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Abstract 
 
This paper develops a two-country model of intra-industry trade with trade costs, which can be 
reduced by public investment in an international infrastructure capital, the stock of which 
accumulates over time. Taking the relationship between trade costs and national welfare into 
consideration, the governments carry out a dynamic game of public investment. We show that 
the dynamic equilibrium of the policy game may exhibit history dependency; if the initial stock 
of international infrastructure is smaller (larger) than a certain level, the infrastructure stock 
decreases (increases) over time, and the world economy will end up in autarky (two-way free 
trade) in the long run. We also show that international cooperation is beneficial in the sense that 
it may enable the world economy to escape from a "low-development trap". 
 
Keywords: Public Infrastructure Capital, Intra-Industry Trade, Differential Games, Multiple 
Equilibria 
 
JEL Codes: C61, C73, F12, H54, H87, O18 
 

Résumé 
 
Cet article développe un modèle de commerce intra-industriel à deux pays avec des coûts 
commerciaux, qui peuvent être réduits par un investissement public dans un capital 
d'infrastructure internationale, dont le stock s'accumule avec le temps. Prenant en compte la 
relation entre les coûts commerciaux et le bien-être national, les gouvernements mènent un jeu 
dynamique d'investissement public. Nous montrons que l'équilibre dynamique du jeu entre les 
deux gouvernements peut présenter une dépendance de l'histoire; si le stock initial 
d'infrastructures internationales est inférieur (supérieur) à un certain niveau, le stock 
d'infrastructures diminue (augmente) au fil du temps et l'économie mondiale se retrouvera en 
autarcie (libre-échange bidirectionnel) à long terme. Nous montrons également que la 
coopération internationale est bénéfique : elle peut permettre à l'économie mondiale de sortir 
d’un «piège à faible développement». 
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1 Introduction

Trade costs, broadly defined as costs incurred in getting a good to a final user other than the marginal

cost of producing the good itself (Anderson and van Wincoop, 2004), are impediments of trade. These

costs include not only tangible ones such as transportation, communication, and distribution costs

but also intangible ones such as policy barriers and legal and regulatory costs. Reducing these costs

enhances international trade, and development of various types of infrastructure plays an important

role in the reduction of the trade costs.

For example, the World Bank releases the Logistics Performance Index (LPI) every two years

since 2012. The LPI is regarded as a proxy for trade facilitation performance, measures country per-

formance along six key dimensions: efficiency of customs and border management clearance, quality

of trade and transport infrastructure, ease of arranging competitively priced shipments, competence

and quality of logistics services, ability to track and trace consignments, and frequency with which

shipments reach consignees within scheduled or expected delivery times.1 Arvis et al. (2016) estimate

trade costs in 167 countries from 1996 to 2010 and show that an improvement of 10% in the LPI is

associated with 16.2% reductions in trade costs, suggesting that policy initiatives such as improving

transport connectivity and boosting trade facilitation performance are important ways of reducing

trade costs. Of another example, Jacks et al. (2011) estimate that from 1870 to 1913, there was an

explosive growth of trade between Asia/Oceania and Europe of 647%, and this trade growth is mainly

related to reductions in trade costs. The authors state that this result was subject to radical changes

at that time such as the expansion of trading networks through pro-active marketing strategies in

new markets, the development of new shipping lines, and better internal communications.

Infrastructure development, by reducing trade costs and facilitating trade, is conjectured to en-

hance welfare in trading economies. Recent studies show some evidence that is line with this conjec-

ture. For example, Donaldson (2018) uses archival data from colonial India to investigate the impact

of India’s vast railroad network and finds that railroad access is associated with a rise in real income of

over 16%. Allen and Arkolakis (2014) examine the effect of removing the Interstate Highway System

(IHS) in the United States, which results in a decline in welfare of between 1.1–1.4%, suggesting that

the benefits of the IHS substantially outweigh the costs. Note, however, that these positive findings

of the welfare gains from infrastructure investment are based on the assumption that infrastructure

investment is made by a single government; the railroad network in colonial India is designed and

built by the British government in India, and the construction of the IHS was authorized by the

1https://lpi.worldbank.org/international
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Federal Aid Highway Act of 1956. When considering trade costs related to transactions between

countries, these costs are affected by infrastructure in a global level, the investment of which is made

by different countries engaging international trade. In light of the national sovereignty, the govern-

ment in each country makes its own decision on the infrastructure investment. This means that the

decision-making regarding the infrastructure investment that affects trade costs is characterized as

a noncooperative game, which may lead to inefficient resource allocation. For example, Felbermayr

and Tarasov (2015) calibrate the welfare losses caused by the misallocation of infrastructure in the

absence of international cooperation using European data.

This paper develops a theoretical model of a two-country world economy in which international

trade incurs trade costs. We show that the relationship between trade costs and national welfare

in a trading country is not monotone; depending on the level of trade costs, a reduction in trade

costs may not be always welfare-enhancing. Based on this observation, we consider a dynamic game

between national governments that make public investment in an international infrastructure capital,

the stock of which determines trade costs in such a way that the higher stock leads to lower trade

costs. We show that, because of the non-monotonic relationship between trade costs and national

welfare, there can be complex dynamics in the process of infrastructure accumulation. The complex

dynamics include history-dependent dynamic paths and indeterminacy of equilibria.

Specifically, in our two-country, there are two production sectors; one sector produces a homoge-

neous good under perfect competition, and the other sector produces a continuum of differentiated

goods under imperfect competition. Trade in the differentiated goods incurs trade costs, and we

identify the necessary and sufficient conditions under which each of the following trade patterns to

emerge in equilibrium: (i) two-way trade in differentiated goods, (ii) one-way trade in differentiated

goods, and (iii) no trade. We also show that free trade with no trade costs is always beneficial to

both countries than autarky, but these countries may prefer autarky to trade if trade costs are high.

After demonstrating the non-monotonic relationship between trade costs and national welfare,

we proceed to a dynamic game analysis of infrastructure investment. We show that under certain

conditions the dynamic equilibrium of the policy game exhibits history dependency; if the initial

stock of international infrastructure is smaller (larger) than a certain level, the infrastructure stock

decreases (increases) over time, and the world economy will end up in autarky (two-way free trade)

in the long-run. We also compare the noncooperative equilibrium solution with the optimal solution

under international cooperation, and show that international cooperation in the sense that it may

enable the world economy to escape from a “low development trap.”
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Our study is aimed at one of the contributions in the field of infrastructure and trade costs.

There are increasing number of studies on international or interregional trade costs and infrastructure

(transportation, communication, institution, etc.). Theoretical models are analyzed by Bond (2006),

Hochman et al. (2013), Martin and Rodgers (1995), Mun and Nakagawa (2010), and Tsubuku

(2016), and empirical analysis is carried out by Anderson and Marcouiller (2002), Anderson and Van

Wincoop (2004), Arvis et al. (2016), Francois and Manchin (2013), Freund and Weinhld (2004),

Jacks et al. (2011), and Limão and Venables (2001). Recent studies such as Allen and Arkolakis

(2014, 2016), Bougheas et al. (1999, 2003), Brancaccio et al. (2017), Donaldson (2018), Fajgelbaum

and Schaal (2017), and Felbermayr and Tarasov (2015) begin with an analysis of formal theoretical

models, and then confirm their theoretical findings with data.

Since our theoretical model considers an accumulation of infrastructure, which has a property of

public good, this study is also closely related to dynamic models of public intermediate goods and

trade analyzed by McMillan (1978), Bougheas et al. (2000), and Yanase and Tawada (2012, 2017,

2020). We consider two countries, in which the national government makes infrastructure investment,

and most of our analysis is devoted to the case of noncooperative policy making. Thus, our study

can also be categorized as a dynamic game analysis of infrastructure investment, as in Colombo et

al. (2009), Devereux and Mansoorian (1992), Fershtman and Nitzan (1991), Figuières et al. (2013),

Han et al. (2014), and Itaya and Shimomura (2001).

Furthermore, our dynamic model reveals complex dynamics, which has a similar property of

“history versus expectations” model in Krugman (1991), Matsuyama (1991), and Fukao and Benabou

(1993). The complex dynamics suggests an existence of “Skiba points” named after Skiba (1978).

See also Deissenberg et al. (2004), Hartl et al. (2004), Oyama (2009), Wagener (2003), and Wirl

(2016) for recent developments.

Section 2 sets up the model of our two-country economy with two sectors. We derive the market

equilibrium of our world economy, and derive equilibrium welfare in each country as a function of

trade costs. In Section 3, we consider a dynamic game of infrastructure investment carried by national

governments in trading countries In Section 4, we derive the Nash equilibrium of the dynamic game

between completely symmetric countries, and discuss the properties of the equilibrium. We also make

a comparison of the Nash equilibrium solution with an outcome under international cooperation.

Section 5 concludes.
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2 Model

We consider a world economy consisting of two countries, Home and Foreign, in which two types of

goods are produced in respective production sectors by employing labor as an input. One sector is an

“agricultural” sector producing a homogeneous good under a constant-returns technology. The other

sector is a manufacturing sector in which a continuum of firms produce horizontally differentiated

goods under increasing returns. All goods are freely traded between the two countries. However,

trade in manufacturing goods is associated with trade costs. Specifically, we assume that exporting

a manufacturing good to other country’s market incurs a per-unit trade cost τ , which is symmetric

between countries. τ depends on the stock of an international infrastructure, which is reduced by

public investment in each country, as explained later.

2.1 Preference and demand

We assume quasi-linear and quadratic preference of a representative consumer in each country (Ot-

taviano et al., 2002; Furusawa and Konishi, 2007):

u(q(ω), q0;ω ∈ Ω) =

∫
Ω
q(ω)dω − 1− γ

2

∫
Ω
q(ω)2dω − γ

2

(∫
Ω
q(ω)dω

)2

+ q0, (1)

where Ω is the set of all differentiated goods in the world, q(ω) is the consumption of a differentiated

good produced by firm ω, q0 is that of a homogeneous good (assumed numeraire), and the parameter

γ ∈ (0, 1) denotes the degree of substitutability among differentiated goods so that the higher the

parameter γ, the higher the substitutability among these goods.

The budget constraint of consumer in each country is given by∫
ω∈Ω

p(ω)q(ω)dω + q0 = yi + q̄0, i = H,F, (2)

where p(ω) is the price of a differentiated good indexed by ω, yi is the consumer’s income, and q̄0

is the consumer’s endowment of the numeraire. We assume that q̄0 > 0 is sufficiently large so that

q0 > 0 holds in equilibrium. The household’s income yi consists of wage income wi and profit shares

of the domestic firms minus the lump-sum tax collected by the government for public investment:

yi = wi +
1

λi

∫
ω∈Ωi

πi(ω)dω − Ti

λi
, (3)

where λi is the measure of consumers in country i, πi(ω) is the profit of a firm producing the

differentiated good ω in country i, Ωi is the set of differentiated goods produced in country i, and

Ti/λi is a lump-sum tax per capita.
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The representative consumer maximizes (1) subject to (2). The first-order conditions for utility

maximization are given by

pii(ω) = 1− (1− γ)qii(ω)− γ

∫
ω∈Ω

q(ω)dω, (4)

pji(ω) = 1− (1− γ)qji(ω)− γ

∫
ω∈Ω

q(ω)dω, (5)

where pii and qii are the price of and demand for, respectively, a differentiated good produced in

country i and consumed domestically, and pji and qji are the price of and demand for, respectively,

a differentiated good produced in country j and exported to country i, i, j = H,F , j ̸= i. Let us

define the price index in country i as follows:

Pi ≡
∫
ω∈Ωi

pii(ω)dω +

∫
ω∈Ωj

pji(ω)dω,

where Ωj is the set of differentiated goods produced in country j ̸= i. We assume that there is no

entry or exit of firms in this industry and that firms are immobile between countries. Thus, Eqs.(4)

and (5) yield the demand functions as follows:

qii(ω) =
1

1− γ
[1− pii(ω)− γ(1− Pi)] , (6)

qji(ω) =
1

1− γ
[1− pji(ω)− γ(1− Pi)] , j ̸= i, (7)

i, j = H,F , where we normalize the mass of firms producing the differentiated goods in the world to

unity.

2.2 Firm behavior

We specify the technology in the agricultural sector as follows: to produce the one unit of homoge-

neous good requires one unit of labor. Thus, wages are equal to one in both countries: wH = wF = 1.

Production of differentiated goods exhibits increasing returns to scale. Specifically, we assume

that the production requires f units of labor as a fixed input and the marginal cost is normalized

to zero. Given that the wage is equal to 1 and in light of the demand functions (6) and (7), the

operating profit of a firm producing variety ω located in country i is given by

πi(ω) = λipii(ω)qii(ω) + λj [pij(ω)− τ ] qij(ω)− f

= λi
pii(ω)

1− γ
[1− pii(ω)− γ(1− Pi)] + λj

pij(ω)− τ

1− γ
[1− pij(ω)− γ(1− Pj)]− f. (8)

As mentioned in the beginning of this section, exporting the good requires the trade cost τ ≥ 0 per

unit of export.
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We assume that the mass of firms producing the differentiated goods in each country is a given

constant and denoted by si, i = H,F . Under the assumption that the total mass of firms in the world

is normalized to 1, we have σH + σF = 1.S ince there are a continuum of firms in the manufacturing

sector, there is no strategic interaction among firms. Thus, each firm determine the prices and

outputs of its product in the domestic and overseas markets so as to maximize (8) subject to the

constraint that the demand in each market is nonnegative, taking the price indices Pi and Pj as

given. The prices are positively dependent on τ , and the price of exported varieties is more elastic

than the domestically supplied varieties when τ changes. This means that if trade costs are too

high, the firms may face zero demand for their exports. Thus, we need to consider the following four

possibilities of production and trade patterns between the two countries:2

Case (i) Two-way trade in all varieties (i.e., qHF > 0 and qFH > 0);

Case (ii) One-way trade in which only Home firms export their varieties to Foreign (i.e., qHF > 0

and qFH = 0);

Case (iii) One-way trade in which only Foreign firms export their varieties to Home (i.e., qHF = 0

and qFH > 0);

Case (iv) No firm exports to the other country (i.e., qHF = qFH = 0).

2.3 Market equilibrium

Let us define A ≡ γ/[2(1 − γ)]. It is easily verified that A is increasing and convex in γ, A → 0 as

γ → 0, and A → ∞ as γ → 1. As derived in the Appendix, we obtain the following equilibrium

outputs as a function of τ :

(qHH(τ), qFH(τ)) =


(
1 +AσF τ

2− γ
,
1− (1 +AσH)τ

2− γ

)
, if

1

τ
> 1 +AσH ,(

1

2(1− γ)(1 +AσH)
, 0

)
if

1

τ
≤ 1 +AσH ,

(9)

in the Home market, and

(qFF (τ), qHF (τ)) =


(
1 +AσHτ

2− γ
,
1− (1 +AσF )τ

2− γ

)
, if

1

τ
> 1 +AσF ,(

1

2(1− γ)(1 +AσF )
, 0

)
if

1

τ
≤ 1 +AσF ,

(10)

in the Foreign market. From (9) and (10), each of the four cases described in the previous subsection

emerges as follows: Case (i) emerges if 1/τ > max {1 +AσF , 1 +AσH}; Case (ii) emerges if 1 +

2We omit the variety index ω since all firms in each country face a symmetric cost structure.
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AσF < 1/τ ≤ 1 + AσH ; Case (iii) emerges if 1 + AσF ≥ 1/τ > 1 + AσH ; and Case (iv) emerges if

1/τ < min {1 +AσF , 1 +AσH}. See also Figure 1.

Figure 1: Possible trade patterns

From (8), the equilibrium profit of each firm in country i = H,F can be rewritten as follows:3

πi = (1− γ)
(
λiq

2
ii + λjq

2
ij

)
− f. (11)

Substituting (2), (3), and (11) into (1), we obtain a per-capita utility in country i as follows:

ui = σiqii + σjqji −
1− γ

2

(
σiq

2
ii + σjq

2
ji

)
− γ

2
(σiqii + σjqji)

2 + yi + q̄0 − σipiiqii − σjpjiqji

= (1− γ)vi(τ) + 1− σi
λi

f − Ti

λi
+ q̄0, (12)

where

vi(τ) ≡
1

2

[
3σiqii(τ)

2 + σjqji(τ)
2
]
+A [σiqii(τ) + σjqji(τ)]

2 +
λj

λi
σiqij(τ)

2,

and the equilibrium outputs are given by (9) and (10).

3In Case (i), the demand functions and the first-order conditions for profit maximization yield pii = (1− γ)qii and
pij − τ = (1− γ)qij . In Cases (ii) and (iii), the optimality conditions derive pij − τ = (1− γ)qij , pii = (1− γ)/[2(1−
γ)(1+Aσi)], and qii = 1/[2(1−γ)(1+Aσi)]. The last two equations imply pii = (1−γ)qii. In Case (iv), qij = 0 holds,
and from pii = (1− γ)/[2(1− γ)(1 + Aσi)] and qii = 1/[2(1− γ)(1 + Aσi)], it follows that pii = (1− γ)qii. Therefore,
in all cases, we obtain (11).
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Proposition 1 Free trade with no trade costs is always more beneficial to both countries than au-

tarky.

(Proof) See Appendix.

It is clear from (9) and (10) that if τ = 0, the amount of each differentiate good exported or

imported is equal to the amount of that good consumed domestically. Starting from this situation,

suppose an increase in τ . Then, the amount of goods exported and imported will decrease, causing

negative effects on the domestic firms’ profits and households’ utility, respectively. Although the

consumption of domestically produced goods and thus, households’ utility increases in response to

an increase in τ , this positive effect is dominated by the above negative effects. Nevertheless, if τ is

sufficiently small, the welfare loss caused in the presence of trade costs is not so large and thus, the

national welfare does not fall short of the autarkic level. Therefore, Proposition 1 can be applied to

the case in which τ is not too large. For sufficiently high trade costs, however, a country’s welfare

under trade could be lower than the autarkic welfare.

3 Dynamic game of infrastructure investment

The national government in each country, knowing the economic structure described in the previous

section, makes infrastructure investment so as to maximize its national welfare. We assume that τ is

a decreasing function of a stock of infrastructure, S, which has a property of an international public

good: τ = τ(S). Moreover, we specify the function τ(S) as follows:

τ(S) =

{
τ̄ − χS for 0 ≤ S ≤ Smax,

0 for S ≥ Smax,
(13)

where

Smax ≡ τ̄

χ
, τ̄ > 0, χ > 0.

Let us denote the investment level of country i’s government at time t by ki(t), i = H,F . The

stock of international infrastructure changes over time according to the following differential equation:

Ṡ(t) = kH(t) + kF (t)− δS(t), S(0) = S0 > 0, (14)

where δ > 0 is the depreciation rate of the infrastructure stock. If kH = kF = 0, the steady-state

stock of infrastructure becomes zero in the long run. In that case, (13) indicates that the trade cost

will be at the highest level, τ̄ .
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The cost of public investment is assumed to be a convex function of the investment level, and

we specify the cost function to be quadratic, βk2i /2, where βi > 0 denotes the efficiency of public

investment in country i. The costs of public investment are financed by lump-sum tax, and thus, the

balanced budget condition of country i’s government is given by

βi
2
k2i = Ti. (15)

The objective function of the government in country i is the discounted sum of the instantaneous

national welfare, defined as the sum of households’ utility, λiui, i = H,F . From (12) and (15), the

objective function is given by

Vi =

∫ ∞

0
e−ρtλiui(t)dt

=

∫ ∞

0
e−ρt

{
λi

[
(1− γ)vi(τ(S(t))) + 1− σi

λi
f + q̄0

]
− βi

2
ki(t)

2

}
dt, (16)

where ρ > 0 denotes the discount rate, assumed to be common to both countries. The government

in each country determines the investment trajectory, taking the other government’s action as given,

to maximize (16) subject to the dynamics of infrastructure (14) and the constraint that ki(t) must

be nonnegative for any t ∈ [0,∞).

Let us define the current-value Hamiltonian for government in country i as follows:

Hi = λi(1− γ)vi(τ(S))−
βi
2
k2i + θi (kH + kF − δS) .

The optimality conditions consist of the first-order condition

∂Hi

∂ki
= −βiki + θi ≤ 0, ki(−βiki + θi) = 0, ki ≥ 0, (17)

the adjoint equation

θ̇i = ρθi −
∂Hi

∂S
=

(
ρ+ δ − ∂kj

∂S

)
θi + λi(1− γ)χv′i(τ(S)), (18)

where kj is the other country’s investment level, and the tansversality condition

lim
t→∞

e−ρtθi(t)S(t) = 0. (19)

As in the literature of differential-game analysis in economics, we assume two types of strategies

that the governments use. One is an open-loop strategy, in which each government chooses the whole

time path of investments {ki(t)}∞t=0 at the beginning of the game. The other is a feedback strategy,

in which each government chooses the investment strategy as a feedback decision rule dependent

10



on the current stock ki(S). We assume that both countries use the same type of strategies, and

moreover, we focus on the case in which both countries use the open-loop strategies. That is, we

assume ∂kj/∂S = 0 in (18).4

4 Properties of the dynamic equilibrium

In what follows, we focus on the case in which the two countries are completely symmetric: σH =

σF = 1/2 and βH = βF = β, and we also normalize λH = λF = 1. In light of Figure 1, it is clear that

either Case (i), i.e., two-way intraindustry trade, or Case (iv), i.e., autarky, emerges in the market

equilibrium.

In the symmetric market equilibrium, the equilibrium outputs (9) and (10) can be rewritten as

(qHH , qFH) = (qFF , qHF ) =


(

2 +Aτ

2(2− γ)
,
2− (2 +A)τ

2(2− γ)

)
, if

1

τ
> 1 +

A

2
,(

1

(1− γ)(2 +A)
, 0

)
if

1

τ
≤ 1 +

A

2
.

(20)

Since we consider the symmetric equilibrium, henceforth we drop the subscripts, and v(τ) is presented

as

v(τ) =


1

4(2− γ)2

{
3

4
(2 +Aτ)2 +

3

4
[2− (2 +A)τ ]2 +A(2− τ)2

}
if

1

τ
> 1 +

A

2
,

3 +A

4(1− γ)2(2 +A)2
if

1

τ
≤ 1 +

A

2
.

(21)

The properties of v(τ) is described by the following lemma.

Lemma 1 (i) v(τ) is continuous. (ii) v(τ) is strictly convex for τ < τ̃ ≡ 2/(2 + A). (iii) There

exists τ̂ ∈ (0, τ̃) such that v′(τ) < 0 for τ ∈ [0, τ̂) and v′(τ) > 0 for τ ∈ (τ̂ , τ̃).

(Proof) (i) Substituting τ = 2/(2 +A) into the upper equation in (21) yields

v

(
2

2 +A

)
=

(3 +A)(1 +A)2

(2− γ)2(2 +A)2
,

which is, in light of A = γ/[2(1−γ)], equal to the lower equation in (21). Therefore, v(τ) is continuous

at τ = 2/(2 +A) and thus, for all τ . (ii) The derivative of v(τ) for τ < τ̃ is

v′(τ) = −a+ bτ, a ≡ 3 + 2A

2(2− γ)2
> 0, b ≡ 3A2 + 8A+ 6

4(2− γ)2
> 0. (22)

4By contrast, if both countries use the feedback strategies, ∂kj/∂S ̸= 0 is assumed. Han et al. (2014) analyze a
model of tax and public input competition within a differential game framework between two unequally sized countries.
In their model, the smaller country uses a feedback strategy, while the larger country uses an open-loop strategy.
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Therefore, v′′(τ) = b > 0. (iii) At τ = 0, v′(0) = −a < 0 holds. In addition, it holds that

lim
τ↑τ̃

v′(τ) =
A(1 +A)

2(2− γ)2(2 +A)
> 0.

Therefore, letting τ̂ ≡ a/b, v(τ) attains its minimum at τ = τ̂ . 2

Figure 2 depicts the graph of v(τ). For 0 ≤ τ < τ̃ , there is two-way intraindustry trade in

differentiated goods, and for τ ≥ τ̃ , the economy is in autarky. Note that, as shown in Figure 2,

trade does not necessarily achieve higher welfare than autarky; for τ ∈ (τ̃ ′, τ̃), v(τ) is below the

autarkic level, where τ̃ ′ ≡ [6 +A(6 +A)]τ̃ /[6 +A(8 + 3A)] < τ̂ .

Figure 2: Graph of v(τ)

The loss from trade in the presence of high trade costs has been demonstrated by Brander and

Krugman (1983) in the model of intraindustry trade in homogeneous goods. Basically, the same

mechanism works here. Suppose that the trade cost is at the prohibitive level (i.e., τ = τ̃) and

consider a small decrease in τ . This change in τ induces trade, but with high trade costs per unit

of exports, and thus, the total payment of trade costs is large. In addition, in light of (9) and (10),

a reduction in τ reduces the consumption of domestic goods, which also reduces welfare. Therefore,

starting from the prohibitive trade costs, opening of international trade is unambiguously harmful

to each country.

12



Before analyzing the noncooperative Nash equilibrium of the dynamic policy game, we put the

following assumption, which means that if S = 0, trade costs are very high, so that there is no trade.

Assumption 1:

τ̄ > τ̃ ≡ 2

2 +A
.

For all S ∈ (0, Smax), S = (τ̄ − τ)/χ holds. We define the levels of S that correspond to the

threshold levels of trade cost as follows (see also Figure 3):

Smax ≡ τ̄

χ
> Ŝ ≡ τ̄ − τ̂

χ
> S̃ ≡ τ̄ − τ̃

χ
> 0.

Figure 3: Threshold levels of τ and S

4.1 Open-loop Nash equilibrium

In this subsection, we characterize the open-loop Nash equilibrium of the policy game between

symmetric countries by using a phase diagram in the (S, θ) plane.

The θ̇ = 0 locus Let us define “Region I” in the (S, θ) plane as the region such that S ∈
[
0, S̃

]
.

Since τ ≥ τ̃ in Region I, we have v′(τ(S)) = 0 and thus, (18) can be rewritten as θ̇ = (ρ + δ)θ.

Therefore, the θ̇ = 0 locus is the line θ = 0. Above this line, we have θ̇ > 0 and below this line, we

have θ̇ < 0.

13



Consider next “Region II”, defined as the region such that S ∈
(
S̃, Ŝ

)
. In this region, we have τ̂ <

τ < τ̃ and thus, v′(τ) = bτ−a > bτ̂−a > 0. Thus, in Region II, θ̇ = (ρ+δ)θ+(1−γ)χ [b(τ̄ − χS)− a]

and θ̇ = 0 iff θ = −(1 − γ)χ [b(τ̄ − χS)− a] /(ρ + δ) < 0. Therefore, the θ̇ = 0 locus in this region

is given by the straight-line segment, with θ < 0 and with a positive slope χ2(1 − γ)b/(ρ + δ) > 0.

Above this line, we have θ̇ > 0 and below this line, we have θ̇ < 0.

Now consider “Region III”, defined as the region such that S ∈
[
Ŝ, Smax

)
. In this region, we

have 0 < τ < τ̂ and thus, v′(τ) = bτ − a < 0. Therefore, the locus θ̇ = 0 in Region III is given by

the straight-line segment, with θ > 0 and with a positive slope χ2(1 − γ)b/(ρ + δ) > 0. Above this

line, we have θ̇ > 0 and below this line, we have θ̇ < 0.

Finally consider “Region IV”, defined as the region with S ≥ Smax. In this region, τ = 0

identically, and thus V ′(S) = −χv′(τ(S)) = 0. Then we have θ̇ = (ρ+ δ)θ and thus, the locus θ̇ = 0

is the line θ = 0.

To sum up, we obtain the following adjoint equation along the symmetric open-loop Nash equi-

librium path:

θ̇ =


(ρ+ δ)θ for 0 ≤ S ≤ S̃,

(ρ+ δ)θ + (1− γ)χ [b(τ̄ − χS)− a] for S̃ < S < Smax,

(ρ+ δ)θ for S ≥ Smax.

(23)

Note that at S = Smax, v(τ(S)) is not differentiable since limS↓Smax v′(τ(S)) = 0 and limS↑Smax v′(τ(S)) =

a. In this case, θ̇ = 0 implies that θ can take any value between 0 and (1− γ)χa/(ρ+ δ). With this

fact and (23), we obtain the θ̇ = 0 locus as follows:

θ =


0 for 0 ≤ S ≤ S̃,

−(1− γ)χ (bτ̄ − a− bχS) /(ρ+ δ) for S̃ < S < Smax,

∀θ ∈ [0, (1− γ)χa/(ρ+ δ)] for S = Smax,

0 for S > Smax.

(24)

The Ṡ = 0 locus In Region I, under symmetry, (14) implies that Ṡ = 0 iff k = (δ/2)S. In light of

Assumption 2 and the first-order condition (17), this means that the locus Ṡ = 0 in the (S, θ) plane

is a line segment:

θ =
βδ

2
S. (25)

Above this line, we have Ṡ > 0 and below this line, we have Ṡ < 0.

In Regions II, III, and IV, the same argument applies.

Steady states A steady state is a point in which loci θ̇ = 0 given by (24) and Ṡ = 0 given by (25)

intersect. In particular, if the line θ = (βδ/2)S intersects the line θ = −(1−γ)χ (bτ̄ − a− bχS) /(ρ+δ)
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at a point S ∈
(
Ŝ, Smax

)
, then that point is an interior steady state stock, which we denote by S∗.

A necessary condition for such an intersection is that the slope of the Ṡ = 0 locus is smaller than the

slope of the Ṡ = 0 locus (in Regions II and III):

βδ

2
<

(1− γ)χ2b

ρ+ δ
. (26)

However, (26) is not sufficient to ensure that S∗ in Region III. At S = Smax, the Ṡ = 0 locus

satisfies θ = (βδ/2)Smax and the θ̇ = 0 locus in Region III hits the point

θ = −(1− γ)χ(bτ̄ − a)

ρ+ δ
+

(1− γ)χ2b

ρ+ δ
Smax.

Note that at S = Ŝ, the Ṡ = 0 locus satisfies θ = (βδ/2)Ŝ > 0 and the θ̇ = 0 locus satisfies θ = 0.

Therefore, if
βδ

2
Smax < −(1− γ)χ(bτ̄ − a)

ρ+ δ
+

(1− γ)χ2b

ρ+ δ
Smax

is satisfied, we have S∗ ∈
(
Ŝ, Smax

)
. Since Smax = τ̄ /χ, the above condition can be rewritten as

βδ

2
<

(1− γ)χ2a

(ρ+ δ)τ̄
. (27)

Note that since τ̂ = a/b < τ̄ and thus, (1 − γ)χ2a/ [(ρ+ δ)τ̄ ] < (1 − γ)χ2b/(ρ + δ), (26) is always

satisfied if the parameters satisfy (27).

Assumption 2:
βδ

2
<

(1− γ)χ2a

(ρ+ δ)τ̄
.

We are now in a position to characterize the interior steady state, the property of which is

described by the following proposition.

Proposition 2 There exists an interior steady state that achieves the stock of international infras-

tructure S∗ ∈ (0, Smax). This steady state is an unstable node (a spiral source) if

(ρ+ 2δ)2

4
> (<)

2(1− γ)χ2b

β
. (28)

(Proof) The existence of the interior steady state is obvious from Figure 4. To analyze stability, let

us denote the value for θ at the interior steady state by θ∗, and present a linearized dynamic system

around the steady state (S∗, θ∗):[
θ̇

Ṡ

]
=

[
ρ+ δ −(1− γ)χ2b
2/β −δ

] [
θ − θ∗

S − S∗

]
. (29)
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The determinant of the Jacobian matrix is

∆ ≡
∣∣∣∣ρ+ δ −(1− γ)χ2b
2/β −δ

∣∣∣∣ = −(ρ+ δ)δ +
2(1− γ)χ2b

β
,

the sign of which is, in light of (26), positive. Since the trace of the Jacobian matrix is ρ > 0, the

two eigenvalues of the system must have positive real parts, and thus, the interior steady state is

locally unstable. Moreover, the characteristic roots of the system (29) are
(
ρ+

√
ρ2 − 4∆

)
/2 and(

ρ−
√
ρ2 − 4∆

)
/2. Thus, if ρ2 − 4∆ > 0 (< 0), which is equivalent to (28), the two characteristic

roots are real (complex) and thus, the interior steady state is an unstable node (a spiral source).5 2

Figure 4: Steady states in the symmetric open-loop Nash equilibrium

In addition to the interior steady state (S∗, θ∗), there are two corner steady-state solutions; one is

(S, θ) = (0, 0), in which the stock of international infrastructure is zero and there is no trade between

two countries, and the other is (S, θ) = (Smax, θmax), in which there is two-way trade in differentiated

goods with zero trade costs.

Lemma 2 There exists a unique trajectory in the space (S, θ) that locally converges to the corner

steady state (Smax, θmax).

(Proof) Consider any initial stock S0 = Smax − ϵ for some small positive ϵ > 0. Then, there is a

5Since (ρ+ 2δ)2/4− (ρ+ δ)δ = ρ2/4 > 0, (ρ+ 2δ)2/4 > 2(1− γ)χ2b/β can be consistent with Assumption 2.
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continuum of associated possible values θ0 such that

θ̄(S0) ≡
βδ2

4
(S0)

2 ≥ θ0 ≥ −(1− γ)χ(bτ̄ − a)

ρ+ δ
+

(1− γ)χ2b

ρ+ δ
S0 ≡ θ(S0). (30)

The trajectory that passes through the point (S0, θ0) has a negative slope at that point, given by

dθ

dS
=

dθ/dt

dS/dt
=

(ρ+ δ)θ0 + (1− γ)χ [b(τ̄ − χS0)− a]

2
√
θ0/β − δS0

=
(−)

(+)
< 0.

In light of (30), this slope is zero if θ = θ̄(S0) and is minus infinity if θ0 = θ(S0). For θ0 ∈

(θ(S0), θ̄(S0)), the closer θ0 to the upper value θ̄(S0), the slope is flatter. Therefore, for given S0,

there exists exactly one corresponding θ0 such that the trajectory passing through (S0, θ0) leads to

the steady state (Smax, θmax). 2

Thus, we can say that the steady state (Smax, θmax) is “locally stable in the saddle-point sense”

for S0 located in some left-hand neighborhood of Smax (i.e., for S0 ∈ (Smax− ϵ, Smax) for some small

ϵ > 0).

Lemma 3 For any S0 ∈
(
0, S̃

)
, there is only one trajectory that leads to the trivial steady state

(0, 0), and along that trajectory, it holds that θ(t) = 0 for all t.

(Proof) If we associate S0 ∈
(
0, S̃

)
with some θ0 > 0, the trajectory passing through (S0, θ0) will

move the system in the North-East direction, making S grow over time. Similarly, if we associate

S0 ∈
(
0, S̃

)
with some θ0 < 0, the trajectory passing through (S0, θ0) will move the system in the

South-West direction, making θ more and more negative as t increases. 2

Thus, we can say that the steady state (S, θ) = (0, 0) is also “locally stable in the saddle-point

sense” for S0 located in some right-hand neighborhood of 0 (i.e., for S0 ∈ (0, ϵ) for some small ϵ > 0).

Note that the stability properties presented in Lemmas 2 and 3 are those in the neighborhood of

the steady states. Although the analysis of global dynamics would be possible by solving the model

numerically, Proposition 2 suggests some interesting possibilities.

Suppose that the interior steady state is an unstable node. Then, there can exist dynamic paths

as illustrated in Figure 5. That is, if the initial stock of international infrastructure S0 is below S∗,

the world economy will converge to the steady state with a zero stock of infrastructure and no trade

(i.e., the origin), and if S0 is above S∗, the world economy will converge to the steady state with a
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maximum stock of infrastructure S = Smax and zero trade cost.6 That is, whether the world economy

achieves free trade and highest welfare is history dependent.

Figure 5: History-dependent dynamics

Proposition 3 Suppose that (ρ + 2δ)2/4 > 2(1 − γ)χ2b/β is satisfied in addition to Assumptions

1 and 2. If the initial stock S0 is smaller (larger) than S∗, there can exist a dynamic path along

which the infrastructure stock decreases (increases) over time, and the world economy would end up

in autarky (free trade) in the long-run.

In the presence of multiple long-run equilibria in a dynamic model, which equilibrium is actually

chosen is a crucial problem. Krugman (1991) uses a simple dynamic model with external economies

and adjustment costs to examine whether initial conditions (i.e., “history”) determine the long-run

outcome or self-fulfilling prophecy (i.e., “expectations”) matters. In his model, history will dominate

expectations if individuals’ discount rate is sufficiently large; intuitively, if the future is heavily

discounted, individuals will not care much about the future actions of other individuals, and this will

eliminate the possibility of self-fulfilling prophecies. Our finding, demonstrated in the condition in

Proposition 3, is consistent with Krugman’s (1991).

If the interior steady state is a spiral source, dynamic equilibria toward the steady state can be

shown as in Figure 6. Krugman (1991) discusses the case in which over some range expectations

6It is easily verified that the Hamiltonian is not concave in S. This means that the open-loop Nash equilibrium path
is not continuous at S∗. Therefore, the two paths moving towards the corner steady states generally do not pass the
unstable steady-state point (S∗, θ∗).
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rather than history are decisive, and refers to the range of state variables from which either long-run

equilibrium can be reached as the “overlap.”7 If there is an overlap and if the initial state is inside

it, the economy’s equilibrium dynamics display indeterminacy and self-fulfilling expectations can

determine the long-run outcome.

Figure 6: Indeterminacy of equilibrium paths

As mentioned in footnote 6, the Hamiltonian is not concave in S. This means that the saddle-point

path satisfies the necessary conditions for optimality of each player, but not the sufficient conditions.

This property generates another type of complexity that there may exist a “Skiba point” (Skiba,

1978) S# ̸= S∗ such that if S0 < S# then the player’s optimal policy is to drive S to zero, while if

S0 > S#, then their optimal policy is to build up S so that eventually Smax is reached. The Skiba

point generally differs from the unstable steady-state stock S∗ if the unstable steady state (S∗, θ∗)

is a spiral source. If a Skiba point exists, the dynamic equilibrium is again history dependent; the

initial stock of the infrastructure determines whether the world economy achieves a high level of the

infrastructure stock that facilitates international trade. In order to find a Skiba point, we need to

solve for the value functions corresponding to the stable steady states and find the point in which

the two value functions intersect. As discussed by Deissenberg et al. (2004), due to the lack of an

appropriate “local” equation to define Skiba points, these point have to be determined numerically,

and this is left for further research.

7For a precise characterization of the overlap in Krugman’s model, see Fukao and Benabou (1993).
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4.2 Comparison with the cooperative solution

Suppose that Home and Foreign governments cooperatively determine the public investment so as

to maximize the joint welfare,∫ ∞

0
e−ρt

{
(1− γ) [vH(τ(S(t))) + vF (τ(S(t)))] + 2− 2f + 2q̄0 −

β

2
kH(t)2 − β

2
kF (t)

2

}
dt, (31)

subject to (14). In this subsection, we derive the solution of this dynamic optimization problem

under international cooperation and compare the open-loop Nash equilibrium to discuss the benefits

of cooperative behavior.

The current-value Hamiltonian is defined as follows:

H = (1− γ) [vH(τ(S)) + vF (τ(S))]−
β

2
k2H − β

2
k2F + θ (kH + kF − δS) .

The first-order condition for optimal investment and the transversality conditions are corresponding

to (17) and (19), respectively. The adjoint equation is now

θ̇ = ρθ − ∂H

∂S
= (ρ+ δ)θ + (1− γ)χ

[
v′H(τ(S)) + v′F (τ(S))

]
. (32)

Since the two countries are assumed to be symmetric, we have the same critical values for τ , that

is, τ̃ ≡ 2/(2 + A) and τ̂ ≡ a/b defined in (22). The corresponding critical values for S are also the

same as those in the noncooperative dynamic game. Investigating (32) in the regions between these

critical values, we obtain the θ̇ = 0 locus as follows:

θ =


0 for 0 ≤ S ≤ S̃,

−2(1− γ)χ (bτ̄ − a− bχS) /(ρ+ δ) for S̃ < S < Smax,

∀θ ∈ [0, 2(1− γ)χa/(ρ+ δ)] for S = Smax,

0 for S > Smax.

(33)

The slope of the θ̇ = 0 locus in the cooperative solution in
(
S̃, Smax

)
is twice the slope of the θ̇ = 0

locus in the open-loop Nash equilibrium given by (24).

The Ṡ = 0 locus is given by (25), the same as that in the noncooperative equilibrium. Thus, the

steady-state solutions for the infrastructure stock and its shadow price are determined by (25) and

(33). If Assumption 2 is satsfied and so is (26), it is clear that there is an interior cooperative solution

in
(
S̃, Smax

)
, as illustrated in Figure 7. Let us denote the infrastructure stock at this interior steady

state by S∗
c . By examining the linearized dynamic system around the interior steady state, we can

verify that this steady state is locally unstable. In addition to this unstable steady state, there are
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two steady states, one that achieves S = 0 and the other that achieves S = Smax, and as in the case

of noncooperative equilibrium, it can be verified that both steady states are local saddle points.

Since the steady-state stock levels under the open-loop Nash equilibrium and cooperative solutions

are respectively derived as

S∗ =
2(1− γ)χ(bτ̄ − a)

2(1− γ)bχ2 − βδ(ρ+ δ)
and S∗

c =
4(1− γ)χ(bτ̄ − a)

4(1− γ)bχ2 − βδ(ρ+ δ)

and thus,
S∗

S∗
c

=
4(1− γ)bχ2 − βδ(ρ+ δ)

4(1− γ)bχ2 − 2βδ(ρ+ δ)
> 1,

we have S∗
c < S∗.

Figure 7: Comparison of steady states between noncooperative and cooperative solutions

The linearized dynamic system around the interior steady state (S∗
c , θ

∗
c ) is[

θ̇

Ṡ

]
=

[
ρ+ δ −2(1− γ)χ2b
2/β −δ

] [
θ − θ∗c
S − S∗

c

]
(34)

and thus, the interior steady state is an unstable node if ρ2 − 4∆c > 0, where

∆c ≡
4(1− γ)bχ2

β
− (ρ+ δ)δ.

Since ∆c > ∆ > 0 if (26) is satisfied, the interior steady state in the open-loop Nash equilibrium is

also an unstable node if ρ2 − 4∆c > 0, or equivalently,

ρ2 > 4

[
4(1− γ)bχ2

β
− (ρ+ δ)δ

]
. (35)

Hence, the following proposition can be established.
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Proposition 4 Suppose that (35) is satisifed in addition to Assumptions 1 and 2.

(i) If S0 < S∗
c , both the open-loop Nash equilibrium and the cooperative solution result in zero stock

of infrastructure and hence, autarky in the long run.

(ii) If S0 ∈ (S∗
c , S

∗), the world economy would converge to the autarkic steady state with zero stock

of infrastructure in the noncooperative equilibrium, whereas it can converge to the free-trade steady

state with S = Smax in the presence of international cooperation.

(iii) If S0 > S∗, both the open-loop Nash equilibrium and the cooperative solution converge to the

free-trade steady state with the stock of infrastructure Smax.

We assume that the stock of infrastructure is an international public good and thus, the lack

of international cooperation tends to result in underprovision of the public good. Indeed, studies

on the dynamic voluntary provision of public goods have shown that cooperative behavior leads to

a higher steady-state stock of infrastructure in comparison with noncooperative Nash equilibrium

(e.g., Fershtman and Nitzan, 1991). However, in the present framework of the model, the maximum

steady-state level of the infrastructure stock is Smax, irrespective of whether the countries cooperate

or not. Therefore, there is no disadvantage of a lack of cooperation in the conventional sense if

the initial stock of the infrastructure is sufficiently small or sufficiently large, as demonstrated in

(i) and (iii) of Proposition 4. Nevertheless, international cooperation can be benefitial if the initial

stock of infrastructure is at the moderate level, as demonstrated in Proposition 4 (ii). See also

Figure 8, in which the initial stock S0 is in [S∗
c , S

∗]. In this case, the open-loop Nash equilibrium

results in zero stock of infrastructure and thus, the world economy results in autarky, whereas

international cooperation achieves the maximum level of the infrastructure stock and thus, free trade.

As demonstrated in Proposition 1, the cooperative solution achieves higher steady-state welfare than

the Nash equilibrium does. In other words, under international cooperation, the world economy

can escape from a “low development trap” that would be caused by noncooperative behavior of

infrastructure investment.

5 Concluding remarks

In this paper, we have analyzed a dynamic game of public infrastructure investment for reducing

international trade costs in a two-country world economy. We found that, depending on the trade

costs and international distribution of manufacturing firms, the market-equilibrium outcome is either

two-way intraindustry trade, one-way interindustry trade, or autarky. The national welfare in each
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Figure 8: Comparison of steady states between noncooperative and cooperative solutions

country is affected by these trade patterns, and it was shown that in the presence of trade costs, free

trade is not always beneficial relative to autarky. Because of the non-monotonic relationship between

trade costs and national welfare, the dynamic equilibrium of the policy game turns out to generate

the possibility of complex dynamics in the process of infrastructure accumulation. Specifically, we

showed that the dynamic equilibrium of the policy game may exhibit history dependency; if the

initial stock of international infrastructure is smaller (larger) than a certain level, the infrastructure

stock decreases (increases) over time, and the world economy will end up in autarky (two-way free

trade) in the long-run. We also compared the noncooperative equilibrium solution with an optimal

solution under international cooperation on infrastructure investment, and showed that cooperation

is beneficial in the sense that it may enable the world economy to escape from a “low development

trap.”

Our analysis of complex dynamics of noncooperative equilibrium is closely related to the existence

of a Skiba point, which is analytically difficult to identify. This is because of the lack of an appropriate

local equation to define Skiba points. We may find the Skiba point by solving the model numerically.

In addition, our analysis focused on the open-loop Nash equilibrium, and it is interesting to show

how the Markov-perfect Nash equilibrium of this policy game will look like. Moreover, we have

focused on the case of symmetric countries and firms with identical production technologies. Even

if we maintain the assumption of homogeneous firms, allowing for asymmetric countries leads to an

analysis of that needs numerical studies. Furthermore, in the case of asymmetric countries, there can
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be a room for international transfer or taking over the investment by one of the countries. These are

left for future research.

Appendix

A.1 Derivation of equilibrium prices and outputs

To solve the profit-maximization problem of each firm, let µii ≥ 0 and µij ≥ 0 be the Kuhn-Tucker multipliers
associated with the constraint that the demand in each market is nonnegative, and define the Lagrangian
function as follows:

Li =
λipii(ω)

1− γ
[1− pii(ω)− γ(1− Pi)] +

λj [pij(ω)− τ ]

1− γ
[1− pij(ω)− γ(1− Pj)]− f

+
µii

1− γ
[1− pii(ω)− γ(1− Pi)] +

µij

1− γ
[1− pij(ω)− γ(1− Pj)]

The firm chooses pii and pij , taking the price indices Pi and Pj as given. The first-order conditions with
respect to pii are

λi [1− 2pii(ω)− γ(1− Pi)]− µii = 0 (A.1)

and
µii ≥ 0, 1− pii(ω)− γ(1− Pi) ≥ 0, µii [1− pii(ω)− γ(1− Pi)] = 0, (A.2)

and those with respect to pij are

λj [1− 2pij(ω)− γ(1− Pj) + τ ]− µij = 0 (A.3)

and
µij ≥ 0, 1− pij(ω)− γ(1− Pj) ≥ 0, µij [1− pij(ω)− γ(1− Pj)] = 0. (A.4)

Case (i): Two-way trade in all varieties (qHF > 0 and qFH > 0) In this case, we have
µHH = µHF = µFF = µFH = 0, and thus, the first-order conditions are reduced to

1− 2pHH(ω)− γ(1− PH) = 0,

1− 2pHF (ω)− γ(1− PF ) + τ = 0,

1− 2pFF (ω)− γ(1− PF ) = 0,

1− 2pFH(ω)− γ(1− PH) + τ = 0.

Since the price index in each country’s market is rewritten as PH = σHpHH + σF pFH and PF = σF pFF +
σHpHF , the above the first-order conditions derive the equilibrium prices and equilibrium price index as follows.
In the home market,

pHH =
1− γ

2− γ
+

γσF

2(2− γ)
τ, pFH =

1− γ

2− γ
+

2− γσH

2(2− γ)
τ, PH =

1− γ

2− γ
+

σF

2− γ
τ (A.5)

holds, and in the foreign market,

pFF =
1− γ

2− γ
+

γσH

2(2− γ)
τ, pHF =

1− γ

2− γ
+

2− γσF

2(2− γ)
τ, PF =

1− γ

2− γ
+

σH

2− γ
τ (A.6)

holds.
We must verify if the positive demand conditions are satisfied. Focus on Home market. Substituting (A.5)

into the demand function for the Home variety, it holds that

qHH =
1

2− γ

[
1 +

γσF

2(1− γ)
τ

]
,
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which unambiguously positive. By contrast, substituting (A.5) into the demand function for the Foreign
variety, it holds that

qFH =
1

2− γ

{
1−

[
1 +

γσH

2(1− γ)

]
τ

}
,

which is positive only if
1

τ
> 1 +

γσH

2(1− γ)
. (A.7)

The equilibrium sales in Foreign market can be analogously derived as

qFF =
1

2− γ

[
1 +

γσH

2(1− γ)
τ

]
, qHF =

1

2− γ

{
1−

[
1 +

γσF

2(1− γ)

]
τ

}
,

and qHF > 0 only if
1

τ
> 1 +

γσF

2(1− γ)
. (A.8)

Case (ii): One-way trade in which only Home firms export to Foreign (qHF > 0 and
qFH = 0) In light of (A.7) and (A.8), this case occurs when

1 +
γσH

2(1− γ)
≥ 1

τ
> 1 +

γσF

2(1− γ)
.

In this case, µHH = µHF = µFF = 0 but µFH > 0. Thus, the equilibrium solutions for the variables in the
Foreign market, i.e., pFF , pHF , PF , qFF , and qHF , are the same as those in Case (i).

pHH , pFH , PH , and µFH are solved from the following system of equations:

1− 2pHH(ω)− γ(1− PH) = 0,

λF [1− 2pFH(ω)− γ(1− PH) + τ ] = µFH ,

1− pFH(ω)− γ(1− PH) = 0,

PH = σHpHH + σF pFH .

Solving the above system of equations, we obtain the equilibrium solutions:8

pHH =
1− γ

2(1− γ) + γσH
, pFH =

2(1− γ)

2(1− γ) + γσH
, PH =

(1− γ)(2− σH)

2(1− γ) + γσH
, (A.9)

µFH = λF

[
τ − 2(1− γ)

2(1− γ) + γσH

]
.

Substituting (A.9) into the demand function for the Home variety qHH is obtained. Therefore, it holds that9

qHH =
1

2(1− γ) + γσH
, qFH = 0.

Case (iii): One-way trade in which only Foreign firms export to Home (qHF = 0 and
qFH > 0) In light of (A.7) and (A.8), this case occurs when

1 +
γσH

2(1− γ)
<

1

τ
≤ 1 +

γσF

2(1− γ)
.

8Note that in the Home country’s price index PH , the price of goods produced by Foreign firms, which the Home
country actually do not consume, is included. In this index, the price here is the “virtual” consumer price; the choke
price for the consumer, the marginal willingness to pay for the first unit, and not cost of actually importing the good,
which may be higher than the virtual price.

9Since the equilibrium prices are independent of τ , so is qHH .
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The equilibrium solutions for the variables in the Home market, i.e., pHH , pFH , PH , qHH , and qFH , are the
same as those in Case (i).

The equilibrium prices in the Foreign market are derived as follows:

pFF =
1− γ

2(1− γ) + γσF
, pHF =

2(1− γ)

2(1− γ) + γσF
, PF =

(1− γ)(2− σF )

2(1− γ) + γσF
. (A.10)

Substituting (A.10) into the demand function for the Foreign variety is obtained. Thus, it holds that

qFF =
1

2(1− γ) + γσF
, qHF = 0.

Case (iv): No firm exports to the other country (qHF = qFH = 0) If trade costs are too high
so that

1

τ
≤ min

{
1 +

γσH

2(1− γ)
, 1 +

γσF

2(1− γ)

}
holds, the firms in both countries choose not to export the the other country. In this case, µHH = µFF = 0
but µFH > 0 and µHF > 0.

pHH , pFH , PH , µFH , pFF , pHF , PF , and µHF are solved from the following system of equations:

1− 2pHH(ω)− γ(1− PH) = 0,

λF [1− 2pFH(ω)− γ(1− PH) + τ ] = µFH ,

1− pFH(ω)− γ(1− PH) = 0,

PH = σHpHH + σF pFH ,

1− 2pFF (ω)− γ(1− PF ) = 0,

λH [1− 2pHF (ω)− γ(1− PF ) + τ ] = µHF ,

1− pHF (ω)− γ(1− PF ) = 0,

PF = σHpFF + σF pHF .

It follows that the equilibrium prices are derived as (A.9) in the Home market and (A.10) in the Foreign market,
respectively.10 Substituting these prices into the demand functions, the equilibrium outputs are derived as
follows:

qHH =
1

2(1− γ) + γσH
, qFH = 0, qFF =

1

2(1− γ) + γσF
, qHF = 0.

Equilibrium outputs: summary To summarize, the equilibrium outputs are presented as follows:

qii =


1

2− γ

[
1 +

γσj

2(1− γ)
τ

]
, if

1

τ
> 1 +

γσi

2(1− γ)
,

1

2(1− γ) + γσi
if

1

τ
≤ 1 +

γσi

2(1− γ)
,

(A.11)

qji =


1

2− γ

{
1−

[
1 +

γσi

2(1− γ)

]
τ

}
, if

1

τ
> 1 +

γσi

2(1− γ)
,

0 if
1

τ
≤ 1 +

γσi

2(1− γ)
,

(A.12)

i, j = H,F , j ̸= i. Using the definition of A, the equilibrium outputs can be rewritten as (9) and (10).

10This is because of a segmented market structure.
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A.2 Proof of Proposition 1

It suffices to compare vi(0) with vi(τ) in Case (iv). Let us begin with the present vi(τ) in each case.

Case (i): qHF > 0 and qFH > 0

vH(τ) =
1

2

{
3σH

(
1 +AσF τ

2− γ

)2

+ σF

[
1− (1 +AσH)τ

2− γ

]2}
+A

(
1− σF τ

2− γ

)2

+
λF

λH
σH

[
1− (1 +AσF )τ

2− γ

]2
, (A.13a)

vF (τ) =
1

2

{
3σF

(
1 +AσHτ

2− γ

)2

+ σH

[
1− (1 +AσF )τ

2− γ

]2}
+A

(
1− σHτ

2− γ

)2

+
λH

λF
σF

[
1− (1 +AσH)τ

2− γ

]2
(A.13b)

Case (ii): qHF > 0 and qFH = 0

vH(τ) = σH

{
3
2 +AσH

4(1− γ)2(1 +AσH)2
+

λF

λH

[
1− (1 +AσF )τ

2− γ

]2}
, (A.14a)

vF (τ) =
1

2

{
3σF

(
1 +AσHτ

2− γ

)2

+ σH

[
1− (1 +AσF )τ

2− γ

]2}
+A

(
1− σHτ

2− γ

)2

(A.14b)

Case (iii): qHF = 0 and qFH > 0

vH(τ) =
1

2

{
3σH

(
1 +AσF τ

2− γ

)2

+ σF

[
1− (1 +AσH)τ

2− γ

]2}
+A

(
1− σF τ

2− γ

)2

, (A.15a)

vF (τ) = σF

{
3
2 +AσF

4(1− γ)2(1 +AσF )2
+

λH

λF

[
1− (1 +AσH)τ

2− γ

]2}
(A.15b)

Case (iv): qHF = qFH = 0

vH(τ) =

(
3

2
+AσH

)
σH

4(1− γ)2(1 +AσH)2
, (A.16a)

vF (τ) =

(
3

2
+AσF

)
σF

4(1− γ)2(1 +AσF )2
(A.16b)

From (A.13), the value of vi(τ) at τ = 0 is

vi(0) =
1

(2− γ)2

[
1

2
+A+

(
1 +

λj

λi

)
σi

]
.
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Since vi(τ) in case (iv) is given by (A.16), it follows that11

vi(0)−
(
3

2
+Aσi

)
σi

4(1− γ)2(1 +Aσi)2

=
1

(2− γ)2

[
1

2
+A+

(
1 +

λj

λi

)
σi

]
−
(
3

2
+Aσi

)
(1 +A)2σi

(2− γ)2(1 +Aσi)2

=
1

(2− γ)2

[
1

2
+A+

(
1 +

λj

λi

)
σi −

(
3

2
+Aσi

)(
1 +A

1 +Aσi

)2

σi

]

≥ 1

(2− γ)2

[
1

2
+A+ σi −

(
3

2
+Aσi

)
σi

] (
∵ λj

λi
≥ 0 and

1 +A

1 +Aσi
≥ 1

)
=

1

(2− γ)2

[
1

2
(1− σi) +A(1− σ2)

]
> 0.

This completes the proof. 2

References

[1] Allen, T. and C. Arkolakis, Trade and the Topography of the Spatial Economy, Quarterly Journal of
Economics 129 (2014), 1085–1140.

[2] Allen, T. and C. Arkolakis, The Welfare Effects of Transportation Infrastructure Improvements, unpub-
lished manuscript.

[3] Anderson, J.A. and D. Marcouiller, Insecurity and the Pattern of Trade: An Empirical Investigation,
Review of Economics and Statistics 84 (2002), 342–352.

[4] Anderson, J. E. and E. Van Wincoop, Trade costs, Journal of Economic literature 42 (2004), 691–751.

[5] Arvis, J.-F., Y. Duval, B. Shepherd, C. Utoktham, and A. Raj, Trade Costs in the Developing World:
1996–2010, World Trade Review 15 (2016), 451–474.

[6] Barro, R., Government Spending in a Simple Model of Endogenous Growth, Journal of Political Economy
98 (1990), 103–25.

[7] Bond, E.W., Transportation Infrastructure Investments And Trade Liberalization, Japanese Economic
Review 57 (2006), 483–500.

[8] Bougheas, S., P.O. Demetriades, and E.L.W. Morgenroth, Infrastructure, Transport Costs and Trade,
Journal of International Economics 47 (1999), 169–189.

[9] Bougheas, S., P.O. Demetriades, and T.P. Mamuneas, Infrastructure, Specialization, and Economic
Growth, Canadian Journal of Economics 33 (2000), 506–522.

[10] Bougheas, S., P.O. Demetriades, and E.L.W. Morgenroth, International aspects of public infrastructure
investment, Canadian Journal of Economics 36 (2003), 884–910.

[11] Brancaccio, G., M. Kalouptsidiy, and T. Papageorgiouz, Geography, Search Frictions and Endogenous
Trade Costs, NBER Working Paper No. 23581, 2017.

[12] Brander J. and P. Krugman, A ‘Reciprocal Dumping’ Model of International Trade, Journal of Interna-
tional Economics 15 (1983), 313–321.

[13] Colombo, L., L. Lambertini, and A. Mantovani, Endogenous transportation technology in a Cournot
differential game with intraindustry trade, Japan and the World Economy 21 (2009), 133–139.

11Since A = γ
2(1−γ)

, it holds that 1 +A = 2−γ
2(1−γ)

and thus, 4(1− γ)2 = (2− γ)2/(1 +A)2.

28



[14] Deissenberg, C., G. Feichtinger, W. Semmler, and F. Wirl, Multiple Equilibria, History Dependence, and
Global Dynamics in Intertemporal Optimization Models, in W.A. Barnett, C. Deissenberger, and Gustav
Feichtinger (eds.), Economic Complexity (International Symposia in Economic Theory and Econometrics,
Volume 14), 2004, Emerald Group Publishing, pp.91–122.

[15] Devereux, M.B. and A. Mansoorian, International Fiscal Policy Coordination and Economic Growth,
International Economic Review 33 (1992), 249–68.

[16] Donaldson, D., Railroads of the Raj: Estimating the Impact of Transportation Infrastructure, American
Economic Review 108 (2018), 899—934.

[17] Fajgelbaum, P.D. and E. Schaal, Optimal Transport Networks in Spatial Equilibrium, NBER Working
Paper No. 23200 (2017).

[18] Felbermayr, G.J. and A. Tarasov, Trade and the Spatial Distribution of Transport Infrastructure, CESifo
Working Paper Series No. 5634, 2015.

[19] Fershtman, C. and S. Nitzan, Dynamic Voluntary Provision of Public Goods, European Economic Review
35 (1991), 1057–1067.

[20] Figuières, C., F. Prieur, and M. Tisball, Public infrastructure, non-cooperative investments, and endoge-
nous growth, Canadian Journal of Economics 46 (2013), 587–610.

[21] Francois, J. and M. Manchin, Institutions, Infrastructure, and Trade, World Development 46 (2013),
165–175.

[22] Freund, C.L. and D. Weinhold, The effect of the Internet on international trade, Journal of International
Economics 62 (2004), 171–189.

[23] Fukao, K. and R. Benabou, History versus expectations: a comment, Quarterly Journal of Economics
108 (1993), 535–542.

[24] Furusawa, T. and H. Konishi, Free trade networks, Journal of International Economics 72 (2007), 310–
335.

[25] Han, Y., P. Pieretti, S. Zanaj, and B. Zou, Asymmetric competition among nation states: A differential
game approach, Journal of Public Economics 119 (2014), 71–79.

[26] Hartl, R.F., P.M. Kort, G. Feichtinger, and F. Wirl, Multiple Equilibria and Thresholds Due to Relative
Investment Costs, Journal of Optimization Theory and Applications 123 (2004), 49–82.

[27] Hochman, G., C. Tabakis, and D. Zilberman, The impact of international trade on institutions and
infrastructure, Journal of Comparative Economics 41 (2013), 126–140.

[28] Itaya, J.-I. and K. Shimomura, A dynamic conjectural variations model in the private provision of public
goods: a differential game approach, Journal of Public Economics 81 (2001), 153–172.

[29] Jacks, D.S., C.M. Meissner, and D.Novy, Trade booms, trade busts, and trade costs, Journal of Interna-
tional Economics 83 (2011), 185–201.

[30] Krugman, P., History versus expectations, Quarterly Journal of Economics 106 (1991), 651–667.

[31] Limão, N. and A.J. Venables, Infrastructure, Geographical Disadvantage, Transport Costs and Trade,
World Bank Economic Review 15 (2001), 451–479.

[32] Long, N.V., A Survey of Dynamic Games in Economics, 2010, World Scientific.

[33] Martin, P. and C. Rogers, Industrial Location and Public Infrastructure, Journal of International Eco-
nomics 39 (1995), 335–351.

[34] Matsuyama, K., Increasing returns, industrialization, and indeterminacy of equilibrium, Quarterly Jour-
nal of Economics 106 (1991), 617—650.

29



[35] McMillan, J., A Dynamic Analysis of Public Intermediate Goods Supply in Open Economy, International
Economic Review 19 (1978), 665–678.

[36] Mun, S. and S. Nakagawa, Pricing and Investment of Cross-border Transport Infrastructure, Regional
Science and Urban Economics 40 (2010), 228–240.

[37] Ottaviano, G.I.P., T. Tabuchi, and J.-F. Thisse, Agglomeration and trade revisited, International Eco-
nomic Review 43 (2002), 409–436.

[38] Oyama, D., History versus expectations in economic geography reconsidered, Journal of Economic Dy-
namics and Control 33 (2009), 394–408.

[39] Skiba, A.K., Optimal growth with a convex-concave production function, Econometrica 46 (1978), 527–
539.

[40] Tsubuku, M., Endogenous Transport Costs and Firm Agglomeration in New Trade Theory, Papers in
Regional Science 95 (2016), 353–362.

[41] Wagener, F.O.O., Skiba points and heteroclinic bifurcations, with applications to the shallow lake system,
Journal of Economic Dynamics and Control 27 (2003), 1533– 1561.

[42] Wirl, F., Indeterminacy and history dependence of strategically interacting players, Economics Letters
145 (2016), 19–24.

[43] Yanase, A. and M. Tawada, History-Dependent Paths and Trade Gains in a Small Open Economy with
a Public Intermediate Good, International Economic Review 53 (2012), 303–314.

[44] Yanase, A. and M. Tawada, Public Infrastructure for Production and International Trade in a Small Open
Economy: A Dynamic Analysis, Journal of Economics 121 (2017), 51–73.

[45] Yanase, A. and M. Tawada, Public Infrastructure and Trade in a Dynamic Two‐country Model, Review
of International Economics 28 (2020), 447–465.

30


	2020s-59
	2020s-59_couverture

	2020s-59_page_titre
	2020s-59
	2020s-59_article




