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Résumé/abstract  
 

We use the experimental method to study the costs and benefits of allowing joint bidding in 

simultaneous multi-unit first price sealed bid auctions for bundled goods. The research has immediate 

applications to the sale of public forest stands that arbor a mixture of species. Joint bidding and 

communication raise the prospect of higher allocative efficiency, but also of collusive bidding through 

a reduction in the number of bidders and a greater scope for the formation of bidding rings. However, 

we find that allowing joint bidding has a significant positive impact on efficiency and reduces 

collusion significantly. We also explore the robustness of the results to characteristics of the auction 

environment that are relevant to timber auctions. 

 

Mots clés/Keywords : Timber auctions; forest industry; joint bidding; bidding rings; collusion; 

simultaneous auction; starting price; two bidder rule. 
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1. Introduction 
 

First price sealed bid auctions are used to allocate the rights to harvest publicly owned 

forests in many jurisdictions (e.g. U.S. National Forest Service; British Columbia, France; see for 

instance Athey and Levin 2001; Athey et al. 2004; Baldwyn et al. 1997; Li and Perrigne 2003; Mead 

1967; Paarsch 1991). Recent adopters of auction mechanisms aim to modernize their forest tenure 

systems in both North America (the province of Quebec introduced an auction system in 2012) and 

in Eastern Europe (e.g. Romania; Saphores et al. 2007).  

 Unfortunately, the economic realities of forest harvesting and timber processing often make 

forest sector markets less than ideally competitive. Lumber and paper production most often 

require a significant scale and the legacy of forest tenure systems that ensured extensive supply of 

fiber over long time horizons to few firms has translated today in a small number of forest users 

thinly spread over a large territory. Thus, the transportation costs associated with a given stand can 

vary substantially across potential buyers, often leaving local firms with a considerable competitive 

advantage. Compounding these problems is the ability of firms in small markets to collude. The 

potential for collusion in sealed bid auctions conducted in small markets has been recognized for 

some time. Isaac and Walker (1985) showed that participants are often able to form stable bidding 

rings to reduce competition and prices. Sherstyuk (1999) and Kwasnica (2000) extend this result to 

an environment particularly relevant to this research, where multiple units are sold 

simultaneously.  

In this paper, we put in place a policy relevant experimental timber auction environment 

that replicates the main features of Quebec’s new forest auction design for bundled goods. We 

measure the impact of allowing joint bidding on bidding behavior, revenue and efficiency. We also 

investigate the robustness of the results to auction characteristics that matter in an application to 

timber. The basic set up is a multiple unit first price sealed bid auction for bundled goods. Six 

participants are presented a total of eight lots each round. Participants, however, cannot bid on all 

lots.  Each lot can be offered to either three or all six players. In most treatments, all six bidders 

have a “soft” limit on their capacity to process the lots they win. This is implemented by imposing a 

cost on bidders who win more than two lots, reflecting the absence of a dependable resell market.  

Perhaps the most salient feature of the Quebec auctions is the ability of bidders to join 

forces and bid in teams. Joint bidding is allowed in recognition of the fact that most forest stands in 

Quebec (and indeed in many other jurisdictions) are composed of two or more distinct tree species 

destined to specific usage and types of mills (e.g. lumber for some species and pulp and paper for 

others; softwood and hardwood). Thus, it is often the case that a potential buyer only values one of 

the species growing on a given lot. Even if a stand is entirely composed of hardwood species, 
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specialized mills often require one type only, leaving them with little or no value for the other wood 

available on a stand offered at auction. De facto, each lot is a bundle of multiple goods. Formal joint 

bidding allows for efficiency gains to be realized at the auction stage. However, doing so may also 

reduce competition. Another drawback is that allowing the formation of consortia inevitably 

requires legalizing communication between firms, making it easier for firms to collude in other 

ways.1 The net impact of allowing joint bidding on revenue is therefore ambiguous.   

Within this general framework, we study the effect of allowing joint bidding on bidding 

behavior and market outcomes. Because we wish to isolate the impact of joint bidding, we allow 

communication both when joint bidding is allowed and when it isn’t. Results show that when joint 

bids are allowed, bidders focus their efforts towards securing efficiency-enhancing joint bids. As a 

result, bidders who form joint bids have typically higher valuation and make higher bids. Solo 

bidders (the bidders who do not make joint bids) bid a higher fraction of their valuation when joint 

bids are allowed.   

The main concern with joint bidding is that it may increase collusion. Collusion can take 

place through a deliberate reduction in the number of bidders.  It may also facilitate the formation 

of effective bidding rings whereby bidders agree not to compete against one another, and allocate 

the lots available among themselves. It is usually not possible to identify collusive biding precisely. 

However, the auction design implemented in this research produces a fairly reliable ‘smoking gun’ 

sign that groups of bidders have agreed to split the market.  Using this measure, we find that the 

ability of bidders to communicate when they cannot submit joint bids results in substantial market 

splitting and lower prices. Such collusive behavior is much less present when joint bids are allowed. 

The net result of allowing joint bids is therefore an increase in both revenue and efficiency despite 

the fact that doing so reduces the number of bidders on a lot.   

We are also interested in the role of other auction rules and characteristics of the auction 

environment that are relevant to an application to timber in Quebec and elsewhere. Specifically, we 

discuss in a robustness section the impact of:  i) Imposing that a minimum of two bids must have 

been received for the lot to be awarded (the “two bidder rule”).  The two bidder rule does not 

appear to have a direct effect on collusive agreements. Overall, the rule increases auction revenue 

without affecting efficiency.  Most importantly, the two bidder rule opens a window to observe the 

                                                           

1 Although engaging in market splitting or other forms of collusive strategies is still prohibited by 

Canadian competition laws (Canada Competition Act 1985), proving collusive behavior would be 

extremely difficult when communication between competitors is permitted for the purpose of 

forming joint bids. 
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presence of collusive bidding because it forces bidding rings to submit low sham bids that can leave 

a trace in the data. ii) The effect of introducing two players who, contrary to others, do not have a 

capacity constraint (they do not pay a penalty for winning more than two lots). The presence of a 

soft capacity constraint decreases average bids, but not the average winning bids. iii) Doubling the 

number of lots offered in order to study the effect of offering “excess supply”. Excess supply leads to 

rampant collusive bidding and significantly decreases both bids and revenue.  

Overall, fears that allowing joint bidding might lead to both collusion and lower bids due to 

decreased competition did not materialize in the experiment. Acknowledging that an experiment is 

not the same as a live auction, the results have implications for auctions and market design but also 

addresses one of the long standing and unresolved questions surrounding the formation of joint 

ventures in general. While forming complementary partnerships can increase overall firm 

productivity or the rate of innovation, it also reduces competition in the relevant market. The net 

effect of joint bidding or R&D ventures is therefore ambiguous (d'Aspremon and Jacquemin 1988; 

Farrell and Shapiro 1990 and Kamien et al. 1992). There is very little evidence on the efficiency 

effect of R&D ventures (Cassiman andVeugelers 2002; Gugler and Siebert 2007 and Duso et al. 

2010). The only experimental evidence we are aware of (Suetens 2005 and 2008) does not address 

the efficiency trade-offs between complementary matching and collusive bidding.  

Our results provide one example where allowing joint bidding produced substantial 

efficiency gains and increased revenue, despite the fact that with joint bidding comes greater 

opportunities to collude and divide the market,. Taken together, the results tend to suggest that it is 

possible to design a sufficiently rich set of rules to deter wholesale collusion in thin markets. Our 

new approach to identify collusion contributes to the large literature on collusion in auction (Isaac 

and Walker 1985; Hendricks and Porter 1989; Porter and Zona 1993; Kwasnica 2000 and Gupta 

2001 and 2002) and specific applications to timber (Baldwin et al. 1997 and Saphores et al. 2007). 

The two bidder rule can help auction designers interpret bidding behavior and detect collusion.  

In the next section, we proceed directly to a description of the experimental design and of 

the various auction characteristics tested in this research. Once this is done, we explore some of the 

implications of allowing joint bidding and present the main results. We then discuss the robustness 

of these results in light of alternative rules and environmental conditions. We conclude with a 

general discussion of our findings.      
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2. A Policy-Based Experimental Design 

In March and April 2012, 150 students from the University of Victoria (Canada) participated 

in experimental auctions in groups of six. Participants were inexperienced subjects, primarily in 

business and economics (third or fourth year undergraduate or graduate students). Each group 

participated in a total of 12 auctions: 2 practice auctions without real payoffs and 10 paying 

auctions. Sessions lasted on average two hours and twenty minutes and carried unusually high 

payoffs for most economics experiments. Subjects received an average (confidential) cash payment 

of CA$82 for their efforts (ranging between CA$20 and CA$155), with those earnings based entirely 

on the profits they realized in the auctions.  

A session began with oral instructions supported by a PowerPoint presentation. As part of 

the instructions, a full round of trading was completed in order to familiarize participants with the 

computer interface and computation of results. Each group of students was assigned to one of five 

treatments of ten computer-mediated auctions deployed on ZTree (Fischbacher, 2007). 

Communication between participants was allowed for up to 3.5 minutes per auction. 

At the beginning of an auction, each participant was presented with a screen reproduced as 

Figure 1. The screen contains several elements of information. In the center, each subject sees 

between 2 and 8 squares of information. Each square is a separate lot (from A to H) on which the 

participant can bid. A lot is meant to represent a physical track of forest for which the seller wishes 

to auction the harvesting rights.  The total private value of a lot to the subject is the sum of two 

separate good values representing two distinct tree species. Each good value is an integer drawn 

independently from the set {1,2,..,80} with equal probability, to mimic a uniform distribution. On 

the right side of the screen, a table made public that either three or six players could bid on each lot 

and who they were. Two other critical pieces of information appear on the top left corner of the 

screen. First is a “penalty per lot in excess of two”. The other is the “starting price” of 86.  

In our design, as in real auctions, subjects could bid on as many lots as the number they 

were offered. If lots were perfectly independent from one another, players should bid on every lot 

presented to them. However, this would have been a major departure from the policy context for 

timber auctions. In reality, mills have a fixed capacity and a regulatory obligation to harvest lots 

within a fixed time limit. Thus, winning “too many” lots at auction imposes additional transactions 

costs and exposes the firm to risks of having to harvest but be unable to recoup their purchase price 

on a thin informal secondary market. To simulate this soft capacity constraint, a penalty of 10 ECU2 

per good in excess of four was imposed on subjects who purchased more than four goods 

                                                           
2
 ECU is an experimental currency unit, which is converted in Canadian $ at the end of the experiment. 



5 
 

(corresponding to two full lots) in a given auction. For example, a subject who wins three full lots 

and one good in a joint bid (a total of 7 goods) would get a penalty of 30 deducted from his profits.  

 

Figure 1:  Participant Information and Bidding Screen  
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The final central feature of the auction design is the use of a reserve price with a conditional 

allocation rule.  Specifically, the allocation rule for the auction on each lot is constructed around an 

unannounced random reserve price drawn from the unannounced uniform integer distribution 

with support {51, 52,..,60}, and the public starting price of 86 ECU. The reserve price is the absolute 

minimum at which the seller is willing to sell the lot. However, the two bidder rule states that if the 

highest bid falls between the reserve and starting prices, the allocation will take place only if at 

least two bids were received for the lot. The two bidder rule is meant to mimic Quebec’s tendering 

law which has similar requirements. It is thought to increase the cost of collusion attempts, but also, 

in combination with the reserve and starting price, to increase the price in thin markets. 

As they consulted their information screen, participants had the opportunity to copy key 

data onto a sheet of paper that generically reproduced the basic computer screen (i.e. boxes for all 

eight possible lots but without any private values printed). They could then stand up and mingle in 

different parts of the lab in quiet discussions to explore joint bidding opportunities with others. The 

sheet of paper was added to the design to prevent players from  credibly revealing their private 

values to others and experimenters strictly enforced that all computer displays be turned off during 

the communication period. Subjects were actively discouraged from showing their sheet of paper to 

one another but the rule was difficult to enforce perfectly. Thus we also suggested during the 

instructions that participants did not have to copy exact values (e.g. they could copy their real value 

minus a constant for instance) and could therefore be deceived if shown another participant’s 

sheet. This was done to further reduce the credibility of information about values that was divulged 

in conversations, since such information cannot be verified in real auctions.    

At the conclusion of each communication period, participants were asked to return to their 

workstation and enter their bids. Fields left blank were recorded as no bids (zeros in the data) and 

had no chance of winning. In the case of joint bids, the two bids for Good 1(by one player) and Good 

2 (by the other) had to be entered by both players. These were binding agreements and bids could 

not be accepted by the computer system until the participants who agreed to bid jointly entered 

identical bidding amounts on their respective data entry screens. Absent a perfect match of these 

four data fields, the server returned an error message indicating a mismatch.3 Once all bids were 

acceptable, the server allocated lots to the highest bid above zero (based on the sum of the bids for 

Goods 1 and 2) and returned the results to players. At the conclusion of an auction, all players 

received a table indicating the lots they won and their profits, as well as whether or not each of the 

                                                           
3 Experimenters monitored the data entry from the back of the lab and helped reconcile those 
errors. This prevented subjects from having to stand up at this stage of the round and possibly 
glance at other player’s information. It also ensured that players could not reveal that a lot was 
being subject to a joint bid. 
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other lots sold. Thus, the bid data from subjects remained private and no feedback other than "sold" 

or "did not sell" was given to a subject who did not win the lot.   

Each auction implements one of four configurations of the lots that players can bid on 

(information displayed on the table on right hand side of Figure 1). These four configurations 

presented in Table 1 are meant to artificially represent different regional and inter-regional 

competitiveness scenarios.4 Competitiveness is constant in region 1 (Column 2) but varies for inter-

regional lots (Column 3) and in region 2(Colunm4). Although there are 8 lots and 6 bidders in each 

scenario, competitiveness varies greatly at the lot level (Column 6). Participants were reassigned at 

random to region 1 and region 2 with each new auction. As such participants did not have a perfect 

ability to form stable coalitions since they could not count on the next offering to assemble the same 

subgroup of players.  Though the reality in the field could allow more stable coalitions, it is also true 

that outside firms have been observed bidding where they would not be expected to do so 

regularly, thus making effective coalition formation more difficult.  

 

Table 1: “Regional Distributions” of Auctioned Lots  

Scenario 

Number 

Number  of 
Lots Exclusive 

to Region 1 

Number  of 
Lots Common 
to Regions 1 

and 2 

Number  of Lots 
Exclusive to 

Region 2 

Player 
Bidding 

Opportunities 

Competition at the 
Lot Level 

1 2 0 6 (2,6) 8 lots with 3 bidders 

2 2 3 3 (5,6) 5 lots with 3 bidders          
3 lots with 6 bidders 

3 2 4 2 (6,6) 4 lots with 3 bidders          
4 lots with 6 bidders 

4 2 6 0 (8,6) 2 lots with 3 bidders          
6 lots with 6 bidders           

Note: The first (second) number in column 5 denote the number of lots that the three bidders in 
region 1 (2) can bid on. 

 

The array of regional distribution scenarios replicates the decentralized timber 

management regime implemented in many jurisdictions, including Canadian provinces and in 

                                                           
4 One can think of the regional distributions as various spatial representations of the lots offered at 
auction with 3 bidders located in each of two regions. Lots offered can generate an interest from 
bidders in either one of the regions, or in both (i.e. when they are located near the edge or between 
the two regions). For instance, scenario 1 has three bidders vying only for 2 lots located in Region 1, 
while three bidders compete for 6 lots offered in Region 2. No lot is offered that is of interest 
simultaneously to bidders in both regions. If we look at this auction from the perspective of 
competition for lots (the last column), we observe that all eight lots offered have 3 potential 
bidders. At the other extreme, 2 lots are offered exclusively to the three bidders of Region 1 and the 
other six are of interest to everyone. As a result, the two lots of region 1 can be bid on by 3 players, 
while the six lots of the inter region can be bid on by all six players.   
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auctions conducted by the U.S. National Forest Service. The four scenarios reflect heterogeneity in 

the degree of competitiveness that is due to a geographically diverse offering. While such scenarios 

help us make the design more policy relevant, they also introduce data limitations. The variation in 

the offering across the four scenarios inevitably modifies both the menu of lots that individuals can 

bid on and the degree of competition for the lots in ways that cannot readily be disentangled 

because of the systematic correlations that exists between these two variables. For this reason and 

others (e.g. endogenous joint bidding decisions, discontinuous penalties), the data is ill-suited to a 

fine analysis of bidding strategies at the individual level. Rather, it is built to gain an overall 

understanding of the effects of the various treatments and to analyze whether the treatments 

perform differently when deployed under different regional configuration scenarios. As such, the 

regional configurations can be viewed as an enhanced stress-test for the auction rules and 

environmental conditions of each treatment.  

All the analysis is conducted by comparing moments of distributions across all auctions in a 

given regional distribution and across regional distributions. This is made possible by the fact that 

for all sessions, each regional configuration was played once (in random order) in the first four 

rounds, and once again in random order in rounds 5 to 8. Finally, scenarios 1 and 3 were played 

again in a random order in rounds 9 and 10. This keeps constant across all groups the number of 

repetitions of each scenario, the total number of lots offered to individuals, and the overall level of 

competition for lots. The randomization of each scenario’s order of appearance should eliminate 

possible order effects. However, given the relatively small number of sessions over which we 

randomized, we chose to force each scenario to appear once in the first and second groups of four 

auctions in order to ensure that all groups faced all possible scenarios in the early part of their 

experiment. The analysis we perform, therefore, does not discuss the variations in regional 

scenarios other than in the robustness section where we show that the aggregate results hold when 

we look at the four regional distributions separately.  

We conducted two main treatments to study the effect of joint bidding and three robustness 

treatments. The base treatment is the joint bid treatment [T0]. It corresponds most closely to the 

field conditions envisioned by the agency responsible for the management and sale of Quebec’s 

public forests. All other treatments modify a single design component from [T0] and should be 

compared against it:  

Joint Bid Treatment [T0]. Complete package of auction rules:  (a) Eight lots are offered; (b) 

Joint bidding is permitted; (c) A penalty of 10 experimental currency units is billed for each good 

won in excess of four goods; (d) The two bidder rule applies.  

No Joint Bid Treatment [T1]. Joint bidding is not allowed.   
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Robustness Treatment [R1]: No Two-Bidder Rule. Lots are allocated to the highest bid 

greater than the random reserve price irrespective of the total number of bids. 

Robustness Treatment [R2]: Excess Supply. 16 lots rather than 8 are offered in each 

auction and these sessions allow for 6.5 minutes of communication instead of 3.5. We will compare 

R2 both with T0 and to another treatment identical to T0 but with 6.5 minutes session length. In 

doing so, we can separately measure the impact of excess supply. 

Robustness Treatment [R3]: Dominant Players. Two of the six players have unlimited 

capacity and therefore do not face a penalty if they purchase more than 2 lots (4 goods).  

 

3. Observations on Joint Bidding 

Allowing joint bidding may change the auction outcomes through multiple channels.  The 

experimental design allows players to interact, exchange information, and make both explicit joint 

bidding agreement and implicit collusive agreements. Unstructured interactions change bidder’s 

information sets and influence bidding in ways that are difficult to capture with simple models. 

While the complex set of rules implemented in our experiments make the derivation of formal 

equilibrium bidding predictions impossible, we make, in this section, general remarks on the 

impact of allowing joint bidding. 

3.1 Efficiency Effect: Value Distributions 

As we alluded to earlier, allowing joint bids could result in substantial efficiency gains by 

allowing two potential bidders to combine their high values for the two species growing on a lot. 

Here, we illustrate for our experiment the underlying distributions of value that single and joint 

bidders bring to an auction. To keep the focus on bidding strategies, we assume that joint bidders 

randomly match.  

In our experiment, the private value of the lot to player i is the sum 1 2i i iV v v   where each of 

1iv and 2iv   is an iid random variable drawn from the interval [vmin, vmax]=[1,80]. In what follows, we 

drop the player index i without loss of generality.  With each of 1v and 2v  is a uniformly distributed 

variable, the sum 1 2V v v  takes on a triangular distribution with cumulative distribution function 

(CDF) of the form 
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This distribution has a mean of 107.33 and a median at 109.27. Figure 2 provides one possible 

illustration of the advantage that a joint venture holds over a single bidder by plotting the CDF for 

an individual bidder (solid line), for randomly matched players who have complementary values 

resulting in a joint bid (long dashes), and for randomly matched pairs who do not have 

complementary values (short dashes). 
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Figure 2: CDF of induced values for an individual bidder and a joint bidder 

 

 

Of course, one could also construct other distributions. For instance, we could consider a 

group of three or six players and consider the joint values of the best possible match(es) among 

those players. Such distributions would stochastically dominate the joint bidder distribution in 

Figure 2. As such, the joint bidder distribution of Figure 2 should be viewed as the minimum shift in 

value that can occur when joint bids form endogenously.  

The joint bidder distribution can also be viewed as a partial representation of the potential 

efficiency gains from joint bidding. If one assumes that there is no pre or post auction trading of 

timber resources, and therefore that joint bidding is the only mechanism that allows the best 

allocation of the two species found on a lot, the rightward shift of the distribution is representative 

of the higher values brought about by the partnership. It is only a partial indication of potential 

gains since individuals may form better matches on average than random encounters would.  

3.2 Strategic Effects: Decrease in the Number of Bidders  

Joint bidding reduces the number of bidders and, everything else equal, bidders bid less 

aggressively when there are fewer bidders. To illustrate, assume valuations are uniform and i.i.d. on 

[0,1] in a standard first price sealed bid auction (i.e. one without all of the rules added to our 

experiment). This distribution of valuations is convenient because (contrary to the triangular 
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distribution used in the experiment) it delivers a closed form solution of the individual expected 

profit. In a first price sealed bid auction with n symmetric bidders, a bidder with valuation v earns 

expected profits  

  
  

1

1
, .

n nn n v
U v n

n




  

Now assume that two bidders with identical valuations make a joint bid and split the profits evenly. 

The number of bids decreases from n to n-1.  Clearly, the bidders who do not make a joint bid 

benefit. However, bidders who make the joint bid also benefit if 

    , , 1 2U v n U v n  . 

For n=3 the inequality holds if v<2/3.  For n=6, this inequality holds for any  0,1v .  Keeping in 

mind that the distribution of valuations in the experiment is different, this nonetheless illustrates 

that reducing competition can be a motivation for joint bidding regardless of the degree of 

complementarity between bidders' valuations.  

3.3 Overall Effect on Bidding Strategies 

Let’s return to the point that joint bidders have higher distributions of valuation than individual 

bidders. By virtue of their stochastically dominant value distribution, joint bidders become 

dominant bidders relative to individual bidders. Chermonaz (2012) derives the net impact of the 

two effects discussed above for simpler distributions: (a) a reduction in the number of bidders as 

discussed above and (b) an asymmetry in bidders’ valuations. He considers joint bidding with three 

bidders. As in our experiment, joint bidding reduces the number of bidders to two. He leverages 

previous work by Lebrun (1999) and Maskin and Riley (2000) to show that (under general 

assumptions) the strong bidder (producing the joint bid) always bids a smaller fraction of her 

valuation than the weak (individual) bidder. In one example based on a different distribution of 

valuation than the one used in our experiment, Chermonaz shows that the bidding functions of the 

weak and strong bidders lie between the bidding functions used by two and three symmetric 

bidders. Thus, a joint bidder against an individual bidder bids less aggressively than three 

individual bidders but more aggressively than two individual bidders.  

3.4 Collusion, The Two Bidder Rule, and Low Bids 

An important concern with joint bidding is that communication may be used to a collusive 

end. There are many ways players could collude but a simple way to do so is to split the eight lots 

offered in an auction between the six players. An important issue, thus, is whether allowing joint 

bidding changes the incentive to collude. Note that communication is possible even in the absence 

of joint bidding, both in our experiment and in real life. While we could have prohibited 
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communication in our no-joint bidding treatments, the impossibility of controlling interactions 

between bidders in a small industry led us to study the impact of joint bidding holding 

communication constant. 

The two bidder rule was put in place both to limit low bids (e.g. when a firm suspects it 

might be the only bidder) and to make collusive agreements more difficult and costly. In the 

experimental auctions, the rule states that for a lot to be sold, at least two bids must be received in 

the event the highest bid is lower than the starting price of 86 ECU but above the secret reserve 

price.  The minimum acceptable bid is 2 ECU, that is, 1 ECU for each good in a lot.  (Not bidding was 

allowed but actually entering 0+0 or 0+1 were not allowed). With the two bidder rule, collusive 

bids lower than the starting price requires having another player making a low ‘sham’ bid. While 

there is no explicit cost of doing so in the experiment, organizing these sham bids could be viewed 

as having an opportunity cost in the form of time away from negotiating valuable joint ventures. 

In the course of laboratory experiments, we noticed many agreements leading to sham bids 

of 1+1=2.5 These observations are confirmed in the data. Thus, the two bidder rule can help us 

detect some collusive behavior. Clearly, low bids can also be genuine attempts at scooping a lot in 

the event that both the demand and secret reserve price are very low. If low bids are collusive, 

however, we would expect that their presence on a lot would lead to other bids being lower than for 

similar lots where no collusive low bids have been submitted. This prediction differentiates the 

collusion and ‘market scooping’ hypothesis. Thus, the two bidder rule might leave a positive trace of 

market splitting collusion in the data, something rarely seen in experiments or field data.  

4. Results 

The dataset is made up of 23 groups of six students each participating in 10 auctions. Table 2 

provides a breakdown of the data by treatment. A total of 2,160 (8x10x19+16x10x4) lots were 

offered at auction for a total of 8,910 lot-persons. In other words, if every subject had submitted an 

individual bid on every lot they could bid on, a total of 8,910 bids would have been made ( we drew 

a total of 17,820 random values in our experiment).  

We report Tables and Figures that aggregate the data at the treatment level (i.e. aggregated 

across all auctions and all four regional scenarios). Similar data broken down by regional scenarios 

(see Table 1) are presented in the Appendix (when the number of observations warrants this 

                                                           
5
 While it is possible that colluding bidders could enter sham bids above two, we find many bids equal to two 

and few low bids above. Being conservative, we use the number of bids equal to two as a proxy in our tests of 
collusion. We also do so because a bid of two is most likely a sign of collusion when the two bidder rule is 
present. This is because a bid of two can win the good with at most probability half.  This will happen when 
another player has also entered a bid of two. A bid of three dominates a bid of two for any player with a joint 
valuation of four or above. 
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breakdown). Aggregate results and results at the regional scenario level show a high degree of 

conformity. For this reason, we provide the disaggregated data for the interested reader, but only 

briefly discuss them in the robustness section.   

We begin by comparing the base treatment with joint bids (T0) to the treatment without joint 

bids (T1) corresponding to the first two columns in Tables 2-7.  In the robustness section, we 

discuss three additional treatments (last three columns in Tables 2-7). We start by describing 

bidding behavior and follow with an analysis of winning bids and their effect on auction revenue 

and efficiency.  

4.1 General Bidding Patterns 

When comparing columns one and two in Table 2, a couple of preliminary observations are 

worth making. When joint bidding is allowed, about one out of five bids are joint. This demonstrates 

that players make extensive use of joint bids. Recall that joint bidders have to overcome two 

hurdles: (a) non-trivial search to find a player with ‘strategically attractive’ valuations in order to 

increase the gains from joint bidding (b) bargaining under asymmetric information in order to 

share the joint surplus. As a benchmark, note that if all possible joint bid opportunities were 

exploited, a session of ten auctions would produce 140 joint bids and 50 single bids (lots with three 

potential bidders necessarily force single bids). Thus, the maximum possible proportion of joint 

bids in the data is 73.7%. It is difficult to say whether the observation that 19,4% of bids submitted 

in T0 is high or low relative to that upper bound.  What is important, however, is that this figure is 

large enough to have an economically significant impact on revenue and efficiency.    

As expected, joint bidders have higher combined valuations than individual bidders. Figure 3 

plots the empirical cumulative distribution of lots valuations for individual and joint bidders. The 

former stochastically dominates the later. Taking averages, joint bidders have valuations that are 

about 30% higher than individual bidders (120.5 vs. 86.5). Several effects are at play. One effect 

was illustrated earlier with Figure 2 under the assumption of random matching.  

That’s not the only effect, however. Joint bids are not drawn from a random sample of 

valuations. To start, those who enter joint bidding agreements have private lot valuations (prior to 

agreeing to bid jointly) that are greater than individual bidders (88 versus 76 and the difference is 

statistically significant). But this is not the only way that the actual matching departs from the 

random benchmark. Each participant in a joint bid has valuations for the two goods that are more 

heterogeneous than individual bidders.  For example, the absolute difference between the two good 

values ( 1 2i iv v ) for players who make joint bids is 34, while it is only 24 for individual bidders 

(and the difference is highly significant).  
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Figure 2: Empirical CDF (with Confidence Intervals) of Individual and Join Bidder Values   

 

Turning to bidding behavior, note that the percentage of lots with no bids is higher in the joint 

bid treatment (23.3% versus 12.6%) and the percentage of bids equal to two is lower (2.9% against 

19.6%).  Interestingly, the two effects go in opposite direction. When players cannot make joint 

bids, they often make bids of two instead of no bid. It could be that collusive bidding significantly 

increases when joint bids are not allowed.  

One may question whether the bids of two are indeed a sign of collusion. Under the collusion 

hypothesis, a bid of two is an umbrella to shield another (higher) collusive bid from the two bidder 

rule. Thus, if bids of two are collusive, they should happen in conjunction with less aggressive bids 

on the same lot. This leads to the hypothesis that bids and bid-to-value ratios of bids greater than 2 

should be lower when there is a bid of two on a lot.  This prediction is unique to the collusion 

hypothesis. To test this hypothesis, we divide the bids greater than two between those for which 

another bidder has submitted a bid of two on the same lot, and those for which no bid of two was 

submitted.  When joint bids are allowed (T0), we find that the average bid is 72.5 when there is a 

bid of two on the same lot and 76.0 when it’s not the case. The difference for bid-to-value ratios is 

even more pronounced (70.9% versus 79.3%). When joint bids are not allowed (T1) the same 

pattern emerges. Bids average 64.4 when a bid of two is submitted and 68.9 otherwise; the bid-to-

value ratios are 68.5% and 76.7% respectively. As expected, there is less competition on lots for 

which a bid of two is made.  This offers some evidence in support of the collusion hypothesis.   
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Third, the proportion of bids equal to the announced starting price of 86 is slightly higher when 

joint bids are not allowed. Bidders bid 86 to ensure that they are not subject to the two bidder rule. 

Thus, it would appear that prohibiting joint bidding increases the frequency of collusive behavior, 

but also leads to a greater number of bids where individuals without a market splitting agreement 

feel compelled to bid 86 to avoid the risk of being disqualified if no other player submitted a bid.  

 

Table 2: Summary of Observations and Bid Types Per Treatment 

  T0 T1 (NoJ) R1 (No2B) R2 (2X) R3 (Dom) 

Number of groups 6 4 5 4 4 

Total number of lot-person offered 1980 1320 1650 2640 1320 

Total number of bids submitted 1272 1154 1007 1745 988 

Percentage of individual bids 80.6% 100.0% 73.1%††† 88.1%††† 89.9%††† 

Percentage of joint bids 19.4% - 26.9%††† 11.9%††† 10.1%††† 

Percentage of “no bids” 23.3% 12.6%††† 22.3% 26.1%†† 17.5%††† 

Percentage of bids equal to 2 2.9% 19.6%††† 4.5%†† 32.0%††† 6.3%††† 

Percentage of bids equal to 86 2.2% 3.6%†† 0.7%††† 3.5%††† 3.2% 

Note: Levels of statistical significance when compared to T0 are †:p< 0.1; ††:p< 0.05; and  †††: p<0.01. 

  

4.2 Bids and bid-to-value ratios 

We now turn our attention to bid levels across T0 and T1. Figure 3 plots all positive bids as a 

function of the bidder(s)’ underlying total value for the lot. It allows for a bird’s eye view of the 

dataset, with individual bids showing in clear dots and joint bids in dark dots. Several interesting 

patterns emerge. To start, most bids are below the 45 degree line. This shows that bids giving 

negative expected profits (that could be mistakes due to inattention, for example) are rare. More 

interestingly, bids are roughly monotone and increasing in valuation with a mild concave shape 

over high valuations. A monotonically increasing equilibrium bidding function is the norm in 

auction theory and auction experiments as well. Moreover, the graphs reveal the high number of 

bids equal to two (horizontal line at two) previously noted.  

Two further points emerge: there are very few data points between the line at two and the main 

cloud just below the 45 degree line. This further supports the collusion hypothesis. One would have 

expected more continuity between these two sets of points under the ‘market scooping’ hypothesis. 

Moreover, some of the players with very high valuations make bids equal to two and this is 

particularly pronounced in T1. This is surprising because these lots carry a high probability of a win 

and therefore high expected profits in a normal auction. Again, it is difficult to rationalize this 

behavior without appealing to a market splitting argument.   
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Tables 3 and 4 more precisely describe the difference in bidding behavior between T0 and T1, 

presenting individual and joint bids together and separately. Averages expressed in experimental 

dollars are presented in Table 3, while Table 4 is expressed as the bid-to-value ratios. We report 

statistics on all individual bids as well as those greater than 2 only in order to separate the effects of 

strategic bids.  Table 3 reveals important differences in bidding behavior: 

(1) Overall bids are much higher when joint bids are allowed (73.7 versus 55.0) and this holds 

even when we consider only bids above two (75.8 versus 67.9).  

(2) In the joint bid treatment, joint bids are significantly higher than solo bids (93.0 versus 

69.0).   

(3) Even when we compare individual bids above two, we still find higher bids when joint bid 

are allowed (71.6 versus 67.9).   

Allowing joint bids generates an asymmetry where joint bids dominate individual bids and it 

increases the overall aggressiveness of bids of both joint and individual bidders.  Table 4 further 

establishes this point by looking at bid to value ratios. All bidders bid a larger fraction of their value 

when joint bids are allowed (79.0% versus 75.6%).  Individual bidders also bid a larger fraction of 

their valuation in the joint bid treatment (they bid 78.7% in T0 versus 75.6 % of their valuation in 

T1), consistent with standard predictions for weak bidders.. However, joint bids in T0 are also more 

aggressive than individual bids in T0, a fact not easily reconciled with their dominant bidder 

position in an auction they know has one fewer potential bidder.   
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Figure 3: Individual and Joint Bids by Treatment 
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Table 3: Descriptive Statistics of Bids 
     

 

 
T0 T1(NoJ) R1(No2B) R2(X2) R3(Dom) 

All Ind. Bids  Mean 69.044 54.988††† 64.978†† 44.1554††† 67.3923 

    Median 70 60 69 49 72 

    Std. Dev. 31.756 37.172 33.747 37.640 32.689 

    Obs. 1025 1154 735 1538 887 

Ind. Bids >2 

   

      

 Mean 71.555 67.892††† 69.086† 68.1582††† 72.307 

 Median 72 69 71 70 75 

 Std. Dev. 29.520 29.4516 30.616 25.215 28.338 

  Obs. 988 928 690 980 825 

       

Joint Bids  Mean 92.960 NA 85.849††† 90.4589 100.139††† 

    Median 96 NA 85.5 90 101 

    Std. Dev. 21.589 NA 21.678 19.508 16.894 

    Obs. 247 0 272 207 101 

         

All Bids  Mean 73.688 54.988††† 70.616†† 49.6481††† 70.740†† 

    Median 77 60 75 57 75 

    Std. Dev. 31.500 37.172 32.303 38.968 32.965 

    Obs. 1272 1154 1007 1745 988 

       

All Bids>2  Mean 75.836 67.8922††† 73.825 72.0472††† 75.342 

    Median 78 69 76 74 79 

    Std. Dev. 29.381 29.452 29.353 25.741 28.663 

    Obs. 1235 928 962 1187 926 

       
       Level of statistical confidence when compared to T0:  †:p< 0.1; 

††
:p< 0.05; and 

 †††
: p<0.01. 

 
 
Table 4: Descriptive statistics of Bid-to-Value ratios for bids greater than two 

       
       

    
T0 T1(NoJ) R1(No2B) R2(X2) R3(Dom) 

Ind. Bids  Mean 0.7870 0.7561††† 0.7631††† 0.6901††† 0.8055††† 

    Median 0.8182 0.7924 0.7971 0.7059 0.8333 

    Std. Dev. 0.1448 0.1646 0.1493 0.1306 0.1497 

    Obs. 988 928 690 980 825 

         

Joint Bids  Mean 0.8013 NA 0.7510††† 0.7176††† 0.7882 

    Median 0.8130 NA 0.7608 0.7391 0.7928 

    Std. Dev. 0.1122 NA 0.0932 0.0992 0.0879 

    Obs. 247 0 272 207 101 

         

All bids  Mean 0.7899 0.7561††† 0.7597††† 0.6949††† 0.8036†† 

    Median 0.8156 0.7924 0.7813 0.7101 0.8265 

    Std. Dev. 0.1389 0.1646 0.1359 0.1261 0.1444 

    Obs. 1235 928 962 1187 926 

       
       Level of statistical confidence when compared to T0:  †:p< 0.1; 

††
:p< 0.05; and 

 †††
: p<0.01. 
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4.3 Auction Performance: Revenue 

The bid-to-value ratios identified above provide a representation of the competitive pressure 

felt by bidders. Ultimately, however, only the winning bids determine the overall performance of 

the auction in terms of the seller’s revenue. Table 5 reports the bid-to-value ratio of lots won and 

allocated in the auctions. The data presented are to be interpreted as the descriptive statistics of the 

proportion of winner’s value that is captured by the seller through the sale price (thus excluding 

lots not sold). 

 
Table 5: Descriptive Statistics; Revenue per lot as a fraction of winner’s value 
 

  T0 T1(NoJ) R1(No2B) R2(X2) R3(Dom) 

Mean 0.840 0.827 0.809††† 0.727††† 0.835 

Median 0.843 0.833 0.813 0.738 0.846 

S. D. 0.098 0.116 0.085 0.104 0.088 

Obs 563 289 366 530 299 

Level of statistical confidence when compared to T0:  †:p< 0.1; 
††

:p< 0.05; and 
 †††

: p<0.01. 

 

Winners in T1 bid on average the same proportion of value as winners in the base 

treatment (84% and 82.6% are not statistically different). Recall, however, that the distribution of 

valuation in T0 stochastically dominates the distribution of valuation in T1. Thus, while the profit 

margins on the lots are equal, the total revenue in T1 are bound to be lower since no value-

enhancing joint bids can be formed. This is confirmed in the first line of Table 6, showing that the 

absence of joint bids depresses winning bids (the mean auction revenue is 673.9 versus 737.5).  

The next row in Table 6 shows that the maximum possible mean revenue is 1040.1 for the 

joint bid treatment but only 911.28 without joint bids. This is computed differently for the no joint 

bid treatment and all other treatments.  For T1 it is computed as the average across all auctions of 

the sum of the highest individual valuations across all potential bidders. This maximum total 

revenue, therefore, is simply the revenue the seller would have obtained if the bidder with the 

highest value won the lot and paid exactly that value. For the other four treatments, the maximum 

possible revenue is the sum over all lots of the highest possible total value, where the values of the 

two goods do not have to be from the same bidder (i.e. allowing of the highest values to come from 

joint bids whenever beneficial). The last line shows the mean over all auctions of the percentage of 

revenue in an auction divided by the maximum possible revenue (this mean of the ratios is close 



21 
 

but not exactly the same as the ratio of the means obtained by dividing numbers in line 1by those in 

line 2). The results confirm that when joint bids are prohibited, a similar proportion of potential 

revenue is actually achieved, but overall revenue are substantially smaller than when joint bids are 

allowed. This is the result of the inability of bidders to form welfare enhancing joint bids. 

 

Table 6: Average Auction Revenue as a fraction of Maximum Possible Revenue 
 

 
T0 T1(NoJ) R1(No2B) R2(X2) R3(Dom) 

Mean Auction Revenue 737.55 673.95 700.52 1223.38 753.5 

Mean Maximum Revenue Possible 1040.08 911.28 1011.68 2046.20 1026.60 

Mean % of Max Revenue Achieved 70.83% 73.60% 69.01% 59.62%††† 73.36% 

Obs 60 40 50 40 40 

Level of statistical confidence when compared to T0:  †:p< 0.1; 
††

:p< 0.05; and 
 †††

: p<0.01. 

 

4.4 Auction Performance: Efficiency 

Of importance to economists and policy makers is the ability of auctions to efficiently allocate 

the lots being sold. In the case of forestry auctions for bundled goods, one important criterion to 

judge the different auctions is their ability to allocate each lot and its component parts to the bidder 

with highest value (allocative efficiency). The benchmark used for computing the level of efficiency 

realized in our auctions is the optimal allocation of each good for that auction, net of the reserve 

price of the seller (forest plots are not lost if not sold), and accounting for the penalties imposed by 

allocating more than four lots per bidder.6  We compare the gains in this benchmark allocation 

against the gains actually realized empirically by players in each auction. This is equal to the sum of 

the values realized by buyers for all of the goods sold, minus, once again, the reserve price of sold 

lots and the penalties assessed on players. To normalize the results across auctions, we take the 

                                                           
6
 The optimal allocation for each auction was computed first by allocating each good (i.e. half lot) in the 

auction to the participant with the highest value for that good. If the sum of the highest two values was lower 
than the lot’s reserve price, it would be suboptimal to sell it and the lot would remain unsold in the final 
allocation. Once this initial allocation was computed, each player’s resulting penalties was assessed. 
Remember that penalties in our design are meant to represent true costs (transactions or otherwise) 
associated with purchasing stands in excess of capacity. As a result, penalties resulting from the allocation 
need to be subtracted from the value of stands in the allocation. However, the existence of penalties triggered 
an algorithm exploring whether any good that marginally triggered a penalty of 10 could be reassigned to the 
next highest value user. An allocation is superior to the initial allocation if a player can be found who has a 
value for the good no more than 10 below the value of the initial buyer, and where reallocating the good to 
this user would eliminate the initial penalty but not trigger one to the new player. Hence, in a two step 
process, the initial allocation is re-optimized and reallocations made when a penalty can be avoided at a cost 
of less than 10.  
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ratio of realized surplus to the surplus in the optimal allocation. The result is an efficiency index 

between zero and one.  

Table 7 presents the descriptive statistics and Figure 4 pictures the cumulative distributions of 

efficiency levels for the different treatments. Inspection of those results reveals a significant drop in 

efficiency when joint bids are not allowed. Looking at means, for example, reveals an efficiency level 

of 77.6% with joint bids and 69.7% without joint bids. The baseline level of efficiency of 69.7% is 

due to the facts that lots are sometimes unallocated, not allocated to the highest bidder, or penalties 

are imposed. Despite these costs and the complexity or having 8 lots, T1 captures a significant 

fraction of the potential surplus. The main point, however, is that allowing joint bids increases 

overall efficiency by more than 10 percentage points, which is an economically significant 

improvement.     

 

Table 7: Efficiency Level per Auction 

  

  T0 

 

 

T1(NoJ) R1(No2B) R2(X2) R3(Dom) 

Mean 0.776 0.697††† 0.792 0.788 0.823 

Median 0.783 0.711 0.805 0.798 0.821 

S.D. 0.099 0.109 0.103 0.084 0.071 

Min 0.489 0.463 0.504 0.581 0.628 

Max 0.946 0.871 0.968 0.918 0.961 

Obs 60 40 50 40 40 

Level of statistical confidence when compared to T0:  †:p< 0.1; 
††

:p< 0.05; and 
 †††

: p<0.01. 
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Figure 4: CDF of Auction Efficiency Results by Treatment 

  

5. Robustness: No Two Bidder Rule, Excess Supply, and Capacity Constraint 

As we have seen, joint bidding has a significant and positive impact on bid levels, revenue and 

efficiency in the experimental setting of our auctions. Are these effects sensitive to the 

characteristics of the auction environment? Furthermore, it is worth asking whether those results 

hold across the various regional scenarios. The appendix breaks down the results across the four 

regional distributions of players and lots. Each distribution has eight lots (sixteen in R2) and six 

players. When comparing T0 and T1, all of our conclusions hold in each regional scenario in the 

sense that the direction of the impact of allowing joint bidding remain the same (though in some 

cases, the smaller sample sizes make the differences not statistically significant). In this section, 

therefore, we turn to a comparison of the results in three robustness treatments against the 

baseline treatment (T0). The first robustness looks at the effect of the two-bidder auction rule, 

while the other two modify the general level of competition between players: R2 doubles the 

number of lots offered; R3 removes the soft capacity constraint (penalties for buying more than 4 

goods) on two players (one in each “region”). 
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5.1  No Two Bidder Rule (R1) 

Referring back to Table 2, note that removing the two-bidder rule leads to an increase in the 

propensity to bid jointly (27% versus 19% of joint bids), a decrease in bids at the starting price of 

86 and a small increase in the number of bids equal to two. We do not have a solid explanation for 

the increase in the proportion of bids submitted jointly, although it may be argued that joint bids 

below 86 for mid-value lots have a relatively small chance of success when there are only three 

potential bidders and the two-bidder rule is in place. The significant difference in the proportion of 

bids equal to 86 demonstrates that players understand the strategic value of bidding the starting 

price of 86 to escape the two bidder rule under T0. More importantly, Tables 4 and 5 show that 

players bid less aggressively in the absence of the two bidder rule. As a result, auction revenue is 

lower on average (700.5 versus 737.6 and the difference is not significant but this is partly 

explained by the fact that the number observations drops dramatically when we aggregate data at 

the auction level).  There is no significant change in efficiency, however.  We conclude that the two 

bidder rule increases bid aggressiveness and auction revenue but does not affect efficiency.  

5.1 Excess Supply (R2) 

R2 differs from T0 in two dimensions: the length of the communication period and the number 

of lots offered. Thus, we compare R2 both with T0 and with two additional sessions of T0 ran using 

communication periods that are of the same length as in R2 (not shown here). The main 

conclusions do not change when we hold constant the length of the communication period. 

Increasing the supply of lots offered significantly decreases the proportion of bids that are joint and 

increases significantly the number of bids at two (32% of bids are equal to two against 2.2% in 

T0).7 Again, we check the collusion hypothesis by comparing the average bid level and bid-to-value 

ratio for bids that are made on a lot where a bid of two is also entered and for lots where no such 

bid is made.  Although bid levels are similar across the two groups, we find a significant difference 

in bid-to-value ratios (65.1% versus 71.2%). Again, we find less aggressive bidding on lots for 

which a bid of two is entered. Taken together, these results hint at a significant lack of competitive 

bidding and an increase in collusive behavior when there is excess supply. Consistent with this 

interpretation, Table 5 shows that bidders bid a smaller fraction of their valuation and Table 6 

shows a significant decrease in revenue as a fraction of maximum possible revenue. Efficiency 

levels in this treatment are only marginally lower that in T0 and the difference is not statistically 

significant. Thus, while collusion significantly affected revenue, it does not affect the auctions’ 

                                                           
7 This difference could be due to the longer communication period, but in the two additional sessions of T0 
conducted with equally long communication periods, the proportion of bids at 2 was observed to be 2.7% and 
thus cannot explain the vast increase observed in R2. 
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efficiencies. It suggests that despite their anti-competitive nature, the bidding rings formed in this 

treatment are effective at allocating goods to the player with the highest value. To sum up, a 

decrease in the overall level of competition caused by excess supply induces more collusion, lower 

auction revenues, but does not change efficiency.  

This clearly indicates the importance of maintaining a tight control over the supply of lots in an 

auction, since excess supply makes it easier for players to divide the market and avoid competition 

for lots. In the context of field auctions, this makes it more difficult to properly manage public 

forests. On the one hand, supply must be sufficiently tight to create scarcity and competition on the 

auction market, but this runs the risk of choking the industry if the supply of timber is accidently 

set too low to allow proper functioning of the industry. In general, mills should be allowed to 

maintain private forest reserves or baseline access to public forests, making the auction the source 

of their marginal supply needs only. Auctions can be used as the instrument of marginal sales from 

which stumpage fees can be set for the baseline supply as well. 

5.2 Unconstrained Players (R3) 

Unconstrained players do not face a penalty for purchasing more than two lots like other 

players do. De facto, these players can realize the full face value of a lot while the other players must 

adjust their bidding to account for expected losses once the two lot capacity has been reached. 

Much like the formation of joint bids creates strong and weak players, removing the penalties for 

two players in a group can be thought also as creating strong and weak players. The treatment with 

unconstrained players has fewer joint bids and slightly more bids of two relative to T0. Efficiency is 

higher although the difference is not significant. This is likely attributable to the lower overall 

penalties resulting from removing the capacity constraint on two players.  

6. Summary and Conclusions 

We study the impact of allowing joint bidding in simultaneous multi-units first price sealed bid 

auctions for bundled goods on bidding behavior, revenue and efficiency. Joint bidding resulted in 

higher valuations for the lots, and higher bids for them, but overall, winning bids came in as similar 

proportions of the underlying values. The efficiency gains from joint bidding clearly outweighed the 

reduction in competition that takes place when two bidders become one or when players collude.  

When no joint bids are allowed, participants showed a significant increase in the number of 

collusive bids, and both total revenue and efficiency fell significantly. The fact that students in short 

experiments managed to collude should give pause to policy makers and point to the need to 

carefully monitor anomalous bidding patterns in field auctions. Overall, however, the results 

suggest that permitting joint bidding can result in substantial efficiency gains and increase revenue 

for the seller. 
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The research has immediate applications to forest stands that arbor a mixture of species. The 

auction treatments capture important environmental conditions and auction rules in the complex 

but policy relevant context of timber auctions implemented in Quebec. Moreover, we explore the 

robustness of the results to characteristics of the auction environment that are relevant in the 

timber auctions context. Excess supply produces the most collusion: while efficiency remained high, 

winning bids and auction revenues were substantially lower when supply was doubled. The 

removal of capacity constraints and the removal of the two bidder rule have less impact on the 

results. Overall, the results support the adoption of the set of rules considered by the government of 

Quebec in its timber auctions.  Although there is little evidence that rules requiring a minimum 

number of bids are effective at discouraging collusion in the laboratory, the results suggest that 

these rules can help detecting collusive bidding.  

  



27 
 

References 

Athey, S., and J. Levin. 2001. “Competition and Information in US Forest Service Timber Auctions,” 
Journal of Political Economy 109(2): 375–417 
 
Athey, S., Levin, J., & Seira, E. 2011. Comparing open and Sealed Bid Auctions: Evidence from Timber 
Auctions. The Quarterly Journal of Economics, 126(1), 207-257. 
 
Baldwin, L.H., R.C. Marshall, and J.-F. Richard, 1997. “Bidder Collusion at Forest Service  
Timber Sales”, Journal of Political Economy 105(4): 657-699. 
 
Brannman, L.E., 1996. “Potential Competition and Possible Collusion in Forest Service Timber  
Auction”, Economic Inquiry 34: 730-745. 

Burtraw, D., Goeree, J., Holt, C. A., Myers, E., Palmer, K., & Shobe, W. (2009). Collusion in auctions for 
emission permits: An experimental analysis. Journal of Policy Analysis and Management, 28(4), 
672-691. 
 
Canada Competition Act. R.S.C., 1985, c. C-34. http://www.laws.justice.gc.ca/eng/acts/C-
34/index.html   
 
Cassiman, B. and R. Veugelers. (2002).   R&D cooperation and spillovers: some empirical evidence 
from Belgium. American Economic Review, 92 (4) (2002), pp. 1169–1184. 
 
Chernomaz, K. 2012. On the effects of joint bidding in independent private value auctions: An 
experimental study. Games and Economic Behavior 76(2):690–710. 
 
d'Aspremont, C. and A. Jacquemin. (1988).   Cooperative and noncooperative R&D in duopoly with 
spillovers. American Economic Review, 78 (5) (1988), pp. 1133–1137. 
 
Duso, T., Roeller, L., & Seldeslachts, J. (2010). Collusion through Joint R&D: An Empirical 
Assessment. Tinbergen Institute Discussion Paper 10-112/1. 
 
Farrell, J., and Shapiro, C. (1990). Horizontal Mergers: An Equilibrium Analysis. The American 
Economic Review, 80(1), 107-126. 
 
Fischbacher, U. (2007). z-Tree: Zurich toolbox for ready-made economic experiments. Experimental 
Economics, 10(2), 171-178. 
 
Gugler, K., and Siebert, R. (2007). Market Power Efficiency Effects of Mergers and Research Joint 
Ventures: Evidence from the Semiconductor Industry. The Review of Economics and Statistics, 
89(4), 645–659. 

Gupta, S. (2001). The effect of bid rigging on prices: a study of the highway construction industry. 
Review of Industrial Organization, 19, 453–467. 

Gupta, S. (2002). Competition and collusion in a government procurement auction market, Atlantic 
Economic Journal, 30, 13–25.Haile, P. 2001. “Auctions with Resale Markets: An Application to US 
Forest Service Timber Sales,” American Economic Review 91: 399–427. 
 

http://www.laws.justice.gc.ca/eng/acts/C-34/index.html
http://www.laws.justice.gc.ca/eng/acts/C-34/index.html


28 
 

Hendricks, K., and Porter, R. H. (1989). Collusion in Auctions. Annals of Economics and Statistics, 
15/16, 217-230. 
 
Isaac, R. M., & Walker, J. M. 1985. Information and conspiracy in sealed bid auctions. Journal of 
Economic Behavior & Organization, 6(2), 139-159. 
 
Kamien, M. and E. Muller, I. Zang. (1992). Research joint ventures and R&D cartels. American 
Economic Review, 82 (5) (1992), pp. 1293–1306. 
 
Kwasnica, A. M. (2000). The choice of cooperative strategies in sealed bid auctions. Journal of 
Economic Behavior & Organization, 42(3), 323-346. 

Lebrun, B., 1999. First price auctions in the asymmetric n bidder case. International Economic 
Review 40, 125–142.  

Maskin, E., Riley, J., 2000. Asymmetric auctions. Review of Economic Studies 67, 413–438.  

Moody, C. E.  Jr. and Kruvant, W. J. (1988). Joint Bidding, Entry, and the Price of OCS Leases. The 
RAND Journal of Economics, 19(2), 276-284. 
Li, T., & Perrigne, I. 2003. Timber sale auctions with random reserve prices. Review of Economics 
and Statistics, 85(1), 189-200. 
 
Mead, W. J. 1967. “Natural Resource Disposition Policy: Oral Auctions vs. Sealed Bids,” Natural 
Resource Journal 7:194–224. 
 
Paarsch, H. 1991. “Empirical Models of Auctions and an Application to British Columbia Timber 
Sales,” University of British Columbia mimeo. 
 
Porter, R. and Zona D. (1993). Detection of bid rigging in procurement auctions. Journal of Political 
Economy, 101, 518–538. 
 
Saphores, J. D., Vincent, J. R., Marochko, V., Abrudan, I., Bouriaud, L., & Zinnes, C. 2007. Detecting 
Collusion In Timber Auctions: An Application To Romania. World Bank Research Working 
papers, 1(1), 1-58. 

Suetens, Sigrid. (2005). Cooperative and non-cooperative R&D in experimental duopoly markets. 
International Journal of Industrial Organization, 23, 63– 82.   

Suetens, Sigrid. (2008). Does R&D cooperation facilitate price collusion? An experiment. Journal of 
Economic Behavior & Organization, 66, 822–836. 
 
 
 
  



29 
 

Appendix 
 

Table A1 
Bids Submitted Jointly    

        
             T0 (Control) T1(No2B) T2(2X) T3(NoJ) T4(Dom) 

 2-0-6 % of bids=joint 0.188 0.202 0.102††† NA 0.089††† 

    # of bids=joint 57 50 43 NA 21 
  Total # of Bids 304 247 420 264 235 

          

 2-3-3 % of bids=joint 0.194 0.282†† 0.135† NA 0.117†† 

    # of bids=joint 50 57 45 NA 23 
    Total # of Bids 258 202 333 229 197 

Regional 
Scenario 2-4-2 % of bids=joint 0.216 0.302††† 0.127††† NA 0.105††† 

    # of bids=joint 88 96 72 NA 33 

    Total # of Bids 408 318 567 374 314 
          

 2-6-0 % of bids=joint 0.172 0.288††† 0.111†† NA 0.099†† 

    # of bids=joint 52 69 47 NA 24 

    Total # of Bids 302 240 425 287 242 
          

 All % of bids=joint 0.194 0.270††† 0.119††† NA 0.102††† 

    # of bids=joint 247 272 207 NA 101 

    Total # of Bids 1272 1007 1745 1154 988 
        
        

Level of statistical confidence when compared to T0:  †:p< 0.1; ††:p< 0.05; and  †††: p<0.01. 

 
 
Table A2 
Data on Bids=2 
 

 
 

   T0 (Control) T1(No2B) T2(2X)        T3(NoJ)     T4(Dom) 

 2-0-6 % of Bids=2 6.58 4.45 35.48††† 26.14††† 16.60††† 

    # of Bids=2 20 11 149 69 39 
  Total # of Bids 304 247 420 264 235 

          

 2-3-3 % of Bids=2 3.88 3.47 28.83††† 18.34††† 2.54 

    # of Bids=2 10 7 96 42 5 
    Total # of Bids 258 202 333 229 197 

          

Regional 
Scenario 

2-4-2 % of Bids=2 0.98 3.77†† 31.22††† 16.31††† 4.78††† 

   # of Bids=2 4 12 177 61 15 
    Total # of Bids 408 318 567 374 314 

          

 2-6-0 % of Bids=2 0.99 6.25††† 32.00††† 18.82††† 1.24 

    # of Bids=2 3 15 136 54 3 
    Total # of Bids 302 240 425 287 242 

          

 All % of Bids=2 2.91 4.47†† 31.98††† 19.58††† 6.28††† 

    # of Bids=2 37 45 558 226 62 
    Total # of Bids 1272 1007 1745 1154 988 
        
        

Level of statistical confidence when compared to T0:  †:p< 0.1; ††:p< 0.05; and  †††: p<0.01. 
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Table A3 
Data on Bids=86 
 

 

     T0 (Control) T1(No2B) T2(2X) T3(NoJ) T4(Dom) 

 2-0-6 % of Bids=86 3.29 0.81†† 5.24 3.41 4.68 

    # of Bids=86 10 2 22 9 11 
  Total # of Bids 304 247 420 264 235 

          

 2-3-3 % of Bids=86 2.71 0.50† 3.00 4.80 4.06 

    # of Bids=86 7 1 10 11 8 
    Total # of Bids 258 202 333 229 197 

          

Regional 
Scenario 

2-4-2 % of Bids=86 1.96 0.63 2.65 4.01† 2.55 

   # of Bids=86 8 2 15 15 8 
    Total # of Bids 408 318 567 374 314 

          

 2-6-0 % of Bids=86 0.99 0.83 3.29†† 2.44 2.067 

    # of Bids=86 3 2 14 7 5 
    Total # of Bids 302 240 425 287 242 

          

 All % of Bids=86 2.20 0.70††† 3.50†† 3.64†† 3.24 

    # of Bids=86 28 7 61 42 32 
    Total # of Bids 1272 1007 1745 1154 988 
        
        

Level of statistical confidence when compared to T0:  †:p< 0.1; ††:p< 0.05; and  †††: p<0.01. 

 

 
 
Table A4     

Descriptive Statistics     

All Bids >2      
        
        

 
 

 T0 (Control) T1(No2B) T2(2X) T3(NoJ) T4(Dom) 

 2-0-6 Mean 75.306 71.805 69.173 66.610 74.066 

  S.D. 28.158 30.470 22.933 28.797 28.863 

    Obs.  284 236 271 195 196 

        
 2-3-3 Mean 75.875 69.897 74.0338 69.529 72.432 

    S.D. 27.957 28.821 25.956 28.043 28.736 

Regional  Obs.  248 195 237 187 192 

Scenario          
 2-4-2   Mean 76.606 75.431 72.7974 66.981 78.027 

  S.D. 30.819 29.252 26.120 30.197 26.476 

    Obs.  404 306 390 313 299 

          
 2-6-0   Mean 75.264 77.164 72.1004 68.876 75.368 

    S.D. 29.800 28.380 27.390 30.167 30.871 

    Obs.  299 225 289 233 239 

 
  

75.836 73.825 72.047 67.892 75.342 All Mean 
  S.D. 29.381 29.353 25.741 29.452 28.663 

  Obs.  1235 962 1187 928 926 
        
        

Level of statistical confidence when compared to T0:  †:p< 0.1; ††:p< 0.05; and  †††: p<0.01. 
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Table A5 
Descriptive Statistics for Bid/Value    

WINNING BIDS ONLY    
        
        

 
 

   T0 (Control) T1(No2B) T2(2X) T3(NoJ) T4(Dom) 

 2-0-6 Mean 0.827 0.818 0.714††† 0.827 0.816 

    S.D. 0.121 0.101 0.1028 0.099 0.104 

  Obs.  123 105 143 76 87 
          

 2-3-3 Mean 0.842 0.814†† 0.743††† 0.824 0.847 

    S.D. 0.064 0.083 0.105 0.121 0.080 

    Obs.  84 70 103 62 59 
Regional 
Scenario 2-4-2 Mean 0.849 0.803† 0.721††† 0.842 0.841 

    S.D. 0.108 0.078 0.105 0.131 0.084 

    Obs.  130 113 171 91 93 

          
 2-6-0 Mean 0.846 0.801††† 0.740††† 0.810††† 0.844 

    S.D. 0.066 0.0745 0.101 0.108 0.071 

    Obs.  86 78 113 60 60 

          
 All Mean 0.840 0.809††† 0.727††† 0.827 0.835 

    S.D. 0.098 0.085 0.104 0.116 0.088 

    Obs.  423 366 530 289 299 
        
        

Level of statistical confidence when compared to T0:  †:p< 0.1; ††:p< 0.05; and  †††: p<0.01. 

 

 

 


