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Résumé/abstract  
 

Data revisions in macroeconomic time series are typically studied in isolation ignoring the joint 

behaviour of revisions across different series. This ignores (i) the possibility that early releases of 

some series may help forecast revisions in other series and (ii) the problems statitical agencies may 

face in producing estimates consistent with accounting identities. This paper extends the Jacobs and 

van Norden (2011) modeling framework to multivariate data revisions. We consider systems of 

variables, where true values and news and noise can be correlated, and which may be linked by one or 

more identities. We show how to model such systems with standard linear state space models. We 

motivate and illustrate the multivariate modeling framework with Swiss current account data using 

Bayesian econometric methods for estimation and inference. 
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1 Introduction

Data revision has become an increasingly important field of macroeconomic

research in recent years, spurred in part by the creation of major databases of

original release data for the US and other major OECD economies. Croushore

(2011) provides a survey of the modern literature. Data revisions in indi-

vidual time series are typically studied in isolation ignoring information in

other related series. Zadrozny (2008), Jacobs and van Norden (2011) and

Cunningham et al. (2012) are recent examples of univariate data revision

models.

Many official statistics are however jointly produced by statistical agen-

cies, calling for multivariate approaches. Such approaches should allow for

• several variables to have underlying factors for each variable (as in the

Illustration shown in this paper), or a single underlying factor (as e.g.

in the data reconciliation literature initiated by Stone, Champernowne

and Meade (1942));1

• the distinction of news, i.e. revisons are not forecastable, and noise, i.e.

revisions are forecastable;

• new information causing simultaneous revisions in several variables;

• true values to be correlated across variables;

1Recent contributions to this area include Fixler and Nalewaik (2009) and Aruoba et
al. (2012, 2013).
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• true variables of different variables to be linked via accounting identities

/ linear constraints.

This paper extends the Jacobs and van Norden (2011; henceforth JvN)

modeling framework to systems of variables allowing for true values and news

and noise measurement errors to be correlated across variables. In contrast

to the multivariate approaches of Patterson (2003), who models the most

recent observations from vintages rather than different vintage estimates for

an observation, and Clements and Galvão (2012), who consider vintage-based

VAR models that cannot deal with news or noise (Hecq and Jacobs 2009),

it can incorporate all aspects listed above. Closest to our study is Kishor

and Koenig (2012), who use a completely different approach. We further

deviate from the existing literature on modeling multivariate data revisions

by allowing for adding-up constraints and explicitly taking into account the

possibility that shocks to true values, news and noise can be correlated.

We will—partly—illustrate our method with a real-time Swiss current

account data set, updated from the one studied by Jacobs and Sturm (2008),

and adjusted for comprehensive revisions. We estimate the parameters of our

state-space model using Bayesian econometric methods, similar to those of

Aruoba et al. (2012, 2013) and Schorfheide and Song (2012), and show that

a multivariate model of true values outperforms univariate models of exports

and imports. Implementation of correlated news and noise shocks is left for

future research.

The paper is structured as follows. Section 2 briefly discusses data re-
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visions and their properties. Section 3 presents our multivariate state-space

model, while Section 4 describes our Bayesian estimation methods. Section 5

illustrates our multivariate framework with Swiss current account data. Sec-

tion 6 concludes.

2 Data revisions

Real-time data are typically displayed in the form of a data trapezoid. We

move to later vintages as we move across columns from left to right and we

move to later points in time when we move down the rows. Note that the

frequency of vintages need not necessarily correspond to the unit of observa-

tion; for example, in our Illustration below the statistical agency publishes

monthly vintages of quarterly observations. In this paper it is more conveni-

ent to work with releases, i.e. diagonals of the data trapezoid. Therefore we

use the following notation in this paper: superscripts refer to releases, while

subscripts refer to periods. Hence, z1t is the first release for variable z in

period t.

Three types of data revisions can be distinguished:

1. initial revisions in the first few vintages,

2. annual (seasonal) revisions due to updated seasonal factors and the

confrontation of quarterly with annual information, and
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3. historical, comprehensive or benchmark revisions, related to changes in

e.g. statistical methodology.

Initial and seasonal revisions are regular and recurring, i.e. can in principle

be modelled and forecast. Historical revisions are much more difficult to

handle. Redefinitions like changes of base years do not cause many diffi-

culties; however, methodological changes are much more difficult to handle.

The distinction of revisions into these types requires careful handling of the

real-time data and in many cases direct access to the officials of the stat-

istical agency. Our model is intended for regular, initial revisions; in our

Illustration below we adjust for the latter type of revisions. For details see

Section 5.1 below.

Many official statistics are jointly produced by statistical agencies. There-

fore true values, and news and noise measurement errors may be correlated

across variables. Identities linking variables will also cause measurement er-

rors to be correlated across them. To deal with revisions in more than one

variable, a multivariate model is required, to which we now turn to.

3 Our Multivariate State-Space Model

Our multivariate state-space model follows Durbin and Koopman (2001):

measurement equation yt = Zαt + εt (1)

transition equation αt+1 = Tαt +Rηt. (2)
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In the JvN framework the data vector yt consists of l different releases yit, i =

1, . . . l for observation t. To analyse data revisions in an N -dimensional data

vector, we stack l releases of the N variables (first by release then by variable)

in the Nl × 1 data vector yt. So, the dimensions of the variables and error

terms in the state-space form are as follows: yt is Nl × 1, αt is Nm× 1, ηt

is Nr × 1. Without loss of generality we include the measurement error εt

in the state vector and assume ηt ∼ N(0, INm).

Our modeling framework is quite general and capable of handling quite

complex structures. For ease of exposition, we begin with a simple state-space

structure that ignores measurement errors and then show how successive

features may be added to the model. Readers already quite familiar with

the univariate data revision model of JvN may simply note that we stack

those univariates models into a multivariate framework and skip ahead to

the discussion of data reconcilation and factor structures, and correlated

shocks.

True values

To help fix notation, we begin by ignoring data revision and focusing on the

dynamics of our time series. In this simple case, l = 1 so we simply have

a single observed series of observations on each of our N variables. In that

case, yt is N × 1; αt = [y′,φ′t]
′
, which is (N +Nb)× 1, so that φt is Nb× 1;

and Z =

[
IN 0N×Nb

]
, which is N ×N (b+ 1).
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The dynamics of yt are uniquely determined by φt through (2). For

example, if φt is (N · k)× 1 and contains the first k lags of each element of

yt, then yt is VAR (k + 1). Alternatively, if φt instead contains the first k lags

of each element of ηt, then yt is a VMA (k + 1) . Those dynamics will in turn

define (2) and the T matrix; in the case of the VAR (k + 1) model mentioned

above, T is simply our matrix of autoregressive coefficients andR determines

the covariance matrix of our error termsRR′ . Suitable definition of φt allows

us to model a broad range of stationary and nonstationary vector processes;

Harvey (1989) provides a wide array of examples including models of trend-

cycle decompositions. In our Illustration below, we employ autoregressive

processes (AR(2) and VAR(2)) for the dynamics of the true values.

When we consider data revisions, we distinguish between “true” values

of yt and estimates (of various releases) published by statistical agencies. In

what follows below, therefore, we will replace yt in the state vector αt with

ỹt and several other features of (1) and (2) will change. However, the role of

φt will not; its only purpose is to capture the dynamics of the “true” values.

3.1 Adding noise

The simplest way to model data revisions is to assume that published series

yt consist of “true” values ỹt plus error. In this case, l ≥ 1 and in (1) yt is

now Nl × 1, where the first l rows contain the releases of the first variable

from y11t through yl1t, the next l rows contain y12t through yl2t , etc.; ỹt is

N × 1; φt remains Nb × 1; ζt is N × l and contains the measurement error
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associated with each corrresponding element of yt; αt =
[
ỹ
′
t,φ

′
t, ζ
′
t

]′
, which is

(N +Nb+Nl)×1 = N (l + b+ 1)×1; andZ =

[
IN ⊗ ιl 0Nl×Nb IN ⊗ ιl

]
,

which is Nl ×N (l + b+ 1).

We may now write (2) more explicitly with

• T =

 Tφ 0N(b+1)×Nl

0Nl×N(b+1) TNoise

 , where Tφ is N (b+ 1)×N (b+ 1) and

so is conformable with [ỹ′,φ′t]
′
. Its elements are precisely those which

we would have in the above case where only true values are observed.

TNoise is Nl × Nl and so is conformable with ζt. TNoise = 0Nl×Nl

implies that measurement errors are independent across different cal-

endar dates, while TNoise 6= 0Nl×Nl implies that measurement errors in

adjacent periods will be correlated.2

• R =

 Rφ 0N(b+1)×Nl

0Nl×N RNoise

 where Rφ is N (b+ 1)×N (b+ 1). Its ele-

ments are precisely those which we would have in the above case where

only true values are observed. RNoise is Nl×Nl. Its elements are pre-

cisely those which define the variance-covariance matrix of the meas-

urement errors across releases. In the special case where measurement

errors are uncorrelated across variables, this will be a block-diagonal

matrix with N blocks of size l × l.
2In principle, we could allow for higher-order correlation in measurement errors across

calendar time by stacking multiple lags of ζt into the state vector.
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• ηt =

[
η̃′t

(
ηNoiset

)′]′ where η̃ is N (b+ 1)× 1 and contains the time t

innovations to the N true values of ỹt; η
Noise
t is Nl × 1 and contains

the time t innovations for all the measurement errors in yt.

A common source of confusion in models of data revisions is distinc-

tion between correlations across releases (or vintages) and correlations across

time. If the statistical agency tends to revise its initial estimates upwards

over the course of several releases, then measurement errors are correlated

across releases ; successive releases tend to have negative measurement errors.

On the other hand, if once a year the agency incorporates information from

annual income tax returns and tends to revise all the quarterly or monthly

estimates for the preceding year in the same direction, then measurement

errors are correlated across time. Following JvN, we define yt to group all

the various releases (for 1, . . . , l) for a given point in time t. This implies

that the R matrix captures correlations across releases while the T matrix

captures correlations across time.

If we think that successive revisions tend to improve the reliability of

published series by tending to reduce measurement errors, we can incorporate

this through further restrictions on RNoise. For example, in the simplest case

where RNoise is diagonal, we could require that in each of our N blocks of l

releases, i < j ⇐⇒ σk,i > σk,j ∀k where σk,n is the diagonal entry in RNoise

corresponding to the nth release of the kth variable.

The block-diagonal forms of R and T imply that measurement errors are
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independent of the true values ỹt. This is sufficient to ensure that meas-

urement errors will be noise. However, when measurement errors are news,

they must be correlated with ỹ, which in turn will require the introduction

of some off-diagonal elements as we will see in the next section.

3.2 Adding news

3.2.1 News versus noise

The modeling of measurement errors has two main traditions. The older and

most widespread approach models measurement errors as noise; i.e. random

errors which are orthogonal to true values (ỹt). This implies for all releases

i and for the ith release of a single variable yit that

yit = ỹt + ζ it, cov(ỹt, ζ
i
t) = 0. (3)

This is precisely the case we saw above. The newer tradition, motivated by

Mankiw, Runkle and Shapiro (1984), Mankiw and Shapiro (1986) and de

Jong (1987), describes measurement errors as news. News errors imply that

published data are optimal forecasts, so revisions are orthogonal to earlier

9



releases and are not forecastable.3 More precisely, we require that

ỹt = yit + νit, cov(yit, ν
i
t) = 0. (4)

Of course, a direct implication of this last condition is that cov(ỹt, ν
i
t) 6= 0.

Furthermore, if the information available to the statistical agency increases

through time, the variance of the measurement errors νit must be decreasing.

Since var (ỹt) is given, decreases in var (νit) imply an offsetting increase in

var (yit). This is precisely the opposite of the noise case, where decreases

in var
(
ζ it
)

imply a corresponding decrease in var (yit). cov(yit, ν
i
t) = 0 also

implies that news νit will be positively correlated with innovations in ỹt. We

accommodate this by adding off-diagonal elements to R.

3.2.2 A model of news

If measurement errors are news rather than noise, the only change required

to the “noise” state-space model that we considered above is in R. However,

to avoid confusion we will relabel the following elements without changing

their dimensions: TNoise will be renamed TNews; ζt will be renamed νt and

partitioned as νt =

[
ν̃ ′t

(
νNewst

)′]; and Rφ will now be partitioned so that

3Sargent (1989) motivates this by modeling the statistical agency as solving a mean-
squared error estimation problem by linearly projecting the variables they seek to estimate
on the set of available information. As more information arrives, estimates become more
precise. However, analogous to the case of rational expectations, data revisions will be
unpredictable given the information used to construct the original estimates.
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Rφ =

[
R′φ1 R′φ2

]′
with the first of its N rows in Rφ1 and the remaining Nb

rows in Rφ2.

Also, whereas previouslyR =

 Rφ 0N(b+1)×Nl

0Nl×N(b+1) RNoise

, we now redefine

R as

R =


Rφ1 RNews

Rφ2 0Nb×Nl

0Nl×N(b+1) −U · diag(−→σ ν)

 (5)

where

• −→σ ν ≡ [σν1, σν2, . . . , σνNl]
′ is a Nl × 1 vector containing the standard

deviations of news shocks for every release and every variable; the first

l entries contain the news shocks for releases 1 through l of variable 1,

then next l entries contain the news shocks for variable 2, etc.;

• RNews = (IN ⊗ ι′l) ·
−→σ ν , an N × Nl matrix; which is block diagonal,

with N blocks each consisting of a row vector of length l; the jth block

contains the standard deviation of the l news shocks for variable j;

• Ul is a l× l matrix with zeros below the main diagonal and ones every-

where else;

• U ≡ IN ⊗Ul is a Nl ×Nl matrix;

• diag(−→σ ν) is a Nl×Nl matrix with −→σ ν on its main diagonal and zeros

everywhere else.
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The effect of RNews is that it accumulates, for each of the N variables,

all the l different news shocks and adds them to the innovations affect-

ing that variable’s true values ỹit. This off-diagonal matrix thereby ensures

that revisions will be correlated with innovations to true values. In con-

trast, −U · diag(−→σ ν) then removes some or all of these innovations from

the various releases, with earlier releases having more information removed.

This means that there is no need to impose restrictions on the elements of

[σν1, σν2, . . . , σνNl] in order to ensure that later releases are more precise or

more volatile than earlier releases. Since later releases contain more of the

shocks to true values than earlier releases, this also ensures that revisions

will tend to be positively correlated with true values, as we discussed above.4

In news models, note that for each variable the number of free parameters

inR grows linearly with the number of releases l, whereas with noise models it

may grow proportional to l2. This simply reflects the fact that the assumption

of news imposes more restrictions on the behaviour of data revisions than

does the assumption of noise.

3.3 A model of news and noise

A common empirical finding is that data revisions appear to be neither pure

news nor pure noise. We therefore allow for revisions to be the sum of both

4Dungey et al. (2013b) discuss how the shock correlations imposed in the state-space
representation of news shocks relate to the state-space representation of the Beveridge-
Nelson decomposition, while Dungey et al. (2013a) note that such shock correlations
imply that the “smoothed” estimates of the true values ỹt produced by usual Kalman
filter recursions will be more variable than the corresponding “filtered” estimates.
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news and noise components. This is done by expanding the state vector to

contain both types of measurement errors and conformably expanding the

rest of our system matrices. Our the state vector αt then becomes

αt = [ỹ′t,φ
′
t,ν
′
t, ζ
′
t]
′
, (6)

where the definitions are as above and the four components are of length N ,

Nb, Nl and Nl respectively. We conformably partition

Z =
[
Z̃,0Nl×Nb, INl, INl

]
(7)

where Z̃ = IN ⊗ ιl; as before, this is a Nl×N block-diagonal matrix with a

vector of l ones on the main diagonal. The measurement equation (1) then

simplifies to

yt = Zαt = ỹt + νt + ζt = ‘Truth’ + ‘News’ + ‘Noise’.

Moving on to the Transition equation, we analogously partition matrix

T as

T =


Tφ 0 0

0 TNews 0

0 0 TNoise

 , (8)

where Tφ, TNews and TNoise are as previously defined.
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R becomes a N (1 + b+ 2l)×N (1 + b+ 2l) matrix partitioned as follows

R =



Rφ1 RNews 0

Rφ2 0 0

0 −U · diag(−→σ ν) 0

0 0 RNoise


, (9)

where Rφ1, Rφ2, RNews, RNoise, U and diag(−→σ ν) are as defined above. Fi-

nally, we partition the error vector associated with the transition equation as

ηt =
[
η′et, η

′
νt, η

′
ζt

]′
, where ηet (with length 1+b) refers to errors associated

with the true values, and ηνt and ηζt (both of length l) are the errors for

news and noise, respectively.

In our Illustration in Section 5 below we assume orthogonal news and

noise shocks for the l releases of the N variables in the system. In future

research, we will relax this assumption. Section 3.5 discusses the modeling

of correlated shocks in more detail.

The transition equation assumes that news and noise terms only enter the

dynamic equations for the variables to which they belong, i.e. news shocks

to the first variable enter the the news equation of the first variable in the

system. This is the assumption we make in the Illustration below. More

complex news-noise structures are of course also possible.
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3.4 Data reconciliation and factor structures

All of the above models of data revision have a factor structure which relates

a single underlying true value ỹi,t to a vector of l different releases. Conven-

tional factor models identify the underlying factors by assuming that devi-

ations from the factor are orthogonal to the factor itself. This maximizes the

explanatory power of the underlying factor and also exactly corresponds to

the properties of our “noise” errors. “News” errors represent an alternative

formulation of the factor structure related to Beveridge-Nelson decompos-

itions.5 In both cases we have thus far assumed that we have as many

underlying true values (i.e. factors) as we have distinct series. However, the

framework may also be easily adapted to cases whether this is no longer true.

Economists are sometimes faced with the problem of reconciling conflict-

ing official estimates. For example, current and capital account balances

should add to zero, but measurement problems commonly result in import-

ant differences. Some countries (including the USA) publish distinct estim-

ates of Gross Domestic Product and Gross Domestic Income. Conceptually

these should be identical, but recent work has highlighted some important

differences.6 Other examples include reconciling estimates produced from

different methodologies, such as those produced by surveys and censuses, or

plant-level and firm-level surveys, or household and establishment surveys.

These are situations in which we have fewer underlying true values than we

5See Dungey et al. (2013b).
6See e.g. Fixler and Nalewaik (2009) and Aruoba et al. (2012, 2013).
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have reported series. Co-integration is another example where the number

of factors, in this case common stochastic trends, is less than the number of

series.

More generally, we can think of having N elements in ỹt, but that eco-

nomic theory implies a set of linear restrictions on those values such that

W · ỹt = w

Such restrictions can easily be incorported in standard state-space systems

by augmenting the measurement equation (1) to give

yt
w

 =

Z
W

 ỹt. (10)

This formulation preserves ỹ as a full N -dimension vector which is now

subject to a number of linear constraints. In simple cases, an alternative

formulation would be to reduce the dimension of ỹ and directly incorpor-

ate the factor restrictions in the specification of Z. For example, consider

the case where the last p of our N variables are simply alternative meas-

ures of the same underlying economic concept. In that case, when we con-

struct our Z =
[
Z̃,0Nl×Nb, INl, INl

]
, we can replace Z̃ = IN ⊗ ιl with

Z̃∗ ≡

IN−p ⊗ ιl 0l(N−p)×1

0pl×(N−p) ιpl

. This causes all l releases of the last p variables
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to share the same true values.7 Obviously, this also reduces the dimension

of ỹt from N to N − p + 1, and may (or may not) reduce the dimension of

φt. However, this need not reduce the dimensions of ν ′t or ζ, as the meas-

urement errors affecting each variable will typically continue to be unique to

that series.

Note that in such a system, the news shocks of several variables are all

shared by a single element of ỹt. To the extent that innovations in different

published series are correlated, this means that news shocks must be correl-

ated across variables, a possibility that we have not previously considered.

We discuss the modeling of such systems of correlated shocks in the next

section.

3.5 Correlated shocks

Correlated shocks to true values, news or noise change the variance-covariance

of the innovations Rη in the state equation. We can model this in two

ways: (i) taking aboard the correlation in matrix R to get R+, without

changing the properties of the shocks, i.e. ηt ∼ N(0, INm); or (ii) keeping

the same matrix R and allowing for correlation between the elements of η

through a general variance-covariance matrix Q, i.e. η+
t ∼ N(0,Q). In both

cases the variance-covariance matrix of the innovations becomes Ω+, i.e.

E(R+ηη′(R+)′) = E(Rη+(η+)′R′) = Ω+, which makes the specifications

7A simple extension would the case were we assume that all p variables are the same up

to a p× 1 vector of scaling factors
−→
λ . In that case, we need only replace ιpl with

−→
λ ⊗ ιl.
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observationally equivalent. In our Illustration below, we apply the second

method to deal with correlated shocks in our implementation of our VAR

system of true values.

We now describe how to incorporate news shocks that are correlated

across variables in the matrixR+. More formally, letHj
τ ≡

{
yτjt, y

τ−1
jt , yτ−2jt , . . .

}
be the set of all current and past releases of some scalar time series yjt and

let Hy
τ ≡

{
yτt ,y

τ−1
t ,yτ−2t , . . .

}
be the set of all current and past releases of

some vector time series y whose jth element is yjt. In this context, we may

define “news” in two different ways. We refer to measurement errors as Uni-

variate News if and only if, for some series j, current and past estimates of

the series do not help us predict its future revisions. Mathematically, we may

write this as E
(
yτ+ijt − yτjt|Hj

τ

)
= 0 ∀t, τ , j and ∀i > 0. This is the definition

used above in Section 3.2. A more restrictive case will be called Multivariate

News : in this case the revisions of series j cannot be predicted by current or

past estimates of any of the series in yt. We may define this more formally

as the case where E
(
yτ+ijt − yτjt|Hy

τ

)
= 0 ∀t, τ , j and ∀i > 0.

Note that

• the only difference between Univariate and Multivariate News is the

information set on which we condition the expectations.

• Hj
τ ⊂ Hy

τ . Therefore, if the Multivariate News condition is satisfied,

the Univariate News condition will also be satisfied.

18



• with Multivariate News, news shocks may only be correlated across

variables if they are both shocks to the same release τ .

We now consider the problem of incorporating Multivariate News into our

model. In Section 3.3 above, we specified the final term in the state equation

to have the form



Rφ1 RNews 0

Rφ2 0 0

0 −U · diag (−→σ ν) 0

0 0 RNoise


·


ηet

ηνt

ηζt



Correlated news requires only that we modify the columns of R correspond-

ing to ηνt. This can be done as follows:

• λij ≡ a row vector of length l which captures the comovements of

innovations to the estimates of variable j and variable i. This is a 1× l

vector since the comovement may vary across the l different releases of

the series.

• diag (λij) ≡ a l × l matrix with the elements of λij on its diagonal.

• RNews =


λ11 . . . λ1N

...
. . .

...

λN1 . . . λNN

, a N ×Nl matrix.
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• UNews =



−Ul · diag (λ11) . . . . . . −Ul · diag (λ1N)

0l×l
. . . . . .

...

...
. . . . . .

...

0l×l . . . 0l×l −Ul · diag (λNN)


where Ul is

an l × l upper-triangular matrix of ones (as above).

In future research we will implement this R+ matrix to model correlated

news.

4 Bayesian estimation

To estimate the model we use standard Gibbs sampling methods (Geman

and Geman 1984; Gelfand and Smith 1990; Kim and Nelson 1999). The

Gibbs sampler applied in this paper proceeds as follows. Let Ψ contain all

parameters of the model and U all latent variables. Given arbitrary initial

values Ψ 0 and U 0, draws for Ψ and U are obtained from the following condi-

tional distributions {Ψ 1 ∼ p(Ψ |U 0),U 1 ∼ p(U |Ψ 1)}, {Ψ 2 ∼ p(Ψ |U 1),U 2 ∼

p(U |Ψ 2)}, . . . , {Ψw ∼ p(Ψ |Uw−1),Uw ∼ p(U |Ψw)}. It can be shown that

under mild conditions the resulting Gibbs sequence {Ψw,Uw} converges (in

distribution) to the true joint density at a geometric rate in w (Geman and

Geman 1984). To obtain draws for the latent state variables in U the ap-

proach of Carter and Kohn (1994) is applied (see Kim and Nelson 1999).

The parameters in Ψ are drawn from a multivariate normal distribution and

an inverted Wishart distribution.
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We cycled through 100,000 Gibbs iterations, discarding the first 80,000

draws as burn-in and saving every 10th draw. Convergence was checked using

recursive mean plots of the parameters.

Priors

We begin with the multivariate normally distributed prior for the parameter

matrix T :

Tprior ∼ N(T ,V T ).

For the mean of the parameters we assume that T is an N∗2q vector of zeros,

with N∗ ≡ N + Nb + 2Nl and that the variance covariance matrix V T is

N∗2q×N∗2q identity matrix times τ . For the coefficients where zero restric-

tions are imposed we choose τ to be close to zero. For the VAR coefficients

of the true values of imports and exports we choose τ = 10 for all the other

AR coefficients we choose τ = 1.

The second group of parameters of our state-space form are the para-

meters in the R matrix of the state equation, which enter the model in the

form of the variance-covariance matrix E(Rη+(η+)′R′) = Ω+. Rewriting

Rη+ by putting all parameters in the shocks allows us to draw from the

distributions of the shocks. The prior on the variance covariance matrix of

the shocks in the state equation follows an inverted Wishart distribution and

can be expressed as:

Qprior ∼ IW
(
Q, δ

)
,
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where δ ≡ dim(T ) + 2 and

Q =

Qxy 0

0 IN∗−N

 , (11)

where Qxy is a 2× 2 matrix for the prior of the variance-covariance of errors

of the true values, which is an identity matrix in case of an AR model and

has ones on the diagonal and 0.9 as off-diagonal elements for the VAR of true

values.

5 Illustration

We illustrate our multivariate data revision modeling framework with Swiss

current account data. After a description of the data, we present properties

of data revisions of Swiss imports, exports and the current account, and

evidence of multivariate relationships. We then estimate two alternative

specifications of the model, one assuming AR(2) processes for the true values

of imports and exports whereas the other one assumes a VAR(2) system for

the dynamics of their true values.

5.1 Data and data properties

In Switzerland current account figures are collected by the Swiss National

Bank (SNB) and published in its Monthly Bulletins (‘Statistische Monats-
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hefte’). Current account information is provided for income (exports), ex-

penditures (imports) and net exports (exports minus imports).

Our real-time data set consists of monthly vintages with quarterly data

of these three series. The first vintage, published in August 1995, covers the

1984Q1–1995Q2 period, while our last vintage, published in September 2012,

has data for the 1984Q1–2012Q1 period. Hence, the publication lag is a bit

over one quarter. The data are kindly provided by the Swiss National Bank

(SNB).

We observe comprehensive revisions in the vintages published in August

2004, July 2005, July 2007, July 2008, December 2008. The first two can be

explained by the introduction of SNA93 and ESA95. In all five cases, the

SNB revised the data backward completely, i.e. back to 1984Q1. In order

to mitigate the effects of these comprehensive revisions, most authors would

use growth rates (Croushore 2006). However, as shown by Siklos (2008) and

Knetsch and Reimers (2009), this solution is not optimal as comprehensive

revisions behave differently from other revisions. Therefore, we use levels in

this paper and deal with these comprehensive revisions more directly.

Unlike regular revisions, comprehensive revisions affect the vintage from

the beginning to the end. As described by Jacobs and Sturm (2008) revisions

in Swiss current account data mostly end after a few years and the limited

subsequent revisions can be treated as occasional white noise. To eliminate

the five comprehensive revisions, we extrapolate the revisions of the older
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data (back to 1984) to cover the last few years.8 For this an AR(4) process

is assumed. The part not explained by this extrapolated AR(4) process is

treated as non-comprehensive revisions.

Descriptive statistics

Although once corrected for benchmark revisions we do sometimes observe

some minor revisions in our data after a time horizon of three years, these are

quite rare and—as described by Jacobs and Sturm (2008)—can be treated

as occasional white noise. For practical purposes, we therefore distinguish

between revisions after 3, 12 and 36 months. Table 1 shows that the first

revisions on both the export and import side of the Swiss current account

are relatively small, but tend to accumulate over time. Both expenditures

(imports) and income (exports) are revised upwards on average. With a

cumulative average revision of, respectively 4.2 and 2.6 percent, after three

years, these are not benign for the evaluation of economic conditions in a

small open economy as Switzerland. Except for the first revision the means

reported in Table 1 all differ significantly from zero at the one percent level

(not shown).

News-noise tests, and correlation across time

To test whether revisions reduce noise the Mincer-Zarnowitz (1969) test can

be used, which regresses the revision yjt −y1t on a constant and a more recent

8The observed revision patterns are as such that we extrapolate the last 18, 9, 9, 13
and 10 quarters, respectively, in these five cases.
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Table 1: Descriptive statistics of the revision process

Mean %∆ to 1st rel. Std.Dev. Min Max

Expenditures (imports)
First release 62,364.61 19,689.18 36,512 106,551
Revisions after 1 quarter 452.75 0.7% 1,056.56 -1,099 3,250
Revisions after 1 year 1,740.98 2.8% 2,770.74 -3,480 11,510
Revisions after 3 years 2,609.72 4.2% 3,418.27 -3,372 12,385

Income (exports)
First release 74,282.11 23,105.00 42,881 121,229
Revisions after 1 quarter 624.00 0.8% 1,416.46 -1,481 4,761
Revisions after 1 year 1,325.42 1.8% 3,488.96 -10,052 10,344
Revisions after 3 years 1,959.68 2.6% 4,485.94 -11,198 10,511

Notes: Results are based upon 57 observations. Levels and revisions are shown in millions
of CHF.

release denoted with yjt , where j = 3, 12, 36 months, taken as measure of the

unobserved true value ỹt. More generally, we can write

yjt − y1t = α1 + β1y
j
t + ζt. (12)

The null hypothesis that measurement errors are independent of true values

(α1 = 0, β1 = 0) may be tested with a Wald test; since the errors may

suffer from heteroskedasticity and autocorrelation, robust standard errors

are typically used.

The analogous test of the “news” model regresses the revision (yjt − y1t )
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on a constant and the first release

yjt − y1t = α2 + β2y
1
t + νt. (13)

The similar null hypothesis (α2 = 0, β2 = 0) now tests whether data revisions

are predictable. The two null hypotheses are mutually exclusive but they are

not collectively exhaustive, i.e. we may be able to reject both hypotheses (see

Aruoba, 2008, Appendix A.2).

Table 2 uses Equations (12) and (13) to test the different revision hori-

zons of the income (exports) and expenditures (imports) sides of the current

account. At the 5% level, we find evidence of a significant bias for both ex-

ports and imports at all revision horizons. Hence, both the news and noise

assumptions are rejected.

The final row of Table 2 shows that the residuals of the import and export

equations exhibit a substantial degree of correlation implying that an upward

revision in exports goes hand in hand with an upward revision in imports.

To use this information, Table 3 reports p-values of exclusion tests when

estimating the two equations as a system, i.e. applying Seemingly Unrelated

Regression (SUR) estimation. This strengthens our previous finding in the

sense that the reported biases become more significant. At the 1% level the

joint null of no bias in the news or noise specification is rejected for all types

of revisions.
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Table 2: Revisions in Swiss exports and imports: ‘news’, ‘noise’ and bias—
OLS estimates

News Noise
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co

m
e α = 0 0.26 0.13 0.03 0.09 0.59 0.24

β = 0 0.04 0.46 0.17 0.01 0.91 0.66
α = β = 0 0.00 0.02 0.01 0.00 0.03 0.01

E
x
p

en
d
.

α = 0 0.00 0.06 0.51 0.00 0.01 0.08
β = 0 0.00 0.00 0.02 0.00 0.00 0.00

α = β = 0 0.00 0.00 0.00 0.00 0.00 0.00

#Obs. 57 57 57 57 57 57
Correl 0.50 0.40 0.57 0.48 0.40 0.58

Notes: Except for the rows ‘Obs.’ and ‘Correl’, this table reports p-values of exclusion

tests. The results are based upon Ordinary Least Squares (OLS) regressions with Newey-

West standard errors correcting for autocorrelation up to the fourth order. ‘Correl’ shows

the correlation between the OLS residuals of the income (exports) and expenditures (im-

ports) equations.
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Table 3: Revisions in Swiss exports and imports: ‘news’, ‘noise’ and bias—
SUR estimates

News Noise
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m
e α = 0 0.24 0.07 0.00 0.13 0.77 0.26

β = 0 0.02 0.29 0.02 0.01 0.60 0.83
α = β = 0 0.00 0.01 0.00 0.00 0.01 0.00

E
x
p

en
d
.

α = 0 0.05 0.08 0.41 0.04 0.00 0.01
β = 0 0.00 0.00 0.01 0.00 0.00 0.00

α = β = 0 0.00 0.00 0.00 0.00 0.00 0.00

Notes: This table reports p-values of exclusion tests. The results are based upon Seemingly

Unrelated Regressions (SUR).

Breusch-Godfrey serial correlation test outcomes in Table 4 indicate the

existence of measurement errors that are correlated across time up to one lag

in revisions in exports and imports, except for revisions after one quarter.
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Table 4: Revisions in Swiss exports and imports: correlation across time
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m
e 1 quarter lag 0.21 0.00 0.00

4 quarters lag 0.11 0.01 0.00
12 quarters lag 0.38 0.05 0.01

E
x
p

en
d
.

1 quarter lag 0.34 0.01 0.00
4 quarters lag 0.22 0.15 0.02

12 quarters lag 0.12 0.26 0.03

Notes: This table reports p-values of Breusch-Godfrey tests for serial correlation. The

allowed order of serial correlation is varied between 1, 4 and 12 lags, i.e. quarters. The

results are based upon OLS. The sample is held constant, i.e. consists of 57 observations.

5.2 Estimation of our state-space models

In line with the above news and noise regressions, we use three releases, the

1st, the 12th and the 36th release in our estimations. By this we capture

the effects of initial and annual (seasonal) revisions. The series run from

1995Q2–2009Q2, so we have 57 observations. Observed series are normalised

globally, i.e. a scalar mean is subtracted and all series are scaled by the same

standard deviation. By this, a constant term can be dropped from the state-
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space form. We set up the system assuming correlation across time in news

and noise, i.e. diagonal matrices T3 and T4 enter the transition equation.

The impact of these correlation of measurement errors across time is tested

below by calculating marginal likelihoods.

Under the assumption that the true values of imports and exports follow

a VAR(2) process

x̃t
ỹt

 = Θ1

x̃t−1
ỹt−1

+Θ2

x̃t−2
ỹt−2

+

ηxet
ηyet

 ,
the multivariate data revision model with news, noise, and correlated meas-

urement errors across time can be expressed as the measurement equation



x1t

x2t

x3t

y1t

y2t

y3t


=

 ι3 03×1 03×1 03×1 I3 03×3 I3 03×3

03×1 ι3 03×1 03×1 03×3 I3 03×3 I3





x̃t

ỹt

x̃t−1

ỹt−1

νt

ζt


,
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and the transition equation



x̃t

ỹt

x̃t−1

ỹt−1

νt

ζt


=



Θ1 Θ2 02×6 02×6

I2 02×2 02×6 02×6

06×2 06×2 T3 06×6

06×2 06×2 06×6 T4





x̃t−1

ỹt−1

x̃t−2

ỹt−2

νt−1

ζt−1


+



1 0 σxν1 σxν2 σxν3 0 0 0 0 0 0 0 0 0

0 1 0 0 0 σyν1 σyν2 σyν3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −σxν1 −σxν2 −σxν3 0 0 0 0 0 0 0 0 0

0 0 0 −σxν2 −σxν3 0 0 0 0 0 0 0 0 0

0 0 0 0 −σxν3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −σyν1 −σyν2 −σyν3 0 0 0 0 0 0

0 0 0 0 0 0 −σyν2 −σyν3 0 0 0 0 0 0

0 0 0 0 0 0 0 −σyν3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 σxζ1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 σxζ2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 σxζ3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 σyζ1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 σyζ2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 σyζ3



·



ηxet

ηyet

ηxν1t

ηxν2t

ηxν3t

ηyν1t

ηyν2t

ηyν3t

ηxζ1t

ηxζ2t

ηxζ3t

ηyζ1t

ηyζ2t

ηyζ3t



,

where


ηxet
ηyet


 ∼


0

0

 ,
σxx σxy

σxy σyy


.
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RewritingRη is convenient for working out the distributions of the errors:

Rη =



1 0 1 1 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1



·



ηxet

ηyet

σxν1ηxν1t

σxν2ηxν2t

σxν3ηxν3t

σyν1ηyν1t

σyν2ηyν2t

σyν3ηyν3t

σxζ1ηxζ1t

σxζ2ηxζ2t

σxζ3ηxζ3t

σyζ1ηyζ1t

σyζ2ηyζ2t

σyζ3ηyζ3t



,

where the errors associated with the ‘true’ values

ηxet
ηyet

 ∼

0

0

 ,
σxx σxy

σxy σyy




and the other error terms follow a multivariate normal distribution with mean

zero and variance σ2
i , where i = xν1, xν2, xν3, yν1, yν2, yν3, xζ1, xζ2, xζ3, yζ1,

yζ2, and yζ3.
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If one assumes univariate AR(2) processes for the dynamics of the true

values of imports and exports, the specification stays the same apart from

the matrices Θ1 and Θ2 and the variance-covariance matrix of the errors to

the true values of imports and exports which in this case will be diagonal.

In other words, i.e. θ1,12 = θ2,12 = θ1,21 = θ2,21 = σxy = σyx = 0.

Results

Table 5 lists the estimation results of the bivariate data revisions models.

As usual in empirical multivariate dynamic systems, the large number of

parameters are difficult to interpret. The main message of the table is to

show the feasibility of our multivariate data revision framework. We succeed

to get estimates with Bayesian estimations methods, even allowing for news

and noise and correlation of measurement errors across time.

The one standard deviation intervals arond the mean of all θs and σs in the

AR model do not contain zeros. However, one standard deviation intervals

around the mean of the additional parameters of the VAR system (θ1,12, θ1,21

and θ2,12, θ2,21) do contain zeros, but n1xot the correlation between the two

shocks of the true values σxy. So we conclude that the better fit of our VAR

specification, as reported in Table 7 below, is due to correlation between the

shocks of the true values.

Table 6 shows estimation results for AR(2) and VAR(2) models of true

values of exports and imports with correlated measurement errors across

time. Again one standard deviation intervals around the mean contain zeros
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Table 5: Estimation results: AR(2) and VAR(2) models for the true values

Parameter AR(2) outcomes VAR(2) outcomes
Median Std. dev. Median Std. dev.

θ1,11 0.509 0.170 0.444 0.201
θ1,12 − − 0.047 0.213
θ1,21 − − 0.043 0.200
θ1,22 0.510 0.172 0.509 0.193
θ2,11 0.371 0.169 0.316 0.191
θ2,12 − − 0.017 0.199
θ2,21 − − 0.108 0.206
θ2,22 0.431 0.171 0.386 0.200
σxx 0.329 0.061 0.329 0.062
σxy − − 0.273 0.056
σyx − − 0.273 0.056
σyy 0.324 0.058 0.331 0.062
σxν1 0.049 0.011 0.047 0.010
σxν2 0.048 0.010 0.047 0.010
σxν3 0.088 0.030 0.084 0.028
σyν1 0.050 0.011 0.050 0.011
σyν2 0.049 0.011 0.050 0.011
σyν3 0.088 0.031 0.081 0.027
σxζ1 0.049 0.011 0.047 0.010
σxζ2 0.041 0.009 0.041 0.008
σxζ3 0.047 0.010 0.047 0.010
σyζ1 0.049 0.011 0.046 0.010
σyζ2 0.043 0.009 0.042 0.009
σyζ3 0.049 0.011 0.048 0.010

for the parameters corresponding to the own lags in the AR and VAR models

of true values, the standard deviations of shocks to the true values of imports

and exports, and the correlation between those two shocks in the VAR sys-

tem, and the news and noise shocks. In addition, there is some evidence

of news being correlated across time, since median estimates of news to the

first releases of imports and exports (T3,11 and T4,11) are larger than their
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standard deviations.

Table 6: Estimation results: AR(2) and VAR(2) models for the true values
with correlated measurement errors across time

Parameter AR(2) outcomes VAR(2) outcomes
Median Std. dev. Median Std. dev.

θ1,11 0.597 0.196 0.597 0.221
θ1,12 − − 0.018 0.219
θ1,21 − − −0.004 0.204
θ1,22 0.611 0.190 0.632 0.208
θ2,11 0.297 0.192 0.185 0.206
θ2,12 − − 0.003 0.203
θ2,21 − − 0.137 0.210
θ2,22 0.339 0.189 0.303 0.217
T3,11 0.265 0.157 0.360 0.152
T3,22 0.173 0.157 0.265 0.153
T3,33 0.161 0.183 0.236 0.180
T3,44 0.296 0.153 0.363 0.139
T3,55 0.196 0.160 0.239 0.149
T3,66 0.165 0.181 0.194 0.182
T4,11 0.185 0.216 0.335 0.224
T4,22 0.123 0.215 0.174 0.221
T4,33 0.131 0.215 0.175 0.220
T4,44 0.237 0.214 0.276 0.216
T4,55 0.121 0.216 0.163 0.212
T4,66 0.145 0.225 0.156 0.219
σxx 0.314 0.058 0.315 0.059
σxy − − 0.267 0.054
σyx − − 0.267 0.054
σyy 0.315 0.060 0.316 0.059
σxν1 0.049 0.010 0.047 0.010
σxν2 0.048 0.010 0.047 0.010
σxν3 0.084 0.030 0.081 0.028
σyν1 0.049 0.011 0.048 0.010
σyν2 0.049 0.011 0.048 0.011
σyν3 0.085 0.030 0.080 0.027
σxζ1 0.047 0.010 0.044 0.009
σxζ2 0.042 0.008 0.041 0.008
σxζ3 0.047 0.010 0.047 0.010
σyζ1 0.047 0.010 0.043 0.009
σyζ2 0.042 0.009 0.042 0.009
σyζ3 0.048 0.010 0.047 0.010
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We compare the AR and VAR models of the true values with and without

correlated news across time on the basis of marginal likelihoods, which are

computed using the procedure described in Chib (1995). Table 7 shows the

results. The best model is the VAR(2) model of the true values of exports and

imports with correlations across time in news and noise. As already noted,

the better fit of the VAR models is due to the correlation between the shocks

of the true values and not to the inclusion of past lags of the other variable in

the dynamic equations. In addition, we find that measurement errors should

be allowed to be correlated across time, which reflects the sensitivity to new

information in a vintage not only for the most recent observation but also

for other observations in that vintage.

Table 7: Model comparison

Model Marginal likelihood (ln)

AR(2) w/o spillovers -174.627
AR(2) with spillovers -167.895

VAR(2) w/o spillovers -153.283
VAR(2) with spillovers -141.061

Note: spillovers are defined here as measurement errors that are correlated across time.
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6 Conclusion

This paper proposed a quite general state-space framework to model mul-

tivariate data revisions, i.e. revisions occurring in more than one series at a

time, allowing correlated true values and news and noise measurement er-

rors. We motivated and illustrated the multivariate framework with Swiss

current account data. The Bayesian estimation results demonstrate that our

multivariate data revision framework is feasible. For the Swiss data set, a

multivariate approach does pays off: VAR systems for the true values are

superior to AR processes due to the correlation between shocks to the true

values of imports and exports. In addition, there is a role in the model for

measurement errors that are correlated across time. Future research will deal

with the impact of correlated measurement errors across vintages.
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