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Abstract 

COVID-19 has created an unprecedented global health crisis that caused millions of infections and 
deaths worldwide. Many, however, argue that pre-existing social inequalities have led to inequalities in 
infection and death rates across social classes, with the most-deprived classes are worst hit. In this 
paper, we derive semi/non-parametric estimators of Health Concentration Curve (HC) that can quantify 
inequalities in COVID-19 infections and deaths and help identify the social classes that are most at risk of 
infection and dying from the virus. We express HC in terms of copula function that we use to build our 
estimators of HC. For the semi-parametric estimator, a parametric copula is used to model the 
dependence between health and socio-economic variables. The copula function is estimated using 
maximum pseudo-likelihood estimator after replacing the cumulative distribution of health variable by 
its empirical analogue. For the non-parametric estimator, we replace the copula function by a Bernstein 
copula estimator. Furthermore, we use the above estimators of HC to derive copula-based estimators of 
health Gini coeffcient. We establish the consistency and the asymptotic normality of HC’s estimators. 
Using different data-generating processes and sample sizes, a Monte-Carlo simulation exercise shows 
that the semiparametric estimator outperforms the smoothed nonparametric estimator, and that the 
latter does better than the empirical estimator in terms of Integrated Mean Squared Error. Finally, we 
run an extensive empirical study to illustrate the importance of HC’s estimators for investigating 
inequality in COVID-19 infections and deaths in the U.S. The empirical results show that the inequalities 
in state’s socio-economic variables like poverty, race/ethnicity, and economic prosperity are behind the 
observed inequalities in the U.S.’s COVID-19 infections and deaths. 
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1 Introduction

COVID-19 has created an unprecedented global health crisis that caused millions of deaths worldwide.

However, many argue that pre-existing social inequalities led to inequalities in the number of infections

and deaths across social classes, with the most-deprived classes are worst hit. In a 2020 report on

unequal risks of infection and severe illness, World Health Organization (WHO) European Region

pointed out that COVID-19 exposure risk and the severity of its health, social and economic impacts

are not being felt equally.1 Thus, given the devastating impact of the pandemic and to address the

above health inequities, policymakers are urged to identify those classes that are most at risk of

infection and dying from the virus and set containment measures to deal with these inequities in

COVID-19�s infections and deaths. In this paper, we aim to develop new estimation approaches that

can help detect health inequalities that are caused by di¤erent socioeconomic factors such as poverty,

race, etc. These estimation techniques will be used to check if real data on COVID-19�s infection and

deaths supports the claims regarding the impact of socioeconomic factors on COVID-19 exposure risk

and deaths.

Chen and Krieger (2021) argue that reporting disaggregated COVID-19 cases by race/ethnicity

and socioeconomic position is vital to informing e¤orts to distribute resources, develop treatments,

and coordinate public policy. They point out that �As of May 6, 2020, tables on the US Centers for

Disease Control and Prevention�s (CDC�s) own Web page reporting COVID-19 cases by race/ethnicity

indicated that 54.2% of reported cases were missing race/ethnicity information.� Using data from

Public Health Disparities Geocoding Project [see Krieger et al. (2003, 2005), Krieger et al. (2002,

2003a,b)], Chen and Krieger (2021) uses descriptive statistics to report disparities in COVID-19 death

rate in the US by county level sociodemographic attributes using available surveillance and US Census

data. Furthermore, Chin, et al. (2020) report that preliminary data from the epidemic in the US show

that demographic and socioeconomic issues make low-income communities and people of color more

vulnerable to COVID-19 than others. To assess each county�s level of risk of high COVID-19 medical

burden, Chin, et al. (2020) examine available data for a range of characteristics for all U.S. counties,

or county equivalents.

Moreover, Knittel and Ozaltun (2020) use both linear regression and negative binomial mixed

models to study the correlation between county-level COVID-19 death rates and some socio-economic

variables across states as well as within states. Their analysis shows that across states higher shares

1See the WHO�s report here: https://apps.who.int/iris/bitstream/handle/10665/338199/WHO-EURO-2020-1744-

41495-56594-eng.pdf
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of African American and elderly residents are correlated with higher death rates. However, this cor-

relation becomes statistically insigni�cant within a given state, while remaining positive. They also

�nd that a higher share of people not working, that counties with higher home values, higher summer

temperatures, and lower winter temperatures are correlated with higher death rates. Furthermore

and unexpectedly, they do not �nd a correlation between poverty rates, pollution or obesity rates

and death rates. Using linear regressions models and monthly county-level mortality data, McLaren

(2021) studies the socio-economic roots of racial disparities in COVID-19 mortality. After controlling

for state-level e¤ects, he shows that there is a strong positive correlation across counties between the

minority�s population share and COVID-19 deaths. However, he also �nds that for Asian-Americans

the correlation is fragile, and disappears when one controls for some variables like education, occu-

pation, and commuting patterns. McLaren (2021) argues that regardless of what other factors are

controlled for, the racial disparity in mortality rates cannot be explained by di¤erences in income,

poverty rates, education, occupational mix, or even access to healthcare insurance. For other empir-

ical studies on the impact of socioeconomic variables on COVID-19 infections and deaths for other

countries other than the U.S., the readers can consult Ehlert (2021), Bermudi et al. (2021), Lassale

et al. (2020) among others.

Using a theoretical model, Brown and Ravallion (2020) incorporate within-county median incomes,

poverty, income inequality, age, and racial composition to model the social distancing responses to

the threat of catching COVID-19 and outcomes for infections and deaths across U.S. counties. For

the empirical implementation of the model, they use regressions to show that there is a statistically

signi�cant e¤ect of socioeconomic covariates on social distancing and infections, but not on deaths.

Furthermore, they �nd that richer counties tend to see greater gains in social distancing and lower

infection rates, and that income poverty and inequality tend to increase the infection rate, but these

e¤ects are largely accountable to their correlation with racial composition.

None of the above-mentioned studies, however, use proper measures of health that are designed

to detect inequalities in COVID-19�s infections and deaths across social classes. These studies are

based on simple correlations and regressions, which might not help quantify inequalities in infections

and deaths. To measure health inequality based on socioeconomic variables, Wagsta¤ et al. (1989)

introduced a concentration index that takes into consideration a speci�c weight function that repre-

sents the aversion to socioeconomic health inequality. This concentration index could be viewed as

an extension of the Gini index, which is widely adopted in the income inequality literature. Since

the work of Wagsta¤ et al. (1989), several alternative indices based on concentration curves have

been established by using di¤erent weight functions that represent di¤erent judgements of inequality
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aversion, see Wagsta¤ et al. (1991), Wagsta¤ (2002, 2005), Allison and Foster (2004), Erreygers and

Van Ourti (2011), Zheng (2011) among others.

In this paper, we use copula functions to develop semiparametric and nonparametric estimators of

health concentration curves that are designed to quantify health inequalities. These estimators will be

applied to study inequalities in COVID-19�s infections and deaths across U.S. states as well as within

these states (counties). Health concentration curves allow us to obtain plots of cumulative percentage

of the health variable (e.g. COVID-19�s infection rate and COVID-19�s death rate) against the cu-

mulative percentage of the population, ranked by socio-economic covariates such as living standards

(beginning with the poorest and ending with the richest), race, etc. These plots help to visualize

easily inequalities in health variables by observing the position of the health concentration curve with

respect to 45-degree line (known as the line of equality) in a two-dimensional space. If each individual

in the dataset had equal chance of contracting/dying from COVID-19 regardless of their socioeconomic

position, then as we move from lowest socioeconomic position to highest socioeconomic position, the

proportion of individuals with/died of COVID-19 should remain the same, and in this case the health

concentration curve matches the 45-degree line, otherwise we say that there is inequality not in favour

of individuals with lowest socioeconomic position (if the curve is above the 45-degree line) or not in

favour of individuals with highest socioeconomic position (if the curve is below the 45-degree line).

The farther the curve is above/below the line of equality, the more concentrated the COVID-19�s

infections/deaths is among the individuals with lowest socioeconomic position/highest socioeconomic

position, respectively.

We �rst show that the dependence structure between health and socioeconomic variables is crucial

for the estimation of health concentration curves. We re-formulate the health concentration curve as

a function of copula and derive expressions for HC for some speci�c copula functions. In particular,

we consider the independence case and lower and upper Fréchet�Hoe¤ding dependence structures.

The latter type of dependence helps illustrate the link between health concentration curve and Lorenz

curve of the health variable of interest.

Next, we use the above-mentioned copula-based re-formulation to develop semi-parametric and

nonparametric estimators of health concentration curves. To derive the semi-parametric estimator,

a parametric copula function is used to model the dependence between health and socio-economic

variables. The parameter of the copula function is estimated using the maximum pseudo-likelihood

estimation technique after replacing the cumulative distribution of health variable (or the argument of

copula function) by its nonparametric analogue (empirical distribution function). Once the maximum

likelihood estimator of the copula�s parameter is obtained, we use it to calculate the semi-parametric
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estimator of health concentration curve. For the non-parametric estimator of the health concentration

curve, we replace the copula function by its smoothed non-parametric estimator, which we obtain

using Bernstein copula. Bernstein estimator helps avoid the misspeci�cation problem that might face

the semiparametric estimator. Furthermore, we use the above estimators of the health concentration

curve to derive semi-parametric and nonparametric estimators of health Gini coe¢ cient.

Moreover, we study the asymptotic properties of the above estimators. We establish their consis-

tency and asymptotic normality. We provide expressions for their variances, which might be used to

construct con�dence intervals and build tests for health concentration curve and health Gini coe¢ -

cient. Using di¤erent data-generating processes and sample sizes, a Monte-Carlo simulation exercise

shows that the semiparametric estimator outperforms the smoothed nonparametric estimator, and

that the latter does better than the empirical estimator in terms of Integrated Mean Squared Error.

Furthermore, we run an extensive empirical study to illustrate the importance of our estimators for

quantifying and investigating inequality in COVID-19�s infections and deaths in the U.S. Our empirical

results show that e¤ectively some socio-economic variables like poverty, race, and economic prosperity

of a state might explain the observed inequalities in COVID-19�s infections and deaths.

The rest of this paper is organized as follows. In Section 2, we introduce the notations, re-

formulate the health concentration curve as a function of copula and derive its expression for some

speci�c copula functions. In Section 3, we develop semi-parametric and nonparametric estimators

of health concentration curve using parametric and non-parametric copulas, which in turn use to

derive estimators of Gini health index. In Section 4, we study the asymptotic properties of the

semiparametric and nonparametric estimators. In Section 5, we run Monte Carlo simulations to assess

the performances of the semiparametric and nonparametric estimators and compare them with the

one of the classical empirical estimator of the concentration health. Section 6 contains an extensive

empirical study using our estimators and U.S. COVID-19 data and Section 7 concludes. The proofs

of the theoretical results can be found in the Appendix.

2 Copula-based health concentration curve

The health concentration curve plots the cumulative percentage of the health variable against the

cumulative percentage of the population, ranked by socio-economic covariates such as living standards,

beginning with the poorest and ending with the richest. The curve illustrates the e¤ect of a socio-

economic variable on concentration of a health variable such as COVID-19 infection or death. Formally,

consider H representing the health variable of interest and Y a socio-economic random variable such
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as income. Let f be the joint density of the vector (H;Y ); with fH and fY the marginal densities of

H and Y; fHjY the conditional density of H given Y; and FH and FY the marginal distributions of H

and Y: For p 2 (0; 1) ; the health concentration curve is de�ned as

CH(p) =

R p
0 E

�
H j Y = F�1Y (u)

�
duR 1

0 E
�
H j Y = F�1Y (u)

�
du
; (1)

where, for u 2 (0; 1) ; F�1Y (u) = infft : FY (t) � ug is the quantile function of Y . The values of F�1Y (u)

at u = 0 and u = 1 can be set to arbitrary �nite real numbers. For example, if Y is the income and

H is the rate of COVID-19 mortality, CH(p) is the percentage of the cumulative rate of COVID-19

mortality rate of the 100p% of the poorest population.

Observe now that the structure of the dependence between H and Y plays a crucial role in the

calculation of health concentration curve CH(p). For instance, if H and Y are independent, then

CH(p) = p; i.e., we are in the presence of perfect equality of health variable H across the socio-

economic variable Y . However, this does not mean a perfect equality of the health concentration. As

shown in the following proposition, the concentration health curve can be derived through dependence

structure of the vector (H;Y ) using copula function [see the proof of Proposition 1 in the appendix].

Proposition 1 Let C and c be the copula function and the copula density function of the vector (H;Y );

respectively. The health concentration curve (CH) in Equation (1) can be rewritten as a function of

copula:

CH(p) =

R 1
0 F

�1
H (u)Cu(u; p)du

E(H)
; for p 2 (0; 1) ; (2)

where Cu(u; p) is the partial derivative of the copula function of the vector (H;Y ) :

Cu(u; v) =
@C(u; v)

@u
=

Z v

0
c(u; z)dz:

The result in (2) is a copula-based representation of CH. We now use this representation to derive

expressions of the health concentration curve for some speci�c copula functions. We consider the

independence case and the Fréchet�Hoe¤ding lower and upper bounds of copula. As shown below, the

latter dependence structures help illustrate the link between the concentration curve and the Lorenz

curve of the health variable H.

Example 1 (Independence): If H and Y are independent, then Cu(u; v) = v: Therefore, CH(p) =

p, and in this case we obtain a perfect equality, i.e. the socio-economic variable has no e¤ect on the

concentration of the health variable.

Example 2 (Lower Fréchet�Hoe¤ding): Suppose that H and Y are countermonotonic random

variables, i.e., the dependence between the two variables can be modelled using the Fréchet�Hoe¤ding
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lower bound copula W (u; v) = maxfu+ v � 1; 0g: In this case, Wu(u; p) = I(u > 1� p); where I (:) is

an indicator function that takes the value one if u > 1� p and zero otherwise. Hence,

CH(p) =

R 1
0 F

�1
H (u)Wu(u; p)du

E(H)
=

R 1
1�p F

�1
H (u)du

E(H)
= 1� LH(1� p);

where LH is the Lorenz curve of H. For example, if H represents overweightness, then CH(p) is the

percentage of the total overweightness of the 100p% of the richest population.

Example 3 (Upper Fréchet�Hoe¤ding): Suppose thatH and Y are comonotone random variables,

i.e., the dependence between the two variables can be modelled using the Fréchet�Hoe¤ding upper

bound copula M(u; v) = minfu; vg: In this case, Mu(u; p) = I(u < p); where I (:) is an indicator

function that takes the value one if u < p and zero otherwise. Hence,

CH(p) =

R 1
0 F

�1
H (u)Mu(u; p)du

E(H)
=

R p
0 F

�1
H (u)du

E(H)
= LH(p);

For example, if H represents the payments people made for health care and if we assume a perfect

positive correlation between income Y and H; then CH(p) is the percentage of the total payments

spent by the 100p% of the poorest population.

3 Estimation of copula-based Health concentration curve

In this section, the copula-based representation of CH in (2) will be used to derive semi-parametric and

nonparametric estimators of health concentration curve and Gini coe¢ cient. For the semi-parametric

estimator, we consider a parametric copula function to model the dependence between health and

socio-economic variables. The parameters of the copula are estimated using the maximum pseudo-

likelihood estimator after replacing the cumulative distribution of health variable by its empirical

analogue. For the non-parametric estimator, we replace the copula function by the Bernstein copula

estimator. Furthermore, we use the previous estimators to derive semi-parametric and nonparametric

estimators of health Gini coe¢ cient.

Let us �rst set some notations. We denote by f(Hi; Yi); i = 1; : : : ; ng an independent and identically

distributed sample of n copies of the vector (H;Y ): From the representation in (2), we see that the

health concentration curve can be estimated using di¤erent approaches that represent di¤erent ways

of estimating the expectation and distribution of the health variable H, say E(H) and FH ; but also the

ways we estimate the copula function Cu(u; p): In the following, E(H) is estimated using its empirical

analogue (sample average of H) and FH is estimated using the rescaled empirical distribution:

bFH(h) = 1

n+ 1

nX
i=1

I(Hi � h); (3)
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where I(:) is an indicator function that takes the value one if Hi � h and zero otherwise. Note that

alternative estimators of FH - such as a parametric estimator or a smooth nonparametric estimator

(Kernel, Bernstein, etc.) - can be considered.

Regarding the estimation of copula function, in the next sub-sections we consider two di¤erent

estimators of Cu(u; p). In Sub-section 3.1, we introduce a semiparametric estimator of CH(p) in

which only realizations of Y in Cu(u; p) will be used for estimating the copula function, i.e., the

information on Y are required for modelling the dependence structure of the random vector (H;Y ):

In Sub-section 3.2, we derive the nonparametric estimator of CH(p) using a nonparametric estimator

(hereafter Bernstein estimator) of copula Cu(u; p):

3.1 Semiparametric estimation

Suppose now that the copula C of (H;Y ) belongs to a parametric family of copulas fC(:; :; �); � 2 �g;

with an unknown vector parameter � that is in the set � a compact subset of Rq: Denote by �0 the

true value of the parameter �. There exist several estimators of �0 and the most popular one is given

by the following maximum pseudo likelihood estimator:

�̂n = argmax
�

nX
i=1

log c
� bFH(Hi); bFY (Yi); �� ; (4)

where c is the copula density of C, bFH(h) is de�ned in (3) and bFY (y) = (n+ 1)�1Pn
i=1 I(Yi � y): Note

that b�n is the estimator proposed by Shih and Louis (1995) and Genest, Ghoudi and Rivest (1995).
The asymptotic representation of b�n can be obtained from the proof of Theorem 1 in Tsukuhara

(2005).

Using the maximum likelihood estimator of �0 in (4) and the nonparametric estimator of FH in

(3), a semiparemetric estimator of CH(p) can be obtained as follows:

dCH(p) = Pn
i=1HiCu(

bFH(Hi); p;b�n)Pn
i=1Hi

; (5)

where Cu(u; v; �) =
@C(u;v;�)

@u . Next, we use the examples in Section 2 to illustrate the semiparametric

estimator of CH(p) in (5). We also compare the latter estimator with the following empirical estimator

of CH(p) [see Wagsta¤ (2002)],

dCHn(p) =

Pn
i=1HiI(Yi � bF�1Y (p))Pn

i=1Hi
; (6)

where I(:) is an indicator function that takes the value one if Yi � bF�1Y (p) and zero otherwise. The

results are reported in Figure 1 that we obtain after generating n = 100 observations of (Hi; Yi) from
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a Gaussian copula with correlation coe¢ cients � = 0 (Example 1), � = �0:99 (close to Example 2)

and � = 0:99 (close to Example 3), and from marginal distributions of H and Y that are given by the

exponential distribution with a parameter � = 1: To avoid numerical problems, we excluded the cases

� = �1. Thereafter, we report the results for both known and unknown copula function. When the

latter is unknown, we use the R package VineCopula to select the copula that better �ts the generated

data [see the curves unknown copula in the sub-�gures of Figure 1]. Figure 1 also illustrates estimators

of 1 � LH(1 � p) and LH(p) - see sub�gures (b) and (c) of Figure 1 that correspond to Examples 2

and 3 -; where LH denotes the Lorenz curve of H.

(a) H and Y are independent
(b) Correlation between H and Y equal to �0:99

(c) Correlation between H and Y equal to 0:99

Figure 1: This �gure illustrates the copula-based semiparametric estimator and the empirical esti-

mator of the health concentration curve CH(p) for di¤erent structures of dependence between H and

Y:

Sub�gure (a) of Figure 1 shows that the copula-based estimator of CH(p) is much closer to the
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45-degree line (true curve of CH(p) under independence) than the empirical estimator, and that the

former is also much smoother than the latter. This result holds for both known and unknown copulas,

which might indicate a high performance in favour of our semi-parametric estimator. We see that the

estimators of CH(p) for known and unknown copulas are very close, which might indicate that the

R package VineCopula we use to select the copula function performs well. Moreover, we �nd that

the Lorenz curve�s estimator of H is quite far from the 45-degree line, which suggests that perfect

equality using CH(p) does not imply perfect equality using LH . Sub�gures (b) and (c) illustrate the

semiparametric and empirical estimators of CH(p) and of 1�LH(1�p) (or LH) when the dependence

between H and Y is given by lower and upper Fréchet�Hoe¤ding, respectively. From these sub�gures,

we see that the estimators of CH(p) and 1�LH(1� p) are quite close, but again our semi-parametric

estimator is smoother than the empirical estimator of CH(p):

3.2 Nonparametric estimation

The semiparametric estimation approach of CH assumes that the copula function C of (H;Y ) belongs

to a parametric family of copulas. In practice, however, the copula�s family is unknown, thus the

semiparametric estimator in (5) can be biased if the used parametric copula is misspeci�ed. To over-

come this issue, we propose a nonparametric estimation of CH based on the following nonparametric

estimator of copula (Bernstein copula). Formally, we consider the following Bernstein estimator of

C(u; v) :

Cm;n(u; v) =

mX
k0=0

mX
k1=0

Cn

�
k0
m
;
k1
m

�
Pm;k0(u)Pm;k1(v); (7)

where m is an integer that plays the role of bandwidth, Cn is the empirical copula, and

Pm;k(z) =

0@ m

k

1A zk(1� z)m�k;
is the binomial distribution function with the parameters (m; k): For independent and identically

distributed (i.i.d.) data, Sancetta and Satchell (2004) introduced a Bernstein polynomial estimator

of the copula function and established the asymptotic normality of the Bernstein density copula.

Sancetta and Satchell (2004) show that, under some regularity conditions, any copula function can be

approximated by a Bernstein copula. Moreover, asymptotic properties of the Bernstein density copula

for �-mixing data are studied in Bouezmarni et al. (2010). Janssen et al. (2012) have shown that the

Bernstein copula outperforms the classical empirical copula originally proposed by Deheuvels (1979).

Furthermore, an estimator of the partial derivative Cu(u; v) can be derived using the Bernstein copula,

but not the empirical copula.
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Using the Bernstein copula in (7), a nonparametric estimator of the �rst-order partial derivative

of the copula function, Cu(u; p); can be obtained as follows:

eCu(u; p) = m m�1X
k0=0

mX
k1=0

�
Cn

�
k0 + 1

m
;
k1
m

�
� Cn

�
k0
m
;
k1
m

��
Pm�1;k0(u)Pm;k1(p): (8)

(a) Correlation between H and Y is positive (b) Correlation between H and Y is negative

(c) Correlation between H and Y changes sign (d) H and Y are independent

Figure 2: This �gure illustrates the Bernstein copula-based estimator and the empirical estimator of

the health concentration curve CH(p) for di¤erent degrees of dependence between H and Y:

This estimator was introduced and its asymptotic properties were derived in Janssen et al. (2016).

From (2) and (8), a nonparametric estimator of CH(p) can be de�ned as follows:

dCHm;n(p) =

Pn
i=1Hi

eCu( bFH(Hi); p)Pn
i=1Hi

(9)

We now use some examples of dependence between H and Y to illustrate the nonparametric

estimator in (9). For this, we generate n = 100 observations of (Hi; Yi) using a Gaussian copula with
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correlation coe¢ cients: (a) � = 0:6; (b) � = �0:6, (c) dependence between H and Y is quadratique,

and (d) � = 0 (independence). The results reported in Figure 2 shows that the Bernstein copula-based

estimator outperforms the empirical estimator as it is much closer to the 45-degree line in the case

of independence - under which the true curve of CH(p) matches the 45-degree line - and it is much

smoother for the other cases of dependence.

3.3 Gini health index estimation

We now use the previously developed estimators of CH to propose estimators of Gini health index.

This index is a measure of dispersion intended to quantify the health inequality within a socioeconomic

group. Formally, the Gini health index is de�ned as follows:

G = 2

Z 1

0
(p� CH(p)) dp = 2Cov(H;FY (Y ))

E(H)
: (10)

Observe that under independence between H and Y , the covariance between H and FY (Y ) is equal

to zero, and therefore the Gini health index G is equal to zero. The index G takes values between �1

and 1. A negative value of G indicates a pro-poor health, and in this case the health concentration

curve will be above the 45-degree line; see Sub�gure 1(b). A positive value of G indicates a pro-rich

health, and in this case the health concentration curve is below the 45-degree line; see Sub�gure 1(c).

The Gini health index G is equal to zero when the concentration curve is close to the 45-degree line,

see Sub�gure 1(a). However, notice that the Gini health index - which is equal to the integral of

the di¤erence between the 45-degree line and the curve CH(p) - can be equal to zero even when the

health concentration curve does not coincide with the 45-degree line as shown in Sub�gure 2(c). Thus,

CH(p) curve should represent a better way of visualizing and detecting health inequalities.

If H and Y are comonotone random variables - i.e., the dependence between the two variables

can be modelled using the upper Fréchet�Hoe¤ding -, then CH(p) = LH(p) and G represents a

Gini health coe¢ cient constructed from Lorenz curve. In this case, we have FH(H) = FY (Y ) and

G = 2
E(H)Cov(H;FY (Y )) =

2
E(H)Cov(H;FH(H)): Formally,

G = 2

Z 1

0
(p� CH(p)) dp = 2

Z 1

0
(p� LH(p)) dp:

If H and Y are countermonotonic random variables - i.e., the dependence between the two variables

can be modelled using the lower Fréchet�Hoe¤ding -, then CH(p) = 1�LH(1�p) and G will be equal

to minus Gini health index calculated based on Lorenz curve LH . Formally,

G = 2

Z 1

0
(p� CH(p)) dp = 2

Z 1

0
(p� 1 + LH(1� p)) dp=� 2

Z 1

0
(p� LH(p)) dp

11



Formally, we can show that G is equal to minus Gini health coe¢ cient based on Lorenz curve by

observing that FH(H) = 1� FY (Y ) and Cov(H;FY (Y )) = �Cov(H;FH(H)):

Now, using the expression of G in Equation (10) and the estimators of CH(p) in Equations (5)

and (9), we propose the following semiparametric

bG = 2Z 1

0

�
p�dCH(p)� dp (11)

and nonparametric eG = 2Z 1

0

�
p�dCHm;n(p)

�
dp

estimators of Gini health index, respectively.

We next establish the asymptotic properties of the semiparametric and nonparametric estimators

of the health concentration curve CH. These properties can be used to establish the asymptotic

properties of the estimators of the Gini health index.

4 Asymptotic properties of the estimators of CH

We investigate the consistency and asymptotic normality of the previously developed estimators of

health concentration curve CH. Subsections (4.1) and (4.2) state the asymptotic i.i.d. representations

of the semiparametric and nonparametric estimators dCH(p) and dCHm;n(p) in (5) and (9), respectively.

4.1 Asymptotic properties of semiparametric estimator of CH

In this section, we assume that the copula function C belongs to a known parametric family of copulas

C = fC(:; �); : � 2 �g, where � is a compact subset of Rq. Let �̂n be an estimator of the true parameter

�0 that satis�es the following condition:

Assumption A: The estimator �̂n of �0 satis�es:

�̂n � �0 = n�1
nX
i=1

�i + op(n
�1=2); (12)

where �i = �(FH(Hi); FY (Yi); �0) is a q-dimensional random vector such that E (�) = 0 and E
�
jj�jj2

�
<

1, with jj:jj represents the Euclidean norm.

Note that the estimators of �0 that have been proposed in Shih and Louis (1995) and Genest, Ghoudi

and Rivest (1995) satisfy AssumptionA. Tsukuhara (2005) also provides the asymptotic representation

of b�n and establishes some asymptotic properties of this estimator.
Now, before we state the asymptotic representation of the semiparametric estimator of CH, we

need to introduce the following notations:
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� Cuu =
@2C

@u2
and Cu; � =

�
@Cu
@�1
; : : : ; @Cu@�q

�
.

� r�(p; �) =
�
@ r(p;�)
@�1

; : : : ; @ r(p;�)@�q

�>
where r(p; �) = E [HCu(FH(H); p; �)] :

Using the above notations, we consider the following additional assumptions that we need in order

to establish the result in Theorem 1.

Assumption B: We assume that:

B1: (i) EjHj <1 and (ii) hFH(h)! 0 as h! �1;

B2: Cu;u and Cu;� are continuous on (0; 1)
2 and (0; 1)��; respectively;

B3: E[H Cu;u(FH(H); p; �0)]2 <1;

B4: E[H @Cu
@�k
(FH(H); p; �0)]

2 <1 , k = 1; : : : ; q:

The following theorem states the asymptotic i.i.d. representation of the semiparametric estimatordCH(p) in (5) [see the proof of Theorem 1 in the Appendix].

Theorem 1 Under Assumptions A, B1-B4, we have

dCH(p)� CH(p) = n�1 nX
i=1

�i + op(n
�1=2);

where,

�i = E(H)�1
h
HiCu(FH(Hi); p; �0) + �

>
i r�(p; �0) + �(Hi; p; �0)�HiCH(p)

i
with �(Hi; p; �0) = EH [H (I(Hi � H)� FH(H))Cuu(FH(H); p; �)] ; r�(p; �0) = E [H Cu;�(FH(H); p; �0)] ;

�i is de�ned in Assumption A, EH represents expectation with respect to H; and I(:) is an indicator

function that takes value one if Hi � H and zero otherwise.

Notice that Theorem 1 can be used to establish the asymptotic normality of the semiparametric

estimator dCH with zero mean and asymptotic variance:

V ar(dCH(p)) = E ��2i �� (E(�i))2 ;
where the expression of �i is de�ned in Theorem 1. This variance is unknown, but it can be estimated

by replacing the unknown quantities in the expressions of E(�i) and E
�
�2i
�
by their empirical analogues.

However, for testing and building con�dence interval around dCH(p); we recommend to use bootstrap.
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4.2 Asymptotic properties of nonparametric estimator of CH

We now establish the asymptotic i.i.d representation of the nonparametric estimator of CH. First, let

us de�ne some new terms. For independent random vectors (U1; V1); : : : ; (Un; Vn); with joint distrib-

ution function C; we de�ne

Wi;m(u; v) = m

m�1X
k0=0

mX
k1=0

[Ai(k0; k1)�Ai(k0;m)Cu(u; v)]Pm�1;k0(u)Pm;k1(v);

where

Ai(k0; k1) = I
�
k0
m
< Ui �

k0 + 1

m
;Vi �

k1
m

�
� P

�
k0
m
< Ui �

k0 + 1

m
;Vi �

k1
m

�
:

The following theorem states the asymptotic i.i.d. representation of the nonparametric estimatordCHm;n(p) in (9) [see the proof of Theorem 2 in the Appendix].

Theorem 2 Suppose that the second derivatives Cu;u =
@2C(u;v)
@2u

and Cu;v =
@2C(u;v)
@u@v are Lipshitz

continuous on [0; 1]2: If m = O (na) ; with 2=5 < a < 3=5; then we have

dCHm;n(p)� CH(p) = n�1
nX
i=1

�i(p) + op(n
�1=2m1=4);

where

�i(p) = EH [HWi;m(FH(H); p)] :

Theorem 2 can be used to establish the asymptotic normality of the nonparametric estimator of

CH with mean zero and - by adapting the proofs in Janssen et al. (2016) - asymptotic variance of

order O(n�1m1=2): This asymptotic variance, however, is unknown as it depends on Cu: In practice

we suggest to use bootstrap for constructing con�dence intervals around dCHm;n(p).

5 Monte Carlo simulations

In this section, we run Monte Carlo simulations to assess the performance of the estimators of the

concentration health that we proposed previously. In particular, we compute the Integrated Mean

Square Errors (IMSE) of semiparametric and nonparametric estimators of health concentration curves,

which we compare with the IMSE of the classical empirical estimator.

We consider several data-generating processes (DGPs) to model the dependence structure be-

tween the health H and the socioeconomic Y variables. We use di¤erent copula functions that

generate data under di¤erent degrees of dependence measured by di¤erent values of Kendall�s tau
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coe¢ cient � . The copulas under consideration are Gaussian copula, Student copula, Clayton cop-

ula, and Gumbel copula. The values of Kendall�s tau coe¢ cient � under consideration are: (i) � =

(�0:4; 0:001; 0:01; 0:1; 0:2; 0:5; 0:7) for Gaussian and Student copulas and (ii) � = (0:001; 0:01; 0:1; 0:2; 0:5; 0:7)

for Clatyton and Gumbel copulas. Furthermore, to generate the data of the variables of interest H

and Y; we use an exponential distribution with the parameter � = 1 and a Weibull distribution with

the scale and shape parameters � = 2 and k = 10, respectively.

The performances of the estimators dCH(p), dCHm;n(p) and dCHn(p) are assessed based on the

IMSE that we calculate under di¤erent samples sizes: n = 50; 100; 200; and 500. Calculation of IMSE

is based on B = 1; 000 Monte Carlo replications. Formally, the IMSE is given by:

IMSE � 1

I

IX
i=1

0@ 1

B

BX
j=1

�dCHj(pi)� CH(pi)
�21A ;

where pi = 0:01; 0:02; : : : ; 0:99, and dCHj(pi); for j = 1; : : : ; B, is the estimator of the concentration

health CH(pi) that corresponds to the j-th replication. The integral
R
(:) of the MSE is approximated

by replacing it with the sum
PI (:) for I = 99.

For the semiparametric estimator dCH(p); we assume that the parametric copula is unknown and
we use the BiCopSelect function implemented in VineCopula R package to select the appropriate

copula function from a set of copula families. This approach is expected to alleviate the negative e¤ect

that the misspeci�cation of the copula model might have on the semiparametric estimator. We recall

that copulas can be selected according to Akaike or Bayesian Information Criteria [AIC and BIC,

respectively]; see Akaike (1973), Schwarz (1978), and Manner (2007). To do so, all available copulas

are �rst �tted using maximum pseudo-likelihood estimation. Then the information criteria - that are

based on the log-likelihood functions - of all �tted copula families are computed, and the copula that

has the minimum AIC or BIC is selected. Formally, the AIC of a bivariate parametric copula density

c(FH(H); FY (Y ); �) that depends on parameter vector � is de�ned as

AIC = �2
nX
i

ln[c(F̂H(Hi); F̂Y (Yi); �̂n) + 2�;

where � represents the number of parameters: e.g.; � = 1 for a copula that depends on one para-

meter, and � = 2 for a copula with two parameters. Similarly, the BIC of bivariate copula density

c(FH(H); FY (Y ); �) is given by

BIC = �2
nX
i

ln[c(F̂H(Hi); F̂Y (Yi); �̂n) + ln(n)�:

Furthermore, the bandwidth parameter m that we use to calculate the nonparametric estimatordCHm;n(p) is selected according to the rule of thumb m =
�
a� n2:5=5

�
; where [:] represents the integer
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part of a � n2:5=5. We consider various values of m 2 f1; 2; 3; 4; 5g to evaluate the sensitivity with

respect to the estimation results. This is a common practice in nonparametric estimation where no

optimal bandwidth is available. Using simulations, we �nd that the optimal value of a that works for

all DGPs under consideration corresponds to the value 4, thus to save space we only report results for

a = 4; see Table 1. The other values of a also provide reasonable results (results for all values of a are

available upon request).

The results in Table 1 show that the IMSEs of all estimators are decreasing with the sample

size. Interestingly, we �nd that the semiparametric estimator dominates both the empirical and the

nonparametric estimators as it has the smallest IMSE under di¤erent copulas, degrees of dependence

and sample sizes, except when the dependence betweenH and Y is weak or when � takes values between

0:001 and 0:1. Thereafter, we �nd that the second best estimator corresponds to the nonparametric

estimator, which does better than the empirical estimator, except when the degree of dependence

between H and Y takes values between � = 0:5 and � = 0:7 for some copulas like Gaussian and

Gumbel.

The above results correspond to the case where the marginal distributions of H and Y are given by

the exponential distribution with parameter � = 1:We have obtained additional results after replacing

the exponential distribution by the Weibull distribution with the parameters � = 2 and k = 10: To

save space, these results are not reported here, but they are available upon request. Using Weibull

as a marginal distribution of H and Y , we �nd similar results to those discussed previously. The

best estimator in terms of IMSE corresponds to the semiparametric estimator dCH(p), followed by the
Bernstein estimator dCHm;n(p) and then the empirical estimator dCHn(p).

6 Inequality in COVID-19�s infection and death

Since January 2020, COVID-19 pandemic led to millions of infections and deaths, and caused distress-

ing economic worldwide. Recognizing the importance of many measures - e.g. lockdowns, testing, face

masks, and hand-washing - in reducing the transmission of COVID-19, concerns have arisen about the

link between pre-existing social and economic inequalities and inequalities in the number of COVID-

19�s infections and deaths across social classes, with the most-deprived classes are worst hit. In the

United States, the spread of COVID-19 across the states have shown that not all Americans are equally

at risk of infection and mortality from the virus. In addition, the World Health Organization (WHO)

in the European Region pointed out that COVID-19�s exposure risk and the severity of its health,

social and economic impacts are not being felt equally in the European countries.
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Table 1: Integrated Mean Squared Error of Semiparametric (dCH), Empirical (dCHn) and Nonpara-

metric (dCHm;n) estimators of CH. Simulation results based on 1000 replicates of 103 � IMSE of the

concentration health estimators.

Copula � n = 50 n = 100 n = 200 n = 500dCH dCHn
dCHm;n

dCH dCHn
dCHm;n

dCH dCHn
dCHm;n

dCH dCHn
dCHm;n

Gaussian -0.4 1.52405 2.37677 2.14225 0.81371 1.15701 1.06885 0.38623 0.58638 0.53311 0.12977 0.22836 0.22454

0.001 2.10629 3.44384 1.88307 1.07944 1.68181 1.00998 0.50564 0.85069 0.49509 0.19713 0.32445 0.19456

0.01 2.13191 3.38774 1.85736 1.06366 1.73533 0.96506 0.51634 0.82562 0.51147 0.20159 0.32712 0.20469

0.1 1.79796 3.20303 1.85608 0.87136 1.62803 1.04206 0.41574 0.81374 0.51939 0.17935 0.31983 0.22626

0.2 1.50939 3.10968 1.86665 0.79499 1.50698 0.97972 0.46025 0.77342 0.51299 0.18221 0.30089 0.25418

0.5 1.45913 1.98083 2.04345 0.84333 1.06459 1.17494 0.36143 0.51315 0.54520 0.10408 0.19161 0.16909

0.7 1.08239 1.22984 1.44666 0.64150 0.64480 0.85689 0.22934 0.31696 0.27078 0.08308 0.12031 0.11829

Student -0.4 1.50998 2.41594 2.09419 0.91477 1.32553 1.14913 0.45419 0.64521 0.57807 0.15306 0.25293 0.23254

0.001 2.69858 3.84649 2.17324 1.34693 1.89724 1.13122 0.66351 0.98423 0.62257 0.22396 0.40470 0.24812

0.01 2.79426 3.90271 2.18947 1.37388 1.85705 1.17449 0.68979 1.00119 0.62375 0.21079 0.38427 0.25512

0.1 2.34374 3.67801 2.05408 1.15942 1.84015 1.14661 0.52027 0.95107 0.60335 0.20992 0.38355 0.26273

0.2 2.00519 3.63507 2.12335 1.04043 1.70332 1.15646 0.53195 0.86679 0.61781 0.20103 0.34301 0.28498

0.5 1.41260 2.04994 2.02757 0.74987 1.02980 1.01611 0.36943 0.48307 0.44746 0.15646 0.2214 0.24387

0.7 1.05205 1.27782 1.44762 0.57896 0.62840 0.75690 0.34523 0.36431 0.48286 0.12641 0.14386 0.21322

Clayton 0.001 2.09081 3.42189 1.87387 1.00368 1.62497 0.91140 0.53735 0.83230 0.50405 0.21267 0.34863 0.20759

0.01 2.04309 3.39695 1.87465 1.06874 1.62283 1.01943 0.51462 0.84717 0.51277 0.21135 0.34748 0.21627

0.1 1.95105 3.44810 1.91312 0.91821 1.61878 1.02497 0.38758 0.82406 0.50239 0.13228 0.32879 0.20838

0.2 1.55803 3.16271 1.76030 0.76749 1.56814 1.00488 0.34245 0.79809 0.49569 0.13989 0.31672 0.21340

0.5 1.05728 2.33026 1.46983 0.46329 1.13629 0.88551 0.27416 0.55912 0.45783 0.09539 0.24638 0.20293

0.7 0.84169 1.63300 1.34834 0.42886 0.76142 0.66166 0.20152 0.40266 0.35363 0.07494 0.16145 0.15101

Gumbel 0.001 2.23206 3.52253 1.96451 1.10604 1.72069 1.01641 0.51837 0.83419 0.50979 0.22490 0.36063 0.21245

0.01 2.17886 3.53497 1.87014 1.02629 1.63997 0.98007 0.54707 0.83069 0.49453 0.21463 0.34587 0.20453

0.1 2.08629 3.47387 1.99008 1.11354 1.71672 1.15681 0.54978 0.89121 0.60417 0.21383 0.35531 0.27247

0.2 2.06448 3.18206 2.31921 1.01851 1.53778 1.27509 0.56014 0.81521 0.70188 0.20091 0.30514 0.39143

0.5 1.35059 1.81019 1.91188 0.77963 0.94400 1.04940 0.37581 0.46746 0.50481 0.13160 0.18465 0.17968

0.7 1.08024 1.15756 1.47898 0.62124 0.64797 0.85754 0.31388 0.32589 0.40235 0.09029 0.11647 0.11790
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Moreover, a growing number of papers have studied how social classes in our societies are a¤ected

by Covid-19. These papers examined the impact of socioeconomic variables on COVID-19�s infection

and death rates, i.e.; impact of variables that make for example low-income communities and people of

color more vulnerable than others, see Chen and Krieger (2021), Chin et al. (2020), McLaren (2021),

and Brown and Ravallion (2020). However, none of the above-mentioned studies use proper measures

of health that are designed to detect inequalities in rates of COVID-19�s infections and deaths across

socio-economic covariates. These studies are based on simple correlations and regressions and might

not help detect inequalities in COVID-19�s infections and deaths. In this section, we use our previously

developed semi/nonparametric estimators of CH to quantify and examine inequalities in COVID-19�s

infections and deaths across and within the U.S. states. The next subsection discusses the U.S. data

we use for our empirical analysis. Our results show that e¤ectively socio-economic variables like

poverty, race, and economic prosperity of a state might explain inequalities in COVID-19�s infections

and deaths.

6.1 Data

We begin by describing our data and provide some descriptive statistics. Micro-data on COVID-19�s

cases and deaths that include socio-economic characteristics at unit-record level (county level for the

U.S. data) are less frequent. To obtain our data, we had to merge recorded counts of cases and

deaths in the U.S. at county level with socio-economic characteristics-average incomes, race, income

inequality and poverty. Our dataset contains information about 2777 counties across 45 U.S. states.

We excluded �ve U.S. states because of insu¢ cient data, i.e.; in each of these states we have very

few counties and this is not enough for the estimation of health concentration curves. These states

are: Kansas, Kentucky, Louisiana, Maine, Nevada. Our county-level variables fall into three general

categories:

� Health variables on con�rmed COVID-19�s cases and deaths.

� Socio-economic variables on the percentage of population below the poverty line, percentage of

residents that are African American, percentage of White people, percentage of Asian, median

income, and total population.

� Inequality variables such as Gini (economic) index and Gini health index that we estimate using

the semiparametric estimator in (11).
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For data on con�rmed COVID-19�s cases and deaths, we draw on the U.S. Centers for Disease

Control and Protection (CDC).2 We use the most recent numbers available at the time of writing this

paper (June 10, 2021). Data on county�s population, population density, demographics and poverty

rates were obtained from the US Census Bureau. Median income, and the poverty rate are estimated

from survey data, but complemented by small-area estimation methods [see Rao and Molina (2015)].

Descriptive statistics of COVID-19�s infection and death rates and socio-economic variables in the 2777

counties can be found in Table 2. In this table, the share of Black Americans refers to the proportion

of the population that identi�es as Black only, while the share �White� refers to the proportion of

the population that identi�es as White. The table shows that the average number of infections and

deaths per county are 9.8% and 1.9%, while their standard deviation are 2.99% and 1%, respectively.

Crowley county in Colorado recorded the highest number of cases (37%) and the second highest

percentage of cases are in Chattahoochee in Georgia (36.8%). We also �nd that, overall, the average

of poverty rate is 14.3%, ranging from 2.3% in Sterling County (Texas) to 54.7% in Todd County

(South Dakota). Gini (economic) index is also estimated using small-area methods and varies widely

across counties, from the lowest value of 0.302 in Skagway County (Alaska) to the highest value of

0.609 in Harding County (New Mexico). Furthermore, in Table 3 we report the correlation coe¢ cients

matrix of the socio-economic variables that we use in our empirical analysis. From this, we �nd a

signi�cant positive correlation between share of Black Americans and poverty rate and a signi�cant

but negative correlation between share of White Americans and poverty rate. We next provide the

results of the estimation of health concentration curves using the above data.

6.2 Estimation of health concentration curve

As we mentioned earlier, the health concentration curve CH(p) allows one to obtain plots of cumulative

percentage of the health variable - here COVID-19�s infection and death rates - against the cumulative

percentage of the population ranked by the socio-economic covariate - here poverty rate, population

density, share of Black Americans, share of White Americans, etc. These plots help visualize health

inequalities by observing the position of the health concentration curve with respect to the line of

equality (45-degree line) in a two-dimensional space. When the higher the socio-economic variable is

the richer the individual is, if CH(p) lies above the 45-degree line, then health inequality is referred

2The data are available through USA Facts : https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/.

An alternative source is the New York Times data site for COVID-19 (obtainable from the their Github repository).

The NYT site, however, records cases and deaths according to the county in which they occurred, while CDC does so

according to the person�s place of residence.
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Table 2: Summary statistics

Mean Std Dev. Min Max

Cases 0.098 0.0299 0.0029 0.375

Deaths 0.019 0.010 0.000 0.102

Population 106542 341079 66 10081570

Population density 214.77 778.96 0.000 17179

Poverty rate 0.143 0.058 0.023 0.547

Median income 27776 5850 8641 70390

Gini Index 0.444 0.035 0.302 0.609

Share of Black Americans 0.089 0.144 0 0.872

Share of White Americans 0.756 0.203 0.006 1

Share of Asian Americans 0.013 0.028 0 0.417

Note: This table provides the descriptive statistics of COVID-19�s infection and death rates and socio-economic

variables for 2777 counties of 45 U.S. states. Data on COVID-19�s cases and deaths rates are obtained from

U.S. Centers for Disease Control and Protection (CC) and covers the period until June 10, 2021. Demographic

variables are drawn primarily from the US Census and CDC.

Table 3: Correlation coe¢ cients between socio-economic variables

Density Median income Population Poverty rate

Median income 0.296

Population 0.366 0.227

Poverty rate -0.052 -0.742 -0.076

Share of Black Americans 0.128 -0.263 0.057 0.441

Share of White Americans -0.185 0.194 -0.224 -0.475

Note: The table shows the correlation coe¢ cients matrix of socio-economic variables we use in our empirical

analysis. These variables are described in Table 2.
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to as pro-rich - i.e., the rich have better health than the poor -, and in this case the associated health

concentration index is negative. When CH(p) lies under the 45-degree line, the health inequality

is considered pro-poor - i.e., the poor have better health than the rich-, and the associated health

concentration index is positive. If the health concentration curve coincides with the 45-degree line,

then there is no socioeconomic health inequality, and the associated health concentration index is

necessarily zero.

We now use the data described in the previous subsection to calculate the semiparametric and

nonparametric estimators of health concentration curve for COVID-19�s infection and death rates.

For each state, we use three socioeconomic variables: income, poverty, and proportion of white/black

people. We got the results for all 45 U.S. states, but for a better presentation we only report the results

for average, low and high income states, average, low and high poverty rate states, and average, low

and high share of white people states [rest of the results are available upon request]. The results are

reported in Figures 3 to 11 of the appendix. Using income as a socio-economic variable, Figures 3

and 4 show a clear pro-rich inequality for COVID-19�s death rate both in low and high income states,

except for West Virginia. Interestingly, for the average income states [see Figure 5], we �nd that the

health concentration curve tend to match the 45-degree line, which indicates that individuals in these

states had equal chance of dying from COVID-19 regardless of their socioeconomic position. We reach

similar results when we replace income by poverty rate noting that low poverty rate is expected to be

highly correlated with high income and vice-versa. Figures 6 and 7 con�rm the pro-rich inequality for

COVID-19�s death rate for both low and high poverty rate states, with health concentration curve lies

below the 45-degree line when the higher the poverty rate is the poorer the county is. The result in

Figure 8 is also similar to the one we obtained in Figure 5: there is no inequality in COVID-19�s death

rate in the states with average poverty rate as the health concentration curve matches the 45-degree

line. Moreover, Figures 9 and 10 indicate that the inequality in COVID-19�s death rate is generally in

favor of counties with low share of white people, except in state of California. However, the opposite

happens in states with average share of white people, where we see that the inequality in COVID-19�s

death rate is in favor of counties with high share of white people.

To sum up, it seems that the socio-economic variables income, poverty rate and ethnicity have an

impact on COVID-19�s death rate, with the most-deprived classes are worst hit by the virus. In the

next subsection, we provide further analysis using econometric models that link COVID-19�s cases and

deaths to the Gini health index and other key socio-economic covariates.
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Table 4: Regressions for COVID1-19 deaths

Dependent variable: Log(COVID-19�s deaths)

(1) (2) (3) (4) (5) (6) (7)

Constant 7:87���
(0:17)

6:63���
(0:60)

�6:61��
(3:46)

�7:47��
(3:57)

�3:82
(3:60)

�6:64��
(3:61)

�7:52��
(3:70)

Population 0:13���
(0:01)

0:12���
(0:01)

0:08���
(0:017)

0:08���
(0:01)

0:09���
(0:01)

0:09���
(0:01)

0:09���
(0:015)

Poverty rate 10:19��
(4:79)

0:93
(4:79)

0:037
(4:87)

�0:872
(4:69)

�7:78
(4:89)

Gini index 31:6��
(8:18)

33:5���
(8:39)

20:54���
(8:42)

30:36���
(8:53)

29:8���
(7:57)

Gini health index 1:68
(1:68)

4:00��
(1:92)

3:87��
(1:85)

Share of Black Americans 2:76��
(1:34)

1:57
(1:34)

1:41
(1:33)

Share of Asian Americans �6:91���
(2:31)

�7:24���
(2:31)

Median income 5:36��
(2:94)

Note: This table reports the estimation results of regressing state-level COVID-19�s death on state�s population

size, state�s poverty rate, state�s median income, state�s Gini (economic) index, state�s Gini health index, state�s

share of Black Americans, and state�s share of Asian Americans,. The dependent variable is log (COVID-19�s

deaths). Standard errors in parentheses. �p<0.1; ��p<0.05; ���p<0.01.

6.3 Further analysis

In this subsection, we use U.S. state-level data and regression models for further analysis on the impact

of social and health inequalities on COVID-19�s infections and deaths. We regress state-level COVID-

19�s infections and deaths on measures of health and economic inequalities and key socio-economic

variables. In our regressions, we include all or some of the following variables: state�s population size,

state�s poverty rate, state�s median income, state�s Gini (economic) index, state�s Gini health index,

state�s share of Black Americans, and state�s share of Asian Americans. The results are reported in

Tables 4-5.

The results in Tables 4-5 show that both economic (Gini index) and health (Gini health index)

inequality measures have a positive impact on COVID-19�s infections and deaths after controlling

for key socio-economic variables. These e¤ects are generally statistically signi�cant. The e¤ects

of poverty rate on COVID-19�s infections and deaths are statistically insigni�cant, which might be

explained by the fact that we control for other variables that are highly correlated with the poverty

rate. In addition, the median income and population size have signi�cant and positive impacts on
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Table 5: Regressions for COVID1-19 infections

Dependent variable: log(COVID-19�s cases)

(1) (2) (3) (4) (5) (6) (7)

Constant 12:1���
(0:14)

11:3���
(0:50)

4:62
(3:17)

3:69
(3:25)

7:09��
(3:30)

3:75
(3:08)

3:39
(3:22)

Population 0:11���
(0:01)

0:11���
(0:01)

0:09���
(0:01)

0:09���
(0:01)

0:09���
(0:015)

0:10���
(0:01)

0:10���
(0:01)

poverty rate 6:35
(3:95)

1:66
(4:38)

0:69
(4:44)

0:05
(4:31)

�7:84
(4:19)

Gini index 16:0��
(7:48)

18:0��
(7:64)

10:5
(7:72)

20:1���
(7:30)

15:8��
(6:58)

Gini health index 1:82
(1:53)

4:73���
(1:64)

4:42���
(1:61)

Share of Black Americans 2:45��
(1:23)

1:05
(1:14)

0:92
(1:15)

Share of Asian Americans �7:84���
(1:97)

�7:79���
(2:01)

Median income 4:41��
(2:55)

Note: This table reports the estimation results of regressing state-level COVID-19�s infections (cases) on state�s

population size, state�s poverty rate, state�s median income, state�s Gini (economic) index, state�s Gini health

index, state�s share of Black Americans, and state�s share of Asian Americans. The dependent variable is log

(COVID-19�s cases). Standard errors in parentheses. �p<0.1; ��p<0.05; ���p<0.01.
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both COVID-19�s infections and deaths, whereas the impact of share of Black Americans is positive

and generally statistically insigni�cant and the impact of the share of Asian Americans is negative

and statistically signi�cant. The results we obtained for COVID-19�s infections and deaths are very

similar.

The above results con�rm once again that greater economic and health inequalities led to higher

COVID-19�s infection and death rates, with the most-deprived classes are worst hit. Thus, policy-

makers are urged to set containment measures to reduce COVID-19�s infections and deaths among

most-deprived classes. At short-term, measures like free masks and sanitizers and targeted vaccination

campaigns should help reduce COVID-19�s infection and death rates in deprived states. At long-term,

governments should set measures that can help reduce economic and social inequalities in society,

which in turn will reduce health inequality.

7 Conclusion

We derived semi/non-parametric estimators of Health Concentration curve (HC) that can quantify

inequalities in COVID-19 infections and deaths and help identify the social classes that are most

at risk of infection and dying from the virus. We expressed HC in terms of copula function that

we used to build our estimators of HC. For the semi-parametric estimator, a parametric copula was

used to model the dependence between health and socio-economic variables. The parameters of the

copula were estimated using maximum pseudo-likelihood estimator after replacing the cumulative

distribution of health variable by its empirical analogue. For the non-parametric estimator, we replaced

the copula function by the Bernstein copula estimator. Furthermore, we used the estimators of HC

to derive semi/non-parametric estimators of health Gini coe¢ cient. We establish the consistency and

asymptotic normality of the estimators of HC. Using di¤erent data-generating processes and sample

sizes, a Monte-Carlo simulation exercise showed that the semiparametric estimator outperforms the

Bernstein-copula-based estimator, and that the latter does better than the empirical estimator in

terms of Integrated Mean Squared Error. We also run an extensive empirical study to illustrate

the importance of HC estimators for investigating inequality in COVID-19 infections and deaths in

the U.S. The empirical results showed that socio-economic variables like poverty, race, and economic

prosperity of a state can explain the observed inequalities in COVID-19 infections and deaths.
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8 Appendix: Proofs

This appendix contains the proofs of the main results in the text.

Poof of Proposition 1: Observe that

CH(p) =

R p
0 E

�
H j Y = F�1(u)

�
duR 1

0 E
�
H j Y = F�1Y (u)

�
du

=

R p
0

R +1
0 hfH(h)c(FH(h); u)dhduR 1

0

R +1
0 hfH(h)c(FH(h); u)dhdu

=

R +1
0 hfH(h)Cu(FH(h); p)dhR +1
0 hfH(h)Cu(FH(h); 1)dh

=

R 1
0 F

�1
H (u)Cu(u; p)du

E(H)
;

where the last equality is due to the fact that
R +1
0 hfH(h)Cu(FH(h); 1)dh =

R +1
0 hfH(h)dh = E(H)

since Cu(u; 1) = 1:

Poof of Theorem 1: We start with the following decomposition

dCH(p)� CH(p) = m̂(p)� �HCH(p)

E(H)
+
(E(H)� �H)(m̂(p)� �H CH(p))

E(H) �H
; (13)

where �H is the empirical mean of H and m̂(p) = n�1
Pn
i=1HiCu(

bFH(Hi); p;b�n): We study the �rst
term in (13) since the second term is negligible with respect to the �rst term. Using Taylor expansion

of Cu around (FH(Hi); p; �0); we obtain

m̂(p) = n�1
nX
i=1

HiCu(FH(Hi); p; �0) + In;1 + In;2; (14)

where

In;1 = n
�1

nX
i=1

HiCuu( ~FH(Hi); p; ~�)( bFH(Hi)� FH(Hi))
and

In;2 = n
�1

nX
i=1

Hi (�̂n � �0)>Cu;�( ~FH(Hi); p; ~�);

with

~FH(Hi) = FH(Hi) + �( bFH(Hi)� FH(Hi)); ~� = �0 + �(�̂n � �0); � 2 (0; 1):
Under Assumptions B1 and B2, we have:

In;1 = n
�1

nX
i=1

HiCuu(FH(Hi); p; �0)( bFH(Hi)� FH(Hi)) + op(n�1=2);
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and, from Assumption B4, we obtain

In;2 = n
�1

nX
i=1

Hi (�̂n � �0)>Cu;�(FH(Hi); p; �0) + op(n�1=2)

= (�̂n � �0)>n�1
nX
i=1

HiCu;�(FH(Hi); p; �0) + op(n
�1=2)

= (�̂n � �0)>E [H Cu;�(FH(H); p; �0)] + op(n�1=2)

= �>i r�(p; �0) + op(n
�1=2); (15)

where, r�(p; �0) = E [H Cu;�(FH(H); p; �0)] :

Now, observe that I1;n is a V-statistic with the kernel h1(u; v; �0) = 1
2 [h2(u; v; �0) + h2(v; u; �0)] ;

where

h2(u; v; �0) = uCuu(FH(u); p; �0)(I(v � u)� FH(u)):

It can be shown that E(h1(Hi;Hj ; �0)) = 0; and from Assumption B3, we have E(h21(Hi;Hj ; �0)) <1:

Hence, we obtain

In;1 = n
�1

nX
i=1

�(Hi; p; �0) + op(n
�1=2); (16)

where

�(Hi; p; �0)=EH [H (I(Hi�H)�FH(H))Cuu(FH(H); p;�0)] :

From (14), (15), and (16), we conclude the proof of Theorem 1.

Poof of Theorem 2: From Janssen et al. (2016), and using the conditions of the theorem, we have

eCu( bFH(h); p) = 1

n

nX
i=1

Wi;m(FH(h); p) + op(n
�1=2m1=4):

Hence,

1

n

nX
j=1

Hj eCu( bFH(Hj); p) = 1

n

nX
j=1

"
Hj
1

n

nX
i=1

Wi;m(FH(Hj); p)

#
+ op(n

�1=2m1=4)

=
1

n

nX
i=1

24 1
n

nX
j=1

HjWi;m(FH(Hj); p)

35+ op(n�1=2m1=4)

=
1

n

nX
i=1

EH [HWi;m(FH(H); p)] + op(n
�1=2m1=4):
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9 Appendix: Empirical results

Figure 3: The empirical estimator, the semiparametric and the nonparametric estimator of the health

concentration curve for COVID-19deaths. (high income states):
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Figure 4: The empirical estimator, the semiparametric and the nonparametric estimator of the health

concentration curve for COVID-19deaths. (low income states):
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Figure 5: The empirical estimator, the semiparametric and the nonparametric estimator of the health

concentration curve for COVID-19deaths. (average income states)
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Figure 6: The empirical estimator, the semiparametric and the nonparametric estimator of the health

concentration curve for COVID-19deaths. (high poverty rate states):
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Figure 7: The empirical estimator, the semiparametric and the nonparametric estimator of the health

concentration curve for COVID-19deaths. (low poverty rate states):
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Figure 8: The empirical estimator, the semiparametric and the nonparametric estimator of the health

concentration curve for COVID-19deaths. (average poverty rate states):
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Figure 9: The empirical estimator, the semiparametric and the nonparametric estimator of the health

concentration curve for COVID-19deaths. (high rate of white people states):
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Figure 10: The empirical estimator, the semiparametric and the nonparametric estimator of the

health concentration curve for COVID-19deaths. (low rate of white people states):
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Figure 11: The empirical estimator, the semiparametric and the nonparametric estimator of the

health concentration curve for COVID-19deaths. (average rate of white people states):
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