,964 1.8
10th grade 1,213 11.6 48,071 2.5
11th grade 386 3.7 18,516 2.1
12th grade 2,673 25.6 88,567 3.0

Above secondary:
Graduate and above 4,026 38.6 64,815 6.2

Total 10,424 100 367,378

Notes: The table provides information on out-of-district movers by category of schooling for individuals aged
5-33 years old. Column (1) shows the number of individuals who moved out of their district by category of
schooling. Column (2) shows the share of individuals who moved by category out of the total number of movers.
Column (3) displays the total number of individuals by category of schooling and column (4) shows the share
of out-of-district movers within each category of schooling.
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Table D.4: Probability of migration

Probability of migration
(1) (2) (3)

Panel A: 5 to 33 years old

Storm exposure -0.020∗∗∗ -0.012∗∗∗ -0.014
(0.0062) (0.0022) (0.0083)

L.Storm exposure -0.0087∗∗ -0.012∗∗∗

(0.0037) (0.0023)

L2.Storm exposure -0.0095∗∗∗

(0.00076)

Observations 1,490,058 1,189,250 908,242

Panel B: 5 to 15 years old

Storm exposure -0.011∗∗∗ -0.017∗∗∗ -0.011∗∗∗

(0.0038) (0.0022) (0.0038)

L.Storm exposure -0.010∗ -0.020∗∗∗

(0.0052) (0.0037)

L2.Storm exposure -0.018∗∗∗

(0.0012)

Observations 479,970 375,652 280,078

Individual FE Yes Yes Yes
Time FE Yes Yes Yes
District-year FE Yes Yes Yes

Notes: The table estimates the effect of storm exposure on the prob-

ability of an individual migrating. The dependent variable is a bi-

nary variable that takes the value of one if the individual migrated

and zero otherwise. The data come from the Consumer Pyramids

DX, in which each individual is surveyed every four months. The

first lag, L.Storm exposure, corresponds to a four-month lag, and

the second lag, L2.Storm exposure, corresponds to an eight-month

lag. Time FE represent a FE for each four-month-year cell. In

each regression, the weights provided by the Consumer Pyramids

DX dataset are used. Standard errors are clustered at the state

level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.5: Alternative Clustering (Education)

Baseline District District-cohort

(1) (2) (3)

Panel A:
Educ. delay: # of years
School-age exposure 0.43∗∗∗ 0.43∗∗ 0.43∗∗

(0.14) (0.17) (0.17)

Panel B:
Educ. delay: yes=1, no=0
School-age exposure 0.24∗∗∗ 0.24∗∗∗ 0.24∗∗∗

(0.080) (0.072) (0.079)

Panel C:
Educ. attainment
School-age exposure -1.18∗∗∗ -1.18∗∗∗ -1.18∗∗∗

(0.31) (0.35) (0.31)

Individual controls Yes Yes Yes
District FE Yes Yes Yes
Cohort FE Yes Yes Yes
District trends Yes Yes Yes

Observations 70003 70003 70003
Panel A: Mean dep. var. 0.52
Panel B: Mean dep. var. 0.33

Notes: The table presents results on educational delay and attainment, with alternative clustering methods.
In Panel A, educational delay is measured as the difference between reported years of schooling and the min-
imum number of years needed in the schooling system to achieve the reported educational attainment. In
Panel B, educational delay is measured with a dummy variable taking the value of one in the case of an edu-
cational delay of at least one year. In Panel C, educational attainment is a categorical variable indicating the
reported educational attainment (0=no formal schooling, 1=primary school, 2=middle school, 3=secondary
education, 4=above-secondary education), where category 0 includes individuals who received some educa-
tion but did not complete primary school. Column (1) shows the baseline estimates with state clustering,
column (2) uses district clustering, and in column (3) standard errors are clustered at the district-cohort
level. Individual controls include dummy variables indicating if the individual is female, the first-born child,
and Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.6: Alternative Clustering (Type of Activities)

Regular work Casual labor Self-employed Unpaid family work Domestic duties

(1) (2) (3) (4) (5)

Panel A:
Baseline
School-age exposure -0.16∗∗ -0.0093 -0.046 0.016 0.16∗∗∗

(0.076) (0.075) (0.059) (0.067) (0.056)
Observations 70003 70003 70003 70003 70003

Panel B:
District
School-age exposure -0.16∗∗ -0.0093 -0.046 0.016 0.16∗∗∗

(0.079) (0.064) (0.058) (0.052) (0.054)
Observations 70003 70003 70003 70003 70003

Panel C:
District-cohort
School-age exposure -0.16∗∗ -0.0093 -0.046 0.016 0.16∗∗∗

(0.066) (0.060) (0.054) (0.044) (0.054)
Observations 70003 70003 70003 70003 70003

Individual controls Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes Yes
District trends Yes Yes Yes Yes Yes

Notes: The table presents results on the employment status of young adults, with alternative clustering methods. The dependent
variable is a dummy variable that takes the value of 1 if the individual’s main activity is regular work (column 1), casual labor
(column 2), self-employment (column 3), unpaid family work (column 4), or domestic duties (column 5). In Panel A, baseline
estimates are shown with state clustering. Panel B uses district clustering, and in Panel C, standard errors are clustered at the
district-cohort level. Individual controls include dummy variables indicating if the individual is female, the first-born child, and
Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.7: Controlling for Early-life Exposure (Type of Activities)

Regular work Casual labor Self-employed Unpaid family work Domestic duties

(1) (2) (3) (4) (5)

Panel A:
Baseline
School-age exposure -0.16∗∗ -0.0093 -0.046 0.016 0.16∗∗∗

(0.076) (0.075) (0.059) (0.067) (0.056)
Observations 70003 70003 70003 70003 70003

Panel B:
Sub-sample
School-age exposure 0.000098 -0.10 -0.11∗∗∗ -0.020 0.18∗∗

(0.032) (0.11) (0.029) (0.045) (0.069)
Observations 41892 41892 41892 41892 41892

Panel C:
Early life
Early-life exposure -0.024 -0.051 0.068 -0.058∗ -0.21∗∗∗

(0.067) (0.040) (0.054) (0.030) (0.070)
Observations 41892 41892 41892 41892 41892

Panel D:
School & early life
School-age exposure 0.00028 -0.100 -0.11∗∗∗ -0.020 0.19∗∗∗

(0.032) (0.11) (0.029) (0.046) (0.067)
Early-life exposure -0.024 -0.051 0.069 -0.058∗ -0.21∗∗∗

(0.067) (0.039) (0.055) (0.031) (0.071)
Observations 41892 41892 41892 41892 41892

Individual controls Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes Yes
District trends Yes Yes Yes Yes Yes

Notes: The table presents results on the employment status of young adults, controlling for early-life exposure to storms. The
dependent variable is a binary variable taking the value of 1 if the main activity of the individual is to perform regular work
(column 1), casual labor (column 2), self-employment (column 3), unpaid family work (column 4) or domestic duties (column 5).
Panel A presents the baseline estimates, while Panel B reports the results for the sub-sample of individuals born after 1989. In
Panels C and D, the analysis focuses on the same sub-sample. Panel C replaces the school-age exposure measure with the early-
life exposure index, and Panel D includes both measures simultaneously. Individual controls include dummy variables indicating
if the individual is female, the first-born child, and Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are
clustered at the state level.
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Table D.8: Controlling for After-school Exposure (Type of Activities)

Regular work Casual labor Self-employed Unpaid family work Domestic duties

(1) (2) (3) (4) (5)

Panel A:
Baseline
School-age exposure -0.16∗∗ -0.0093 -0.046 0.016 0.16∗∗∗

(0.076) (0.075) (0.059) (0.067) (0.056)
Observations 70003 70003 70003 70003 70003

Panel B:
School & after-school
School-age exposure -0.16∗∗ -0.010 -0.046 0.016 0.16∗∗∗

(0.076) (0.075) (0.059) (0.067) (0.056)

After-school exposure 0.64∗∗∗ -0.50∗∗∗ 0.072 0.22∗ -0.44∗∗∗

(0.19) (0.15) (0.11) (0.12) (0.13)
Observations 70003 70003 70003 70003 70003

Individual controls Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes Yes
District trends Yes Yes Yes Yes Yes

Notes: The table presents results on the employment status of young adults, controlling for after-school exposure to storms. The
dependent variable is a dummy variable that takes the value of 1 if the individual’s main activity is regular work (column 1), ca-
sual labor (column 2), self-employment (column 3), unpaid family work (column 4), or domestic duties (column 5). Panel A shows
the baseline estimates, while Panel B includes a control for after-school storm exposure, computed by summing yearly exposures
over the after-school period up to 2018. Individual controls include dummy variables indicating if the individual is female, the
first-born child, and Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are clustered at the state level.
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Table D.9: Falsification Test (Type of Activities)

Placebo
Share of estimations with
statistical significance at:

1% 5% 10 %

(1) (2) (3)

Panel A:
Regular work
School-age exposure 0.023 0.066 0.119

Panel B:
Casual work
School-age exposure 0.027 0.077 0.138

Panel C:
Self-employed
School-age exposure 0.022 0.06 0.127

Panel D:
Unpaid family work
School-age exposure 0.022 0.085 0.133

Panel E:
Domestic duties
School-age exposure 0.018 0.076 0.125

Individual controls Yes Yes Yes
District FE Yes Yes Yes
Cohort FE Yes Yes Yes
District trends Yes Yes Yes

Observations 70003 70003 70003

Notes: The table reports the results of falsification tests for the regression on the employment status of
young adults. In Panels A-E, the dependent variable is a binary variable taking the value of one if an in-
dividual’s primary activity is regular work, casual work, self-employment, unpaid family work, or domestic
duties, respectively. Columns (1)-(3) show the share of statistically significant results over 1000 random-
izations, where the school-age exposure measure is randomized over the entire sample. Individual controls
include dummy variables indicating if the individual is female, the first-born child, and Hindu, respectively.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are clustered at the state level.
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Table D.10: Removing Extreme Exposures and Controlling for Climate Variables (Type of
Activities)

Regular work Casual labor Self-employed Unpaid family work Domestic duties

(1) (2) (3) (4) (5)

Panel A:
Baseline
School-age exposure -0.16∗∗ -0.0093 -0.046 0.016 0.16∗∗∗

(0.076) (0.075) (0.059) (0.067) (0.056)
Observations 70003 70003 70003 70003 70003

Panel B:
Excl. Orissa
School-age exposure -0.26∗∗∗ -0.069 0.026 0.066 0.19∗∗

(0.083) (0.11) (0.051) (0.12) (0.088)
Observations 67770 67770 67770 67770 67770

Panel C:
Excl. extremes
School-age exposure -0.15∗∗∗ -0.022 -0.0056 0.026 0.089∗

(0.051) (0.065) (0.052) (0.058) (0.046)
Observations 70003 70003 70003 70003 70003

Panel D:
Sub-sample
School-age exposure -0.15∗ -0.011 -0.066 0.031 0.16∗∗

(0.076) (0.079) (0.048) (0.072) (0.060)
Observations 66702 66702 66702 66702 66702

Panel E:
Climate controls
School-age exposure -0.13∗ -0.053 -0.070 0.026 0.17∗∗

(0.074) (0.085) (0.048) (0.072) (0.064)
Observations 66702 66702 66702 66702 66702

Individual controls Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes Yes
District trends Yes Yes Yes Yes Yes

Notes: The table reports results on the employment status of young adults, after removing extreme exposures or controlling for
climate variables. The dependent variable is a dummy equal to 1 if the main activity of the individual is to perform regular work
(column 1), casual labor (column 2), be self-employed (column 3), work as an unpaid family worker (column 4), and perform
domestic duties (column 5). Panel A presents baseline estimates, while Panel B presents results for the baseline specification esti-
mated on a subsample that excludes individuals located in Orissa. In Panel C, we recompute the exposure index by removing all
the winds with values falling above the 95th percentile of the wind distribution. Panel D replicates the baseline specification on
the subsample for which climate variables are available. In Panel E, we include climate controls, such as a district-specific mea-
sure capturing the average yearly precipitation (in millimeters) between ages 5-15. We also include the average temperature (in
◦C) and the number of exposure days within temperature bins (0-10, 10-20, 20-30, and above 30◦C) to which children of a given
district were exposed during school age. Individual controls include dummy variables indicating if the individual is female, the
first-born child, and Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are clustered at the state level.
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Table D.11: Educational Controls (Type of Activities)

Regular work Casual labor Self-employed Unpaid family work Domestic duties

(1) (2) (3) (4) (5)

Panel A:
Baseline
School-age exposure -0.16∗∗ -0.0093 -0.046 0.016 0.16∗∗∗

(0.076) (0.075) (0.059) (0.067) (0.056)
Observations 70003 70003 70003 70003 70003

Panel B:
Predicted educ. attainment
School-age exposure -0.16∗∗ -0.0087 -0.047 0.015 0.16∗∗∗

(0.075) (0.075) (0.059) (0.067) (0.056)
Predicted educ. attainment Yes Yes Yes Yes Yes
Observations 70003 70003 70003 70003 70003

Panel C:
Sub-sample
School-age exposure -0.18∗ 0.0019 -0.11 0.036 0.15∗∗∗

(0.10) (0.060) (0.11) (0.090) (0.050)
Observations 31243 31243 31243 31243 31243

Panel D:
Parental education
School-age exposure -0.18 0.00050 -0.11 0.036 0.15∗∗∗

(0.11) (0.059) (0.11) (0.090) (0.050)
Parental education Yes Yes Yes Yes Yes
Observations 31243 31243 31243 31243 31243

Individual controls Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes Yes
District trends Yes Yes Yes Yes Yes

Notes: The table presents results on the employment status of young adults, controlling for education. The dependent variable
is a dummy equal to 1 if the main activity of the individual is to perform regular work (column 1), casual labor (column 2), be
self-employed (column 3), work as an unpaid family worker (column 4), or perform domestic duties (column 5). Panel A shows
baseline estimates. In Panel B, we add a control for the individual’s predicted probability of completing the reported level of edu-
cation. Panel C replicates the baseline specification on a subsample for which parental education is available. In Panel D, we use
the same subsample as in Panel C and additionally control for parental education. Individual controls include dummy variables
indicating if the individual is female, the first-born child, and Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard
errors are clustered at the state level.
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Table D.12: Alternative Measures (Type of Activities)

Regular work Casual labor Self-employed Unpaid family work Domestic duties

(1) (2) (3) (4) (5)

Panel A:
Baseline
School-age exposure -0.16∗∗ -0.0093 -0.046 0.016 0.16∗∗∗

(0.076) (0.075) (0.059) (0.067) (0.056)
Panel B:
Sum of squares
School-age exposure -0.072 0.029 -0.14∗∗∗ -0.012 0.19∗∗

(0.065) (0.037) (0.020) (0.032) (0.087)
Panel C:
50, cubic
School-age exposure -0.12 0.016 -0.11∗∗ -0.0032 0.21∗∗

(0.096) (0.060) (0.046) (0.052) (0.096)
Panel D:
64, quadratic
School-age exposure -0.12 0.012 -0.093∗ -0.0025 0.21∗∗

(0.086) (0.062) (0.051) (0.055) (0.088)
Panel E:
64, cubic
School-age exposure -0.069 0.034 -0.14∗∗∗ -0.016 0.20∗

(0.063) (0.032) (0.019) (0.028) (0.100)
Panel F:
All winds
School-age exposure -0.011 0.00010 -0.022 0.00032 0.013

(0.011) (0.015) (0.019) (0.0091) (0.012)
Panel G:
HURRECON
School-age exposure -0.13 0.016 -0.087∗ 0.0044 0.17∗∗

(0.083) (0.073) (0.051) (0.060) (0.065)

Observations 70003 70003 70003 70003 70003

Individual controls Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes Yes
District trends Yes Yes Yes Yes Yes

Notes: The table presents results on the employment status of young adults, using alternative specifications of school-age expo-
sure to storms. The dependent variable is a dummy equal to 1 if the main activity of the individual is to perform regular work
(column 1), casual labor (column 2), be self-employed (column 3), work as an unpaid family worker (column 4) and perform do-
mestic duties (column 5). Panel A shows baseline estimates, and Panel B to Panel G shows results using different specifications
of the storm exposure measure. In Panel B, storm exposure is computed using the sum of the squares of yearly exposures. In
Panel C, storm exposure is computed using a threshold of 50 knots and a cube function. In Panel D, exposure is computed using
a threshold of 64 knots and a square function. In Panel E, exposure is computed using a threshold of 64 knots and a cube func-
tion. In Panel F, exposure is computed using all winds. Finally, in Panel G, exposure is computed using the HURRECON model,
a threshold of 50 knots, and a square function. Individual controls include dummy variables indicating if the individual is female,
the first-born child, and Hindu, respectively. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are clustered at the state level.
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Table D.13: Summary Statistics: Consumer Pyramid DX and DISE

Variable Mean Std. Dev. Min. Max. N

I. Consumer Pyramid DX:
Household income:
Overall 12299 13111 0 2722678 9932098
From wages 8745 9690 0 1413483 9932098
From business profits 2328 9634 0 2719837 9932098

II. DISE:
Avg. # of classrooms:
In good conditions 4.36 2.795 0 94.5 153789

Share of schools:
With electricity 0.688 0.334 0 1 153789
Without electricity 0.285 0.325 0 1 153789
With unreliable electricity 0.026 0.055 0 1 153789
Exiting 0.026 0.09 0 1 110099
Under construction 0.008 0.032 0 1 110099

Avg. # of kids:
In primary school:
C1 20.102 14.415 0 616.5 143853
C2 19.588 14.097 0 426 143853
C3 19.524 14.205 0 421 143853
C4 19.264 14.047 0 438.5 143853
C5 19.11 14.502 0 489 143853

In Middle school:
C6 17.917 14.766 0 519.5 143853
C7 17.603 14.833 0 527.5 143853
C8 16.388 15.634 0 677.333 143853

Appearing at the exam:
C5 8.140 13.006 0 923 126981
C7 0.976 4.839 0 280 65386

Passing the exam:
C5 8.048 12.882 0 923 126981
C7 0.912 4.492 0 257 65386

Scoring above 60% at the exam:
C5 5.665 9.867 0 827 126981
C7 0.473 2.714 0 205 65386

Note: Income, wages, and business profits are obtained from the Consumer Pyramid DX dataset and are ex-
pressed in lakhs of rupees in real terms using the CPI with a base year of 2010. The remaining variables in
the table present summary statistics constructed from the DISE data. Averages and shares are computed at
the postal code-year level. School ratios are expressed relative to the number of schools in 2010 for a given
postal code-year, thus having a potential maximum value over 1. The maximum average number of kids ap-
pearing at/passing the exam at C5 (C7) may exceed the maximum average number of kids at C5 (C7) since
not all schools offer exams, which means that some students may have to take their exams in other schools.19



E Appendix. Figures

Figure E.1: Oldest Cohort
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Figure E.2: School-age Exposure to Storms
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Notes: The left panel of the figure displays boxplots that describe the measure of school-age exposure to storms
for individuals born between 1985 and 1995, with positive exposure (Cbd > 0), by state in alphabetical order.
The figure only includes states with positive exposure. The blue line in each box represents the median, and
the lower and upper bounds of the box are the first and third quartiles, respectively. The end of the left (right)
whisker represents the 1st percentile (99th percentile). Circles without a box indicate that all observations are
clustered around the median, and circles outside of the box represent outliers. The right panel displays a map
that provides a visual illustration of school-age exposure to storms across districts for the cohort born in 1987.
The darkest shades correspond to districts with a school-age exposure index above the 90th percentile of the
distribution of Cbd in 1987. The other shades corresponding to positive exposures contain 15% of the districts
each.
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Figure E.3: Cyclone Hazard-prone Districts

Note: Districts are classified into hazard-prone districts depending on the frequency of total cyclones and
measures of the total severity of cyclones for the period 1981-2008. Source: India Meteorological Department,
Ministry of Earth Sciences, Government of India.
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Figure E.4: Effect of School-age Exposure on the Probability of a Given Educational Attain-
ment
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(b) At most primary school
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(c) At most middle school
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(d) At most secondary school
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(e) At least secondary school

Note: The figure displays the predicted probabilities (and their corresponding 95% confidence
intervals) of not completing primary school (Panel a), completing at most primary school (Panel
b), completing at most middle school (Panel c), completing at most secondary school (Panel d), and
completing at least secondary school (Panel e), across the range of storm exposures. The estimates
are obtained from Panel C in Table 1, which presents an ordered logit regression of educational
attainment. The range of exposures is [0,1].
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Figure E.5: Local Projections on Household Income, by Source
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(a) Household wage, urban areas

-1
5

-1
0

-5
0

5
Pe

rc
en

ta
ge

 c
ha

ng
es

0 6 12 18 24
Months

Wages (rural)

(b) Household wage, rural areas
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(c) Household business profits, urban areas
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(d) Household business profits, rural areas

Note: The figure shows the results of local projections (direct effect) on household income by source
(wage and business profits) and area (urban and rural), on a 24-month time horizon for the average
cyclone exposure. The analysis includes district-year FE, time FE, and household FE. Storm exposure is
computed from wind exposures at the district-month level using a quadratic damage function and a 50
knots threshold. The figure presents 95% confidence intervals.
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