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We solve Faustmann’s problem when the land manager plans to switch from the current tree species to 

some alternative species or land use. Such situations occur when the relative value of the alternative 

increases faster than the value of the species currently in place. The paper characterizes the land value 

function and the optimum rotations, highlighting the differences between this non-autonomous 

problem and the traditional Faustmann’s problem. We show in particular that rotations can be either 

higher and increasing, or lower and decreasing, compared to the traditional, constant, Faustmann’s 

rotation. 
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1. Introduction

Faustmann (1849) gave forestry economics its foundations by addressing the question: at

what age should a stand of even-aged trees be harvested? He did so under the assumption

of constant timber prices by comparing the net marginal benefits from letting timber

grow further, to the opportunity cost of currently planted trees plus the opportunity

cost of the land, itself determined by the optimization of all future harvest decisions.

Faustmann’s original problem has been refined and generalized in many ways to include

for instance a rising timber price (Newman et al., 1985), a constrained harvest rate

(Heaps and Neher, 1979), non-timber benefits (Hartman, 1976, and Strang, 1983) and

stochastic timber prices (e.g. Brazee and Mendelsohn, 1988; Clarke and Reed, 1989;

Thomson, 1992; Reed, 1993; Willassen, 1998; Insley, 2002). Over time, applications have

been extended to include more and more problems, such as differentiated timber prices

(Forboseh et al., 1996), uneven-aged management (Haight, 1990; Chang and Gadow,

2010), multi-species stands under changing growth conditions caused by climate change

(Jacobsen and Thorsen, 2003), the value of carbon storage (Ekholm, 2016), and many

others referred to in Amacher, Ollikkainen, and Koskela (2009).

When alternative species were considered in the literature, the future land value

was treated as exogenous, independent of the current choice. For instance, Thorsen

(1999) analyses the choice of tree species for afforestation as a real option problem, and

Thorsen and Malchow-Møller (2003) extend it to a two-option problem with two mutu-

ally exclusive options (two tree species), where exercising one option implies losing the

other irreversibly. With uncertain timber prices, Jacobsen (2007) goes one step further:

upon harvest, the current stand (of spruce) may be allowed to regenerate naturally and

costlessly, or may be replaced indefinitely with oaks at some cost. Jacobsen studies the

optimum harvest age: it is not certain whether it is higher or lower than Faustmann’s

rotation or Wicksell’s single rotation.

In this paper, we reconsider the original Faustmann problem while assuming the

availability of an alternative land use which is forestry with a different species or non



forestry one such as agriculture, residential use, conservation, etc. We assume that the

alternative use will become certainly more attractive than the current forestry use in

such a way that a switch to the alternative use will become desirable at some time in

the future. Thus, the land optimum management is not a time autonomous problem

and has a solution notably different from that of the original Faustmann problem.

Prices are assumed known with certainty and increase at constant rates that may

be non negative or negative, but are lower than the discount rate. As we argue further

below, this allows to highlight the effect on current species rotations and on land value

of a switch to an alternative species or alternative use sometime in the future. Timber

prices rising at a strictly positive rate were analyzed by Lyon (1981) who justified them

on the ground that there is a mining dimension to forest exploitation, but that rising

scarcity is moderated by the renewability of the resource. Historical data (Newman et

al, 1985) weakly support this strong version of the constant rate assumption although

evidence based on over 100 years of stumpage data from Sweden (Hultkrantz et al.,

2014) rather points to a mean reverting process.

More to the point, at a disaggregated level, the prices of various timber species

relative to other species or relative to alternative land uses may evolve differently because

of differences in demand or, e.g., of their different abilities to sequester carbon (Sohngen

and Mendelson, 1998). This implies that a switch from one species to the alternative

species or land use may be desirable at some point in time while other features of

Faustmann’s model remain valid.

In these circumstances, that is to say when the current species is to be replaced by

an alternative in the future, it turns out that the rotations of the current species, and

therefore the land value, are considerably modified. Under the assumptions used, the

nature of the alternative - alternative species or non forestry alternative use - does not

change the implications on the choice of the rotation for the tree species in place. Hence

for simplicity we will mostly refer to alternative tree species in the sequel.

Newman et al. (1985) find that, when regeneration costs are absent and the price

evolves at constant rate, the rotation is also independent of the price level and constant
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from one harvest to the next; this constant rotation is higher, the higher the rate of price

change. As a result, this model is the perfect laboratory to study the effect on rotation

and land value of a future switch to an alternative species or use as the optimum rotation

with two alternative species then only needs to be compared with the single value that

arises if only one species is available to populate the forest lot.2

We find that the optimal harvest age is not generally constant from one harvest to

the next if a switch is to occur in the future; it depends on the relative price of the two

alternative species at the time of the harvest. It also depends on the number of harvests

remaining before the switch. A similar phenomenon was identified by numerical methods

in a single species context by Newman et al (1985), to whom we also owe some of the

analytical apparatus used and adapted to the case of two species in this paper. The

solution can be described in the two-dimensional space of tree age and relative species

price. In that space there exists a "non maturity" or waiting region delimited by an

upper age boundary: given some relative price, one should harvest if the age of the trees

equals or exceeds the upper boundary. Furthermore, over some range of relative prices,

there also exists a lower boundary to the waiting region: if the age of the trees is higher

than the boundary, it is optimal to allow them to grow until they reach maturity (the

upper boundary); but if the age of the trees is lower than the lower boundary, they

should be cut and the alternative species should be adopted immediately.

When the land is bare, there is a critical relative price at which the investor would

be indifferent between planting either species. Surprisingly, we show that, in an optimal

sequence of harvests, that price never coincides with a harvest, let alone with the switch

from one species to the next. If the optimal sequence is such that one species is to be

replaced by the other at some date, the former will be last established at a price strictly

2Chang, S. J. (1998) has proposed a generalized version of Faustmann formula that applies when
stumpage prices and costs are arbitrary known functions of time. The effect of a single future switch on
Chang’s generalized rotation would obey the same rationale. However it would be more diffi cult, and
not very economically enriching, to determine conditions on the time path of the alternative species
relative to that of the current species justifying one and only one switch. Clearly the real world entails
a myriad of possibilities for repeated switches but the intuition provided by our simplified framework
would be lost if we attempted a general treatment.
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below the critical indifference price, and the alternative species will first be established at

a price strictly higher than the indifference price. In other words, if an optimal program

has been followed before the relative price reaches the critical level, the land is not bare

when this price is reached and the existing trees are to be allowed to grow further to

reach financial maturity. Similarly, if timber producing land is to be reallocated to some

alternative use, the switch should occur later, that is at a higher value of the alternative

use, than if the land were bare.

Before switching to the alternative use, the upper boundary is different when it leads

to reestablishing the same species than when it leads to a switch; we call "replanting

boundary" and "switching boundary" these alternative forms of the upper boundary.

The replanting boundary applies when the relative price is below the critical level.3 It is

composed of a succession of segments giving the optimal harvest age as function of the

price of the species to be adopted last relative to the price of the species in place. Each

of these functions first decreases and then increases, forming a sequence of downward

followed by upward sloping segments. Each downward segment indicates the optimal

harvest age corresponding to a particular number of remaining harvests until the switch

to the last species. Upward segments are not reached by any optimal sequence of relative-

price tree-age pair; they indicates the age below which it is worth allowing a tree to reach

maturity rather than cut it, given the relative price. The downward sloping segments

start at an optimal harvest age above the Faustmann rotation and end below it. The

upward sloping segments ensure the continuity of the forest value as a function of the

relative price despite the decreasing number of further harvests of the initial species. The

age difference spanned by the upward sloping segments is higher, the lower the number

of further harvests of the initial species before the switch.

Another finding is that, before the switch, harvest ages from one harvest to the next

are constant or increasing or decreasing; if constant, they remain equal to the Fautsmann

rotation; if increasing, they are always higher than the Faustmann rotation; if decreasing,

they are always lower than the Faustmann age.

3Without loss of generality one can define the relative price such that it is rising.
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The general setting and assumptions are introduced in Section 2. In Section 3,

we establish the optimal harvest age when the land is available for one rotation only

(Wicksell setup) and when it is available for multiple rotations (Faustmann setup) in

the case where just one tree species exists as in Newman et al. (1985) but with no

regeneration cost. These intermediate results are used to study the case where two tree

species are available. In Section 4, we extend the Faustmann framework to consider the

availability of an alternative tree species or land use. After harvesting, the land may be

planted with anyone of the two available tree species or converted to some other use.

The forest manager must decide at what age the trees of the current stand must be

cut, and whether they should be replaced with trees of the same species or whether the

alternative species or use should be adopted. Some properties of the decision rules and

the land and stand value functions are derived analytically and presented in a number

of propositions. Section 5 concludes.

2. General setting and assumptions

We study the decision of a forest manager to establish one or the other of two alternative

tree Species P and P ′ on a plot of bare land. We assume that the timber price of Species

P (respectively P ′) changes over time t at the instantaneous rate µ (respectively µ′) as

in the one-species model of Newman et al. (1985):

pt = p0e
µt, (1a)

p′t = p′0e
µ′t. (1b)

Newman at al. justify their assumption on empirical grounds, rightly arguing that ’Tim-

ber is unique among natural resources in that its price shows a long-term increasing trend

relative to the price of other goods.’While explanations for this empirical regularity may

have been refined, the same regularity is still observed nowadays (Stavins, 2011). Con-

stant rates of growth is a restrictive assumption for prices; nonetheless it is useful both

conceptually (as it encompasses constant prices and is also arguably a useful tool to

study rising wood scarcity). In our generalization to two species, it is further a good
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way to model the progressive loss of appeal of one wood species relative to another.

In the rest of the paper time dependent variables will in general not be indexed and

should be considered current unless otherwise mentioned. The relative price θ = p′

p

varies over time; δ = r − µ and δ′ = r − µ′ are strictly positive constant parameters4,

where r is the constant discount rate.5

Each tree species is characterized by a timber volume growth function with the

following properties:

Assumption 1 There exists a > 0 and a′ > 0, such that the timber volume functions

V (a) and V ′(a) are continuous over [0,+∞[, V (a) = 0 over [0, a], V ′(a) = 0 over [0, a′];

V (a) and V ′(a) are positive, continuous, differentiable and concave over [a,+∞[ and

[a′,+∞[ respectively. In addition, lim
a→+∞

Va(a) = 0 and lim
a→+∞

V ′a(a) = 0.

Tree volume functions usually have a convex initial part and become concave once

the trees have reached some strictly positive age. This implies that it is never optimum

to harvest at an arbitrarily low age. Assumption 1 ensures that this stylized property is

satisfied while avoiding delicate and economically uninteresting complications associated

with the non convexity of the volume functions at low tree ages 6. This assumption also

ensures that the volume function is bounded.

We assume that operational costs (while trees are growing) and harvesting costs are

either nil or accounted for in prices p and p′. A more consequential assumption is that the

regeneration cost is nil. Under that assumption the optimal harvest age is independent

of the timber price in one-species models with constant price or exponentially changing

price. Adopting it in our two-species model allows us to better identify the cause of a

change in the relationship between price and optimal harvest age.

4We assume that δ > 0 and δ′ > 0; otherwise it would be optimal to delay the decision to cut forever.
5Throughout the paper the notation ”’”applied to a function will refer to the alternative species

while first or second derivatives of functions will be denoted by indices. Thus, for variables a and p,
Ga (a, p) denotes the partial derivative of the function G (a, p) with respect to a and V ′aa (a) denotes
the second derivative of the function V ′ (a).

6While this assumption is applied to the tree volume functions here, it is applied to the timber
revenue function in Heaps and Neher (1979).
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3. Optimal rotation without an alternative tree species

In this section, we recall the determination of Wicksell’s and Faustmann’s rotations when

only one tree species is available whose timber price is given by Equation (1a). These

results will be useful in the remaining sections to establish the tree harvest age when two

species coexist. The Wicksellian tree harvest problem refers to the problem of choosing

the age at which a stand of even-aged trees will be harvested. One single harvest is

considered and the impact of this unique harvest on land value is neglected. Thus, the

investor maximizes the harvest revenue e−rTV (T )peµT by choosing the harvest date T .

The optimal harvest age aw is determined by Equation (2) similar to the well-known

Wicksellian rule except that the discount rate r is replaced by δ = r − µ to account for

the exponential change in the timber price. As in the case of constant timber price, the

optimal age is chosen in such a way that the marginal value growth of the trees is equal

to the opportunity cost of holding on to them:

Va(aw)

V (aw)
= δ. (2)

Faustmann’s rotation refers to the optimal harvest age when harvesting is imme-

diately followed by replanting, in an indefinite succession of rotations. Thus, the in-

vestor maximizes the harvest revenues over an infinite number of equal rotations so-

lution to maxT
∑+∞

n=1 e
−rnTV (T )peµnT .7 The optimal harvest age af is determined by

Equation (3a), formalizing the well-known Faustmann rule (1849) where the discount

rate r is again replaced by δ = r− µ. As in the case where the timber price is constant,

the optimal harvest age af is constant from one rotation to another. In this case, the

land value is equal to cp where the coeffi cient c is given by Equation (3b):

Va(af )

V (af )
=

δ

1− e−δaf , (3a)

c = V (af )
e−δaf

1− e−δaf . (3b)

7Harvest revenues are then a geometric series:∑+∞
n=1 e

−rnTV (T )peµnT = V (T )
∑+∞
n=1 e

−δnT = V (T ) e−δT

1−e−δT
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In the rest of the paper, we refer to af as the Faustmann rotation age and aw as the

Wicksell rotation age. It is clear that af < aw.

4. Optimal rotation when an alternative tree species is available

In the remaining sections, we assume that two tree species are available at any time,

whose timber prices are given by Equations (1a) and (1b). First, note that when µ = µ′,

the relative price θ remains constant. If the right species is in place, then it will continue

to be planted and harvested successively forever. Switching from one species to the

alternative is conceivable in that case only if the problem starts with an initial stand

that would not have been introduced as a result of a rational decision. In that case one

should switch to the appropriate species, either immediately or after allowing existing

trees to become economically mature. We do not consider this possibility any further.

When µ 6= µ′ a switch from one species to the other may become desirable as part of

an optimal succession of harvests. Without loss of generality, assume from now on that

µ = µ′−µ > 0 so that the growth rate of the price of the species in place, say Species P ,

is smaller than that of the alternative species P ′. When p′ is still relatively low relative

to p, it is optimum to exploit Species P until the price of Species P ′ has suffi ciently

increased. Since the growth rate of p′ is higher than that of p, a shift to Species P ′ will

eventually be desirable. Suppose that Species P is replanted n times until the switch to

P ′ occurs. At that moment, Species P will be cut for the last time and Species P ′ will be

planted thereafter forever after each harvest, as if it were the sole available species. The

assumption µ′ > µ implies that the switch to P ′ is permanent, so that the problem to

be solved from then on is the standard one-species problem of Faustmann. Once species

P ′ is planted, the land value is thus equal to c′p′ and the rotation is the constant a′f

defined by adapting (3a) and (3b) to the case of Species P ′:

V ′a(a
′
f )

V ′(a′f )
=

δ′

1− e−δ′a′f
, (4a)

c′ = V ′(a′f )
e−δ

′a′f

1− e−δ′a′f
. (4b)

Since δ
1−e−δa is increasing in δ for any a > 0 and Va

V
(a) is decreasing in a, the Faust-
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mann age of a given species is higher, the higher the growth rate of its price as verified

numerically by Newman et al. (1985).8

Before the switch, at relatively low values of θ, the situation is different from the

standard single-species case that defines the Faustmann rotation. The number of har-

vests of Species P to be carried out before the switch diminishes at each harvest. In

such a non-autonomous problem, it cannot be assumed that the harvest age is the same

at each harvest. As will become clear further below, there are intervals of θ values over

which there remains only one harvest of Species P , or two harvests, three harvests, etc.;

furthermore, the optimum harvest age depends on θ within each of these intervals and

this functional dependency differs according to the number of remaining harvests. Thus

the problem at hand is to find the optimal harvest age of Species P trees as a function

of the value of θ at harvest time. This function not only depends on the number of

remaining harvests, which is itself endogenous, but also on the initial conditions of the

problem. In other words we will find that the optimal harvest age when k harvests of

Species P remain before the switch to P ′ depends on the initial value of θ and on the

age of the trees in place at that time.

In short, the problem does not collapse to the static problem of finding the unique

optimal rotation that applies at all dates as is the case with the standard Faustmann

formulation. It is dynamic, non autonomous, and its solution is an optimum trajectory

over time of the tree age and species for successive generations. This solution will be

expressed in the state space of relative species price and tree age (θ, a) for each generation

of trees. As hinted already, it takes a different form after the switch to Species P ′; it also

depends on the initial value of the (θ, a) pair. Since the sole actions are to cut trees and

to choose the replacement species, a convenient way to represent the solution in state

space will be to define boundaries between loci where it is desirable to harvest the trees,

and loci where it is desirable to allow existing trees to grow further.

It will be convenient to index harvest ages in reverse chronological order from the

8It is not possible in general to compare af and a′f as species P and P ′ may have different volume
functions.
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date of the switch. Thus an(θ) stands for the harvest age when the relative price is θ

and the land is to be replanted n more times with the same species P , while a0(θ) is

the age at which Species P is cut for the last time and is replaced with the alternative

species forever. The reason to count rotations backward from n to 0 is that whatever

the current relative timber price is, the switch to the alternative species will take place

when the stand age is a0(θ) for a certain relative price θ at the harvest time. However,

as will be clear, the price at which the switch to Species P ′ occurs is not unique; it

depends on the initial state (relative price and tree age) of the problem.

Harvest ages an, .., a0 are chosen to maximize the value of the forest G(p, p′, a), which

is the sum of the value of the current stand and the endogenous value of the land resulting

from subsequent harvests:

G(p, p′, a) = max
a0...an

{
pnV (an)e−r(an−a) + ...+ p0V (a0)e−r(an+...+a0−a) + c′p′0e

−r(an+...+a0−a)
}

where pi = peµ(an+...+ai−a) for i = 0,.., n and p′0 = p′eµ
′(an+...+a0−a).

The first n + 1 terms in the maximand give the present-value contribution of each

harvest of P trees, where the last one, at price p0 and age a0 is followed by the estab-

lishment of Species P ′; the last term gives the present value of the infinite sequence of

harvests of Species P ′ that follows, with c′ given by (4a). This implies that

G(p, p′, a) = p max
a0...an

{
V (an)e−δ(an−a) + ...+ V (a0)e−δ(an+...+a0−a) + c′θe−δ

′(an+...+a0−a)
}

so that G(p, p′, a) = pg(θ, a) where

g(θ, a) = max
a0...an

{[
V (an)e−δan + ...+ V (a0)e−δ(an+...+a0)

]
eδa + c′θe−δ

′(an+...+a0)eδ
′a
}
. (5)

Note that in the case of a non forestry alternative use of the land, c′p′t should be

interpreted simply as the land value that is growing at the rate µ′.

Hence, the forest value function G(p, p′, a) admits a reduced (price intensive) form

g(θ, a),9 a function of the relative price and the stand age. By solving the maximization

9The reduced function g (θ, a) could be called ’price intensive’by analogy with the standard ’factor
intensive’ form of a constant returns neoclassical production function. The reduced function g (θ, a)
gives the value of the stand (including land) in terms of a numeraire, chosen to be Species P .
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in (5), one can see that each optimum ai is a function of a single variable, the relative

price ϕ = θeµ(Σai−a) current at the date of the harvest, which is itself uniquely determined

by the relative price θ and tree age a applying at the date where the maximization is

carried out.

The land value F (p, p′) = G(p, p′, 0) can similarly be written F (p, p′) = pf (θ) where

the reduced land value f (θ) depends on the relative price θ only:

f (θ) = max
s

[
V (s)e−δs + f (θs) e

−δs] . (6)

In order to characterize the harvest age and species choice decisions, we follow

Newman et al. (1985) and consider the two positive, strictly decreasing functions

K(a) = Va(a)
δ
− V (a) and L(a) = Va(a)

δeδa
respectively defined on [a, aw] and [a,+∞[.

As L(a) is strictly decreasing it is invertible. Let R = L−1 ◦K; Figure 1 illustrates how

its values are established. The functions K and L illustrated in Figure 1 and function R

will be used repeatedly to characterize the solution at various stages. Precisely, it will

be shown that if it is optimal to harvest and replant stand P at age a, then the next

rotation is R (a); furthermore, the only fixed point R (a) = a is the Faustmann age af .

The next proposition characterizes the relative price at which the land, if bare, could

indifferently be planted with Species P or P ′.

Proposition 1 There exists a value of the relative price θ0 > 0 such that, if the land

is bare, it is equivalent to plant Species P ′ repeatedly forever or to plant Species P for

one rotation of duration a0 followed by a permanent switch to Species P
′; θ0 and a0 are

determined by

Va
V

(a0) = δ +
δ′

eδ
′a0 − 1

, (7a)

K(a0) =
δ′

δ
c′θ0e

µa0 . (7b)

Furthermore, a0 satisfies a < a0 < af .

Proof. See the Appendix.
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At relative prices equal to or higher than the switching threshold θ0, the reduced

land value f(θ) equals c′θ, the form that applies when the sole species is P ′. When the

relative price tends to zero, the reduced land value tends to c, the form that applies

when the sole species is P . For all levels of θ, the land value when both species are

available is equal to or higher than the value generated by one species only.

Equation (7b) will be generalized to apply to the upper switching boundary in Propo-

sition 3. The following proposition is used to compute the reduced land value function

depicted in Figure 2.

Proposition 2 The reduced land value function f(θ) can be computed recursively as:

f(θ) =

 maxθ̂≥θ

(
θ̂
θ

)− δ
δ−δ′

[
V (

log( θ̂
θ

)

µ′−µ ) + f(θ̂)

]
, θ ≤ θ0,

c′θ, θ ≥ θ0.
(8)

Proof. See the Appendix.

Figure 2 gives the alternative values of the same plot of land using Species P as

numeraire when alternatively a single Species P or P ′, or both Species, can be established

on the land.

When θ > θ0, Species P ′ needs to be established if the land is bare. If the land is

already planted with trees of Species P ′, the optimum decision is to allow them to grow

until they reach economic maturity as per (4a) and (4b), harvest them and replant the

same Species P ′ forever. However, if the land is planted with trees of Species P aged

a, two possibilities arise. The first one is to harvest immediately and plant P ′. This is

clearly optimal if p′ is so superior to p that postponing a new harvest of P ′ cannot be

justified by any optimization of the value derived from harvesting the current P trees,

whatever their age. The second possibility arises if the relative price of P ′ is not too far

above the threshold θ0 and the current P trees are relatively old. It is then preferable

to allow them to grow further, harvest them when they reach economic maturity, and

only then switch to P ′. This alternative defines the upper switching boundary a+(.) for

relative prices higher than θ0. Nonetheless, at such values of θ, it is optimal to plant P ′

if the land is bare; consequently there must exist some age for P trees below which it is

12



preferable to replace them immediately rather than allowing them to reach maturity. In

such case, unlike the standard Faustmann problem, there is a lower switching boundary

a−(.) to the continuation region in addition to the upper switching boundary a+(.).

We call these boundaries switching boundaries to distinguish them from the replanting

boundary a(.) that applies for relative prices below θ0 and defines the age at which trees

of Species P are to be harvested and replaced with trees of the same species. The next

two propositions define respectively the upper switching boundary a+(.) and the lower

switching boundary a−(.). We postpone until Propositions 5 and 6 a discussion of the

optimum harvest age relative to the Faustmann rotation.

Proposition 3 An upper switching boundary a+(θ) exists for θ0 ≤ θ ≤ θ. It is the set

of pairs (θ, a) such that θ0 ≤ θ ≤ θ, a ≤ a ≤ a0 and K(a) = δ′

δ
c′θ, where θ and a0 are

respectively the unique solutions of:

Va(a) = δ′c′θeµa (9a)

and (9b)

K(a0) =
δ′

δ
c′θ0. (9c)

The upper switching boundary is strictly decreasing on
[
θ0, θ

]
, with a+(θ0) ≡ a0 < aw

and a+(θ) = a.

Proof. See the Appendix.

Equation K(a) = δ′

δ
c′θ at point (θ, a) of the upper switching boundary is equivalent

to Va(a) = δV (a) + δ′c′θ. It states that it is optimal to harvest Species P when the

change in the marginal revenue equals the opportunity cost of postponing the current

harvest revenue augmented by the opportunity cost of the land, whose value stems from

harvesting Species P ′ forever.

Proposition 4 A lower switching boundary a−(θ) exists for θ ∈ [θ0, θ]. It is the set of
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pairs (θ, a), with θ0 ≤ θ ≤ θ and 0 ≤ a ≤ a, such that, for some s ≥ 0:

Va
V

(a+ s) = δ +
δ′

eδ
′s − 1

, (10a)

K(a+ s) =
δ′

δ
c′θeµs. (10b)

The lower switching boundary is strictly increasing on [θ0, θ].

Proof. See the Appendix.

The last two propositions describe the rich and novel features of the harvest decision

in the upper vicinity of the switching price.

First the lower switching boundary is a notion that appears only when an alternative

use exists that imposes an opportunity cost on the species in place; if that opportunity

cost is high enough the trees in place should be replaced without giving them the time

to reach financial maturity. Thus when P trees are in place, if their age is lower than

indicated by the lower boundary, they should be cut and replaced with P ′ trees or an

other non forestry use. The lower switching boundary is rising from age zero at θ0 to a

at θ.

Second, whereas the Faustmann rotation is independent of the price in the absence of

regeneration costs when land use is limited to planting one species, the upper switching

boundary here depends on the relative price. Precisely it decreases from a0 at θ0 to a at

θ where it connects with the lower boundary.

The next two propositions also describe a form of solution not encountered in previous

versions of the Faustmann problem, although Newman et al (1985) discovered a similar

behavior in a single species context. They characterize the replanting boundary a(.), that

is to say the harvest boundary that applies at relative prices lower than θ0. Instead of

the constant harvest age found in regular Faustmann problems, the replanting boundary

turns out to be a sequence of alternatively downward and upward sloping functions of θ,

with one particular downward sloping segment followed by an upward sloping segment

for each possible number k of harvests remaining before the switch to Species P ′.

Proposition 5 describes the succession of segments constituting the harvest boundary

for each of the remaining harvests before the switch to the alternative use. Further below,
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Proposition 6 will focus on the monotonicity properties of the segments and precisely

compare optimum harvest ages with the Faustmann rotation.

It turns out that not only the number of harvests remaining before the switch, but

also the age at which the trees will be cut at each harvest and the relative price at which

each harvest will take place, depend on the initial state of the problem, that is to say

on the age of the trees in place and the relative price of the two species at the initial

time.10

The problem of choosing the number of remaining harvests and the corresponding

ages and relative prices can be somewhat simplified by noting that the initial state (θ, a)

can be summarized by a single variable ϕ which is the relative price when trees were

planted. If the initial state is (θ, a) then the price that prevailed a time units earlier is

ϕ = θe−µa and the hypothetical state at that time would be (ϕ, 0). Consider the problem

with initial state (ϕ, 0) rather than (θ, a); if its solution does not involve any harvest

during the period over which the price moves from ϕ to θ, then the state (θ, a) is reached

and the continuation gives the solution to the problem starting at (θ, a). Proposition 5

characterizes the solution for this special case. Its generalization to any initial age will

be provided with the discussion of the solution.

Proposition 5 Suppose that the land is bare and that the relative price is ϕ ≤ θ0. Let

n (ϕ) denote the number of times that Species P is to be planted before the permanent

switch to the alternative use. Then,

1. Species P is harvested - and immediately replanted - at ages ak (ϕk) and relative

prices ϕk(ϕ) = ϕeµ[an(ϕn)+...+ak(ϕk)] < θ0, k = n (ϕ) , ..., 1.

2. The last harvest of Species P occurs at tree age a0 (ϕ0) and relative price ϕ0(ϕ) =

ϕeµ[an(ϕn)+...+a0(ϕ0)] > θ0 on the upper switching boundary a+(.) and is followed

immediately by a permanent switch to the alternative use.

10As mentioned earlier the maintained assumptions in this part of the paper are such that Species P
is in place; its relative price diminishes but is still suffi ciently high to justify that P be harvested and
replanted an appropriate number of times n before the switch to Species P ′.
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3. The harvest ages ak (ϕk), k = 1, ..., n are determined recursively by the series of

Equations (11a) and a0 (.) is determined by Equation (11b):

R [ak (ϕk)] = ak−1

(
ϕk−1

)
, ϕk(ϕ) = ϕeµ[an(ϕn)+...+ak(ϕk)], k = 1, ..., n (ϕ) ,(11a)

K [a0 (ϕ0)] =
δ′

δ
c′ϕ0, ϕ0(ϕ) = ϕeµ[an(ϕn)+...+a0(ϕ0)]. (11b)

where n (ϕ) is determined by the condition that ϕ1 < θ0 < ϕ0.

4. For k = 1, ..., n (ϕ) , the successive harvest ages ak (ϕk) are increasing and higher

than the Faustmann age or decreasing and lower than the Faustmann rotation.

They may also be constant and equal to the Faustmann rotation. The Faustmann

rotation af is optimal at each harvest if and only if the harvests occur at relative

prices θfk =
K(af )

δ′
δ
c′e(k+1)µaf

, that is to say if ϕ = ϕf =
K(af )

δ′
δ
c′e(n+1)µaf

.

Proof. See the Appendix.

Note that the kth first-order condition for the maximization problem (5) that defines

the forest value g(ϕ, 0) in terms of Species P is equivalent to

Va(ak)e
−δ(ak+...+an) = δ

k∑
i=0

V (ai)e
−δ(ai+...+an) + δ′c′ϕe−δ

′(a0+...+an). (12)

This condition equates at harvest time the marginal increase per unit of time of the

standing trees (left-hand side), with the opportunity cost of holding standing trees and

of occupying land (right-hand side). Indeed, the value of the standing trees is the first

element (i = 0) in the summation term on the right-hand side; the value of the bare

land results from the k subsequent harvests of Species P (i = 1, ..., k) in the summation

term, plus the indefinite alternative land use corresponding to the last term on the

right-hand side. Thus the interpretation of the harvest rule implied by (12) is the

standard textbook interpretation of Faustmann’s rotation (Amacher et al., 2009), with

the important difference that the rotations are not constant here: ak depends on ϕk(ϕ).

Whereas condition (12) links the current harvest to the entire succession of remaining

harvests, conditions (11a) each focuses on two successive harvests of the same species,
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specifying the condition for replanting the same species. Conditions (11a) are equivalent

to Va(ak)− δV (ak) = Va(ak−1)e−δak−1 . Substituting δ for r − µ gives

Va(ak) + µV (ak) = eµak−1Va(ak−1)e−rak−1 + rV (ak),

Using Species P as numeraire, this equation shows that the harvest must be delayed

until the marginal revenue (left-hand side) from timber volume change (Va(ak)) and

price change (µV (ak)) equals the opportunity cost of doing so (right-hand side). This

opportunity cost has two components. The first one is equal to the discounted value

of the lost growth incurred because the next harvest is delayed (eµak−1Va(ak−1)e−rak−1).

The second one is the opportunity cost form harvesting later (rV (ak)).

Proposition 5 partly defines the replanting boundary, whose description will be com-

pleted in Proposition 6. Figure 3 represents that boundary, which applies at relative

prices lower than θ0, together with the higher and lower switching boundaries defined in

Propositions 3 and 4, which apply at relative prices above θ0. These three boundaries

look like a saw with its teeth upward. The body of the blade corresponds to situations

where it is optimal to wait before harvesting and the upper side of the blade (the teeth)

correspond to optimal harvest ages. The right end sector of the blade corresponds to the

last harvest of Species P , occurring at a relative price above θ0. Relative price-age pairs

(θ, a) grow deterministically along rays such as the dashed line from point θ1. While the

horizontal axis belongs to the blade for θ ≤ θ0, the bottom of the blade is truncated to

the right of θ0 so that P trees younger than indicated by the lower switching boundary

must be cut immediately.

Figure 3 can be given a dynamic interpretation. Since θ grows at rate µ̄, any tra-

jectory over time of a price-age pair (θ, a) can be represented by one of the dotted lines

rising obliquely. On such a trajectory, when trees are cut, a is reset to zero so that

the trajectory starts again rising from the horizontal axis.11 For example, when the

land is bare and the price ϕ is between θ1 and θ0, which corresponds to a point on the

horizontal axis to the left of θ0, a new stand of P trees is planted and is to be harvested

11The trajectories are straight lines because the horizontal units are logarithmic.
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when the trajectory of the (θ, a) pair rising obliquely from that point reaches the higher

switching boundary on segment ā0a0. At that time θ is above θ0 so that the switch to

the alternative use occurs. Similarly, if the initial condition is a point (ϕ, 0) such that

θ2 ≤ ϕ < θ1, the second last harvest is to take place when the (θ, a) trajectory rising

obliquely from (ϕ, 0) hits the replanting boundary on the ā1a1 segment. This signals the

last time P is planted (k = 1).

The key details involved in constructing and interpreting Figure 3 are the following.

Proposition 5 implies the existence of a strictly decreasing12 sequence (θk)k∈N such that,

if the land is bare when the relative price is θ ∈ [θk+1, θk], it is optimal to plant Species

P exactly k + 1 more times before switching to the alternative use. Any possible initial

value ϕ ≤ θ0 then belongs to one of the intervals in conformity with Proposition 5.

Furthermore, if ϕ = θk, then ϕ ∈ [θk+1, θk] and ϕ ∈ [θk, θk−1]; by definition, it is therefore

optimal to plant and harvest Species P indifferently k times or k − 1 times before the

switch to the alternative use. The bounds θk can thus be computed by recurrence,

starting from the value of θ0 defined in Proposition 1. For example, by definition of

θ1, when the relative timber price is equal to θ1 it is equivalent to plant Species P , to

harvest at age R(a1) and then switch to the alternative use, or to harvest at age a1 and

replant the same species one time. Combining this condition of value equivalence with

the characteristics of ak and R (ak) given in Proposition 5 for k = 1 gives the values of

R(a1) and a1, and so on for k = 2, ...∞.

The replanting boundary turns out to be a sequence of alternatively downward seg-

ments ākak and upward segments akāk−1
13 for k = 1, ...,+∞. The upward sloping

segments will be explained shortly. The segment ākak is the image of ak (.) defined in

Proposition 5 when the value of ϕk spans the interval [θk, θ̂k−1], with θ̂k−1 < θk−1. Thus

Point ā1 has coordinates (θ1, a1 (ϕ1)) with ϕ1 = θ1 where a1 (ϕ1) is given by (11a) using

(11b) to substitute for a0 (ϕ0); a0 (ϕ0) is equal to R (ā1) since ϕ0 = θ1 in that instance,

12The index k diminishes as time increases, since k = 0 corresponds to the last harvest of Species P.
The maintained assumption is that θ is increasing over time. Hence the sequence is decreasing in k.
13The strict monotonicity of each particular function ak (.) can be established by recurrence using

(11a) and (11b), starting with a0 (.). A detailed proof is provided in the Proof of Proposition 6.
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as illustrated in Figure 3. Point ā0, for its part, is determined in Proposition 3 as the

left most point on the upper switching boundary.

Let us focus now on the right-hand ends of segments ākak (points such as a1).
14

As Proposition 5.4 indicates that each ākak segment contains af and is strictly down-

ward sloping, it follows that they are necessarily disconnected, with ak < ak−1 for

k = 1, ..,+∞.

On the other hand, it can be shown by contradiction that the forest value function g

must be continuous in both θ and a at each state (θ, a). A discontinuity in the replanting

boundary would cause a discontinuity in g. To ensure the continuity of the replanting

boundary, any two successive downward sloping segments akak and ak−1ak−1 must be

linked by an upward segment akak−1.15

The upward sloping segments of the replanting boundary are not characterized in

Proposition 5. This is because, with the exception of their lowest end, Point a1 for

example, they cannot be reached by any optimal (θ, a) trajectory under the condition

imposed in the Proposition that the land be bare initially. Indeed, consider the upward

sloping segment a1ā0; it can be shown that it lies above the dotted trajectory-line rising

14This will also clarify the meaning of the upwward sloping segments; unlike the downward sloping
segments, these segments are not defined in Proposition 5.
15That the link is an upward sloping segment rather than a vertical line or a backward bending curve

is a logical necessity. A backward bending curve would imply that part of the ākak segment has absissa
exceeding θk (i.e. θ̂k > θk); this would imply that the segment corresponds to both k more harvests
and k − 1 more harvests. A vertical line would imply that the function g is constant in a at ages ak
when the volume function is strictly rising.
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from (θ1, 0) through Point a1 as drawn.
16 An optimum trajectory starting at (θ1, 0)

reaches the boundary at Point a1 whose coordinates are (θ1e
µ̄a1 , a1); a harvest occurs at

that point so that the trajectory is reset slightly to the left of (θ0, 0); its continuation

along an oblique price line reaches the higher switching boundary at Point R (a1) and

thus never reaches the segment a1ā0. Similarly, no optimum trajectory from any initial

point to the left or to the right of (θ1, 0) reaches segment a1ā0, given that it lies above the

price line rising from Point ā1 as assumed. This implies that, on an optimal trajectory

defined by Proposition 5, no harvest takes place when the relative price is strictly inside

the intervals delimited by the abscissas of Points ak and R (āk). In turn this implies

that such portions of the boundary segments as R (ā1) ā0, R (ā2) ā1, ..., are not reached

by any optimal trajectory.

However, allow initial conditions a > 0 that are ruled out in Proposition 5. In initial

configurations such that k ≥ 1 and the initial point is both above the price line rising

from Point ak and below segment akāk−1, the optimal trajectory reaches some point on

Segment ākR (āk−1). For example any trajectory starting at a > a1 and between the

16To prove that segment a1ā0, lies above the price line rising from Point ā1, note that the condition
that defines Point a1, indifference between cutting the current trees at age a1 and plant P for one more
harvest of P , or wait for the current trees to reach age R (ā1) to harvest them and switch to P ′, implies
that g1 (θ1e

µ̄a1 , a1) = g0 (θ1e
µ̄a1 , a1), where gk is the value function defined by (5) when the number of

remaining harvests beyond the current trees is k. Precisely,

g1(θ, a) = max
a0,a1≥a

{
V (a1)e−δ(a1−a) + V (a0)e−δ(a1+a0−a) + c′θe−δ

′(a1+a0−a)
}

(13)

g0(θ, a) = max
a0≥a

{
V (a0)e−δ(a0−a) + c′θe−δ

′(a0−a)
}
. (14)

Trajectories emanating from (θ1, 0) have coordinates (θ1e
µ̄a, a) ; for any value of a such that 0 ≤ a ≤ a1,

the constraint on the choice of a1 in (13) is not binding so that the equality of g1 (θ1e
µ̄a1 , a1) and

g0 (θ1e
µ̄a1 , a1) implies that the same equality holds at any pair (θ1e

µ̄a, a) ; however, when a1 ≤ a ≤
R (ā1) , the constraint a1 ≥ a is binding in (13), implying immediate harvest (a1 = a in (13)) , and
g1 (θ1e

µ̄a, a) < g1 (θ1e
µ̄a1 , a1) ; meanwhile the maximization in (14) remains unconstrained. It follows

that g1 (θ1e
µ̄a, a) < g0 (θ1e

µ̄a, a) for a1 ≤ a ≤ R (ā1). This means that, on the trajectory represented
by the dotted curve above Point ā1, the actions implied by (13) , immediate harvest of existing trees
followed by the establishment of a new crop of P , produce less value than the decision implied by (14),
which is to allow the existing trees to reach age R (ā1). This proves that the boundary that signals
equality between the value implied by immediate harvest and the value implied by allowing further
growth is strictly above the dotted line rising from (θ1, 0) through Point a1 as postulated. Segment
a1ā0 represents such a boundary. On the left of a1ā0 it is preferable to harvest immediately and replant
P . A similar analysis applies to all upward sloping segments ak+1ak, adapting the value equivalence
condition for k = 2, ... as follows: harvesting at age R(āk) is not accompanied by a switch to P ′ as when
k = 1 but involves scheduling one fewer further harvests of P than harvesting at age ak.
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dotted line R (ā1) a1 but below segment a1ā0 hits the boundary on segment R (ā1) ā0. All

other possible initial conditions lead to some state (θ, 0) already covered in Proposition 5,

either because there is immediate harvest (initial state above the replanting boundary)

or because the price trajectory hits one of the akak segments. In other words, the

replanting boundary and the higher switching boundary defined above and represented

in Figure 3 apply to all possible initial conditions.

The above discussion completes the characterization of the replanting boundary a (.).

The results are gathered in the following proposition.

Proposition 6 1. There exists values θk of the relative price such that θk+1 < θk < θ0

and, if the land is bare and θ = θk, it is equivalent to plant Species P repeatedly k

times or k − 1 times before the switch to the alternative use. In the first instance

the first remaining harvest takes place at age ak and price θke
µ ak ; in the second

instance it takes place at age a = R (ak) and price θkeµ R(āk). θk is obtained

implicitly by recurrence by solving for θ the equality of function g (defined by (5))

for n and for n − 1, with a = 0, starting with n = 1 and with an initial value θ0

given by Proposition 1.

2. The replanting boundary a(.) for relative prices below θ0 is continuous and consists

of an infinite sequence of one downward sloping segment akak followed by one

upward segment akak−1, defined on [θk, θk−1], and giving the harvest age as function

of the relative price when the number of times Species P will be replanted before

the switch to the alternative use is k.

3. The upward sloping segments akak−1 are strictly increasing from (θke
µ ak , ak) to

(θk−1, ak−1). They are defined by the condition of equivalence between immediate

harvest followed by k harvest of Species P, or harvest when the current stand

reaches the age indicated on the downward sloping segment ak−1ak−1, followed by

k − 1 more harvests of P .

Proof. Established in the text preceding the Proposition.
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5. Further comments

Propositions 5.4 and 6.3 indicate that the optimal harvest age before the switch may be

higher or lower than Faustmann’s rotation, but in a very precise way: if it is higher than

Faustmann’s rotation at one harvest, it is higher than Faustmann’s rotation at all har-

vests before the switch, and is furthermore increasing at each harvest by Proposition 6.4.

Vice versa if it is once lower than Faustmann’s rotation, it is lower than Faustmann’s

rotation at all harvests and decreasing from one harvest to the next one. Thus, while the

optimum harvest age is defined on downward sloping parts of the replanting boundary or

on the downward sloping switching boundary, successive harvest ages are not necessarily

diminishing as price increases. As a matter of fact, successive harvests may optimally

take place at a constant age, which further equals Faustmann’s rotation 17. According

to Proposition 5.4 this happens if and only if, as k diminishes over time from n to zero,

the trees reach that age precisely each time the relative price reaches θfk. This is so if

and only if the initial state is
(
ϕf , 0

)
.

Figure 3 shows that a situation where P trees are cut before financial maturity to

be replaced by the alternative use cannot occur as the continuation of an optimum

program. Indeed, since the oblique dotted lines from the horizontal axis represent the

price age trajectories, trees of Species P that reach any relative price-age combination

corresponding to a point below the lower switching boundary must have been planted

when the relative price was higher than θ0, in violation of Proposition 1. In other words,

points below the lower switching boundary (below the body of the blade on the right-

hand side of θ0) can be conceived of only as initial states, not as resulting from previous

optimum decisions.

The same argument implies that the right-most point on the upper switching bound-

ary that can be reached as the continuation of an optimum program involving an initially

17These properties, proved in 6, are illustrated graphically in Figure 1:
a1 < af ⇐⇒ R (a1) < a1 < af ,
a1 > af ⇐⇒ R (a1) > a1 > af ,
R (a) = a ⇐⇒ a = af .
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bare land and an initial price θ < θ0 is the point labeled R (a1), to the left of Point a0.

This is so because the right-most point of the segment [a1, a1] corresponds to a last

plantation of P trees, at price θ1e
rµ̄ a1 ; Point R (a1) signals the harvest of these trees.

Another implication of Proposition 6 illustrated in Figure 3 is that the longest possi-

ble rotation a0, which may occur only if the switch to the alternative use takes place at

price θ0, cannot be observed as the continuation of an optimum trajectory. It can occur

only if the initial state, inherited from an irrational past, is precisely Point (θ0, a0).

Consequently, if trees P have been planted rationally for at least one rotation then the

highest possible switching age is R(a1) < a0 and the lowest is R(a1) > a0. Similarly, if

trees P have been planted rationally for at least two rotations then the highest possible

switching age is R2(a2) < R(a1) < a0 and the lowest is R2(a2) > R(a1) > a0, etc.

Hence, the longer trees P have been planted rationally, the closer the switching age to

the Faustmann rotation.

6. Conclusion

We have extended the conventional forestry economics model to include two alternative

tree species in a dynamic environment. This entails more sophisticated planting and

harvesting decisions than had been considered before. When the decision maker has the

opportunity to exploit the forest land for an indefinite time, she must decide at what age

the current stand should be harvested and whether the same species should be replanted,

or the alternative should be adopted. We have characterized explicitly the land and stand

value functions and the optimal management strategy that apply when each species has

its own, non stochastic, growth function and when the unit prices of the species and of

its alternative grow at some specific exponential rate. Starting from a situation where

the price that grows more slowly is initially high, so that the corresponding species, say

Species P , is initially to be exploited, the relative price of the alternative species P ′

gradually increases so that it becomes desirable to replace P with P ′ at some point in

time. We have shown that the second phase is equivalent to a situation where only one

species is available as in any standard Faustmann model with exponentially rising price.
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In the initial phase, the situation is completely different. The model with two species

does not reduce to a time autonomous problem as the conventional Faustmann model,

and its solution does not reduce to a single optimal rotation.

The species whose price is high but growing more slowly is harvested and replanted

repeatedly for a finite number of rotations before the switch to the alternative species.

The optimal harvest age is generally different from one harvest to the next and depends

on the prices of both species despite the fact that the harvest value does not depend on

the price of the alternative directly.

The solution is described in the state space by boundaries giving the optimal harvest

ages as functions of relative prices. The boundaries differ when the harvest is followed

by replanting of the same species rather than by a switch to the alternative species.

Furthermore, at relative prices above the switching price but lower than some higher

threshold, there is a lower boundary indicating that trees should be allowed to reach

the upper boundary provided they are already big enough; otherwise they should be

cut immediately and replaced with the alternative species. More specifically, under well

known assumptions where the one-species Faustmann rotation is independent of price, we

showed that the boundaries, whether the replanting boundary or the switching boundary,

are locally decreasing with respect to the relative price of timber. However, when Species

P has the most attractive price and is replanted after each harvest, the replanting

boundary is discontinuous, with a sawtooth shape, so that each of its downward sloping

segments entails the possibility of a harvest at age af , the Faustmann rotation. In fact

we showed that depending on the initial relative price and age of the trees, successive

harvests occur at progressively higher ages, all above af or at progressively lower ages,

all below af , until the switch to Species P ′.

Surprisingly, although there exists a critical price at which the manager would be

indifferent between planting either species when the land is bare, the land must not

be bare when that price is reached. If both the land is bare and the price is at that

threshold, the harvest sequencing problem must be at its initial state. We also showed

that the switching age is closer to the Faustmann rotation when the trees have been
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planted rationally for a longer period.

The model can be readily extended to include positive planting costs as is often

done in Faustmann models. Contrasts with the one species model would not be as

sharp because one species models with positive planting costs imply that the optimum

rotation depends on the price. Furthermore the algebra would be more involved because

the homogeneity of the value function would be lost so that one could not replace

individual timber prices by a unique relative price to describe the harvest boundaries in

a two-dimensional plane.

The model also describes the conditions of a switch of land use from forestry (the

first species) to some alternative use. Indeed, since the second species was shown to be

exploited as in a single species Faustmann model, the value of the land after the switch

is described as the solution of a time autonomous problem whether it remains allocated

to forestry or to some alternative use. In particular our results imply that there is a

price of timber relative to the value of the alternative use at which, if the land is bare,

it is equivalent to plant timber or to switch to the alternative use immediately. We have

shown that switching from timber exploitation to the alternative use when that relative

price is reached would be premature if the land were not already bare.

For further research, the model might be extended to involve stochastic timber prices.

The solution would also involve harvest boundaries conditional on the species in place.

Unlike the certain exponential prices used in this paper, stochastic prices would possibly

allow multiple switches from one species to the other.
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7. Appendix

Proof of Proposition 1

Proof. The set of θ > 0 for which it is optimal to plant P is not empty as for

θ suffi ciently low, it is optimal to plant P . This set is bounded as it is optimal to

plant P ′ for θ suffi ciently high. Being not empty and bounded, the set of θ > 0

for which it is optimal to plant P has a finite maximum θ0. The unicity of θ0 re-

sults from continuity. At θ = θ0, the manager by definition is indifferent between

planting P ′ forever or planting P for just one rotation of duration a0; consequently,

c′θ0 = maxs
[
V (s)e−δs + c′θ0e

−δ′s] where a0 = arg maxs
[
V (s)e−δs + c′θ0e

−δ′s]. The

first-order condition for this maximization problem is equivalent to Equation (7b). The

second-order condition is Ka(a0) − µK(a0) < 0, satisfied for a0 > a. The first-order

condition, together with c′θ0 = V (a0)e−δa0 + c′θ0e
−δ′a0 , gives Equation (7a) that allows

to determine a0 unambiguously whereas (7b) determines θ0. As
Va(a)
V (a)

is decreasing on

[a,+∞[ and lima→a
Va(a)
V (a)

= +∞ then a0 > a. Faustmann’s rotation af is determined by

Equation (3a), which is equivalent to Va(af )

V (af )
= δ+ δ

e
δaf−1

. As for any a > 0, δ
eδa−1

< δ′

eδ
′a−1

then Va(af )

V (af )
<

Va(a0)

V (a0)
, which implies a0 < af .

Proof of Proposition 2

Proof. When the current price of Species P is p and θ ≤ θ0, it is optimal to

plant Species P . According to Equation (6), the reduced land value function is f(θ) =

maxs≥0 e
−δs [V (s) + f(θs)] where s is replaced by 1

µ′−µ log( θs
θ

) to obtain the first line on

the right-hand side of Expression (8). For θ ≥ θ0, it is optimal to plant Species P ′

forever; therefore the reduced land value function is c′θ.

Proof of Proposition 3

Proof. Consider a stand of P characterized by (θ, a) with θ ≥ θ0 and a ≥ 0. Exis-

tence is shown by construction. The maximization problem ismaxs≥0

[
V (a+ s)e−δs + c′θe−δ

′s
]

whose first-order condition for an interior solution is equivalent to K(a + s) = c′ δ
′

δ
θeµs
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whereas the second-order condition is Ka(a + s) − µK(a + s) < 0; the solution is in-

terior when a + s ∈]a, aw[. Therefore, the upper boundary a+(θ) is the solution to

K(a+(θ)) = c′ δ
′

δ
θ. The proof of monotonicity is immediate as K(a) is strictly decreasing

in a. The highest value of θ compatible with a ≥ a defines θ withK(a) = Va(a)
δ

= δ′

δ
c′θeµa

or Va(a) = δ′c′θeµa. The highest value of a compatible with θ ≥ θ0 is a0 where a0 < aw

as K(a0) = c′ δ
′

δ
θ0 > K(aw) = 0.

Proof of Proposition 4

Proof. Existence is shown by construction. Assume that a ∈ [0, a] so that the

maximization of the current forest value has an interior solution. The set of pairs

(θ, a) for which the decision maker is indifferent between harvesting immediately to earn

p [c′θ + V (a)], or harvesting after a time period s that maximizes e−rs[psV (a+ s) + c′p′s],

defines the lower switching boundary of the waiting region. It is characterized as the

set of pairs (θ, a) that solve c′θ + V (a) = e−δsV (a + s) + e−δ
′sc′θ, where V (a) = 0, and

Equation (10b), K(a + s) = δ′

δ
c′θeµs, with a ≤ a + s ≤ a0 as harvesting later will take

place at (θeµs, a + s) on the upper switching boundary where a + s is the age at which

the trees will be cut if they are not cut immediately, and a is their age on the lower

boundary. Pairs (θ, a) below or to the right of the lower boundary command immediate

harvest; while pairs above the lower boundary but below the upper boundary belong to

the continuation region. The two last equations lead to Equation (10a).

For a given age a ∈ [0, a] and for s ∈ [a−a, a0−a], Va(a+s)
V (a+s)

decreases in s from infinity

to Va(a0)

V (a0)
whereas δ + δ′

eδ′s−1
decreases in s from a finite positive value δ + δ′

eδ
′(a−a)−1

to

δ+ δ′

eδ
′(a0−a)−1

> δ+ δ′

eδ
′a0−1

=
Va(a0)

V (a0)
where the last equality follows from (7a). Therefore,

for any a ∈ [0, a], there exists a unique s(a) ∈ [a−a, a0−a] such that Va(a+s)
V (a+s)

= δ+ δ′

eδ′s−1
.

Given a and s (a), the equationK(a+s) = δ′

δ
c′θeµs in Proposition 4 determines θ, denoted

θ(a). Let us show that θa(a) > 0. Differentiate
(
1− e−δ′s

)
c′θ = e−δsV (a+s) with respect

to a to obtain δ′e−δ
′sc′θsa +

(
1− e−δ′s

)
c′θa = −δe−δsV (a+ s)sa + e−δs(1 + sa)Va(a+ s)

or
(
1− e−δ′s

)
c′θa = −δe−δsV (a + s)sa + e−δs(1 + sa)Va(a + s) − δe−δssaK(a + s). As

K(a+ s) = Va(a+s)
δ
−V (a+ s) equals δ′

δ
c′θeµs then

(
1− e−δ′s

)
c′θa = e−δsVa(a+ s) which
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implies that θa(a) > 0.

The pair (θ0, 0) satisfies the condition in Proposition 4 with s = a0 and a = 0. The

pair (θ, a) satisfies this condition with s = 0 and a = a. The lower switching boundary

a−(θ) is then a strictly increasing curve in the plane (θ, a) stretching between (θ0, 0) and

(θ, a).

Proof of Proposition 5

1, 2, and 3. Consider the maximization problem (5) g(ϕ, 0) = maxa0,...anW (ϕ, an, ..., a0)

where W (ϕ, an, ..., a0) denotes V (an)e−δan + ... + V (a0)e−δ(an+...+a0) + c′θe−δ
′(an+...+a0).

The n + 1 first-order conditions are Va(ak)e−δ(ak+...+an) − δ
∑k

i=0 V (ai)e
−δ(ai+...+an) −

δ′c′ϕe−δ
′(a0+...+an) = 0 for k = 0, ..., n. We show further below that the second-order

condition is also satisfied. This set of n+ 1 equations can be equivalently simplified into

another set of n+1 equations obtained by keeping the first-order condition for k = 0, and

for k = 1, ..., n, substituting the kth first-order condition for the equation obtained by

subtracting the (k−1)th first-order condition from the kth one. This transformation leads

to the following equivalent set of n+1 equations: Va(a0)−δV (a0)−δ′c′ϕeµ(an+...+a0) = 0 or

K(a0) = δ′

δ
c′ϕ0 where ϕ0 = ϕeµ(an+...+a0), i.e. Equation (11b), and Va(ak)e−δ(an+...+ak) −

δV (ak)e
−δ(an+...+ak) = Va(ak−1)e−δ(an+...+ak−1) or K(ak) = L(ak−1) for k = 1, ..., n, i.e.

(11a). As L is strictly decreasing, it can be inverted; thus ak−1 = R(ak) where R =

L−1◦K for k = 1, ..., n. Equation (11a) links any rotation ak on the replanting boundary

with the next rotation ak−1 for k = 1, ...,+∞, whereas Equation (11b) allows to compute

rotation a0.

4. Both functions K and L are decreasing and intersect at af ; furthermore, K is more

steeply downward sloping than L. Consequently, as illustrated in Figure 1, successive

rotations ak and ak−1 satisfy ak = ak−1 = af , or af < ak < ak−1, or af > ak > ak−1.

As af satisfies R(af ) = af , then the pair (θfk, af ) with θfk =
K(af )

δ′
δ
C′e(k+1)µaf

satisfies

equations 11a for k = 1, ...,+∞ and satisfies equation 11b for k = 0; consequently, it

belongs to the harvest boundary ak(.) for k = 0, 1, ...,+∞. Equivalently, if ϕ = θfk then

ak = af ∀ k.
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Second-order condition for problem (5). To show now that the second-order condi-

tion is satisfied, we will show that the Hessian matrix
[
∂2W
∂ai∂aj

]
1≤i,j≤n+1

associated with

W (ϕ, an, ..., a0) is twice continuously differentiable with respect to (an, ..., a0) and is neg-

ative definite on ]a,+∞[n+1. To do so, we will show that its leading principal minor of

order k has the sign of (−1)k for k = 1, ..., n+ 1.

First determine Wkk = ∂2W
∂ak∂ak

for 1 ≤ k ≤ n + 1, and Wkl = ∂2W
∂al∂ak

for l such that

k < l ≤ n+ 1:

Wkl = −δVa(ak)e−δ(ak+...+an) + δ2∑k
i=0 V (ai)e

−δ(ai+...+an) + δ′2c′ϕe−δ
′(a0+...+an)

Wkk = Vaa(ak)e
−δ(ak+...+an)−δVa(ak)e−δ(ak+...+an)−δVa(ak)e−δ(ak+...+an)+δ2∑k

i=0 V (ai)e
−δ(ai+...+an)+

δ′2c′ϕe−δ
′(a0+...+an). Note that Wkk = Wkl + δe−δ(ak+...+an)Ka(ak).

Let us first show that Wkl is independent of k and l, and that Wkl < 0:

Wkl = −δVa(ak)e−δ(ak+...+an) + δ2∑k
i=0 V (ai)e

−δ(ai+...+an) + δ′2c′ϕe−δ
′(a0+...+an), where

δ′c′ϕe−δ
′(a0+...+an) = Va(ak)e

−δ(ak+...+an)−δ
∑k

i=0 V (ai)e
−δ(ai+...+an) from Equation (12),

then

Wkl = −δVa(ak)e−δ(ak+...+an) + δ2∑k
i=0 V (ai)e

−δ(ai+...+an)

+δ′
[
Va(ak)e

−δ(ak+...+an) − δ
∑k

i=0 V (ai)e
−δ(ai+...+an)

]
= −µVa(ak)e−δ(ak+...+an) + δµ

∑k
i=0 V (ai)e

−δ(ai+...+an)

= −δµe−δ(ak+...+an)K(ak) + δµ
∑k−1

i=0 V (ai)e
−δ(ai+...+an)

Using the first-order conditions K(ak) = L(ak−1), we obtain

Wkl = −δµe−δ(ak+...+an)L(ak−1) + δµ
∑k−1

i=0 V (ai)e
−δ(ai+...+an)

Wkl = −δµK(ak−1)e−δ(ak−1+...+an) + δµ
∑k−2

i=0 V (ai)e
−δ(ai+...+an)

We continue so and show that Wkl = −δµe−δ(a0+...+an)K(a0) < 0 as µ > 0 and

K(a0) > 0.

Denote Wkl = β < 0 and αk = δe−δ(ak+...+an)Ka(ak) < 0 then Wkk = αk + β. The kth

leading principal minor is therefore:

Hk(α1, ..., αk, β) =

∣∣∣∣∣∣∣∣
α1 + β β ... β
β . ... .
. . ... .
β β ... αk + β

∣∣∣∣∣∣∣∣, for k = 1, ..., n + 1. By subtracting

the second line from the first one and then developing the minor along the first line, we
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obtain

Hk(α1, ..., αk, β) =

∣∣∣∣∣∣∣∣
α1 −α2 ... 0
β α2 + β ... β
. β ... .
β β ... αk + β

∣∣∣∣∣∣∣∣
= α1Hk−1(α2, ..., αk, β) + α2

∣∣∣∣∣∣∣∣∣∣
β β ... . β
β α3 + β ... . .
. β ... . .
. . ... αk−1 + β β
β β ... β αk + β

∣∣∣∣∣∣∣∣∣∣
To compute the determinant, subtract its second line from its first one to obtain:

Hk = α1Hk−1(α2, ..., αk, β) + α2α3

∣∣∣∣∣∣∣∣
β β ... β
. α3 + β ... .
. . ... .
β β ... αk + β

∣∣∣∣∣∣∣∣
= α1Hk−1(α2, ..., αk, β) + α2α3...αk−1

∣∣∣∣ β β
β αk + β

∣∣∣∣, and then,
Hk(α1, ..., αk, β) = α1Hk−1(α2, ..., αk, β) + βα2α3...αk (15)

Now, it is possible to show recursively that the kth leading principal minor has the

sign of (−1)k. Indeed, the proposition in true for k = 1 as H1(α1, β) = α1 + β < 0,

and true for k = 2 as H2(α1, α2, β) = (α1 + β)(α2 + β)− β2 = α1α2 + (α1 + α2) β > 0.

Assume now that the leading principal minor of order k− 1, 2 6 k 6 n+ 1, has the sign

of (−1)k−1, then Hk−1(α2, ..., αk, β) has the sign of (−1)k−1 and α1Hk−1(α2, ..., αk, β) has

the sign of (−1)k as α1 < 0. As βα2α3...αk has the sign of (−1)k too, then according

to Equation (15), the kth leading principal minor Hk(α1, ..., αk, β) has the sign of (−1)k.

We conclude that the second-order condition for problem (5) is satisfied.
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