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Résumé / Abstract 
 

The use of many moment conditions improves the asymptotic efficiency of the instrumental variables 

estimators. However, in finite samples, the inclusion of an excessive number of moments increases the 

bias. To solve this problem, we propose regularized versions of the limited information maximum 

likelihood (LIML) based on three different regularizations: Tikhonov, Landweber Fridman, and 

principal components. Our estimators are consistent and reach the semiparametric efficiency bound 

under some standard assumptions. We show that the regularized LIML estimator based on principal 

components possesses finite moments when the sample size is large enough. The higher order 

expansion of the mean square error (MSE) shows the dominance of regularized LIML over regularized 

two-staged least squares estimators. We devise a data driven selection of the regularization parameter 

based on the approximate MSE. A Monte Carlo study shows that the regularized LIML works well and 

performs better in many situations than competing methods. Two empirical applications illustrate the 

relevance of our estimators: one regarding the return to schooling and the other regarding the elasticity 

of intertemporal substitution. 

 

Mots clés/Keywords : High-dimensional models, LIML, many instruments, MSE, 

regularization methods. 
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1 Introduction

The problem of many instruments is a growing part of the econometric literature. This

paper considers the e¢ cient estimation of a �nite dimensional parameter in a linear

model where the number of potential instruments is very large or in�nite. The relevance

of such models is due to the collection of large data sets along with the increased power

of computers. Many moment conditions can be obtained from nonlinear transforma-

tions of an exogenous variable or from using interactions between various exogenous

variables. One empirical example of this kind often cited in econometrics is Angrist and

Krueger (1991) who estimated return to schooling using many instruments, Dagenais

and Dagenais (1997) also estimate a model with errors in variables using instruments

obtained from higher-order moments of available variables. The use of many moment

conditions improve the asymptotic e¢ ciency of the instrumental variables (IV) estima-

tors. For example, Hansen, Hausman, and Newey (2008) have recently found that in

an application from Angrist and Krueger (1991), using 180 instruments, rather than

3 shrinks correct con�dence intervals substantially toward those of Kleibergen (2002).

But, it has been observed that in �nite samples, the inclusion of an excessive number

of moments may result in a large bias (Andersen and Sorensen (1996)).

To solve the problem of many instruments e¢ ciently, Carrasco (2012) proposed an

original approach based on regularized two-stage least-squares (2SLS). However, such

regularized version is not available for the limited information maximum likelihood

(LIML). Providing such estimator is desirable, given LIML has better properties than

2SLS (see e.g. Hahn and Inoue (2002), Hahn and Hausman (2003), and Hansen,

Hausman, and Newey (2008)). In this paper, we propose a regularized version of LIML

based on three regularization techniques borrowed from the statistic literature on linear

inverse problems (see Kress (1999) and Carrasco, Florens, and Renault (2007)). The

three regularization techniques were also used as in Carrasco (2012) for 2SLS. The �rst

estimator is based on Tikhonov (ridge) regularization. The second estimator is based

on an iterative method called Landweber-Fridman. The third regularization technique

called principal components or spectral cut-o¤ is based on the principal components

associated with the largest eigenvalues. In our paper, the number of instruments is not
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restricted and may be smaller or larger than the sample size or even in�nite. We also

allow for a continuum of moment restrictions. Only strong instruments are considered

here.

We show that the regularized LIML estimators are consistent, asymptotically nor-

mal, and reach the semiparametric e¢ ciency bound under some standard assumptions.

We show that the regularized LIML based on principal components has �nite �rst mo-

ments provided the sample size is large enough. This result is in contrast with the fact

that standard LIML does not possess any moments in �nite sample.

Following Nagar (1959), we derive the higher-order expansion of the mean-square

error (MSE) of our estimators and show that the regularized LIML estimators domi-

nate the regularized 2SLS in terms of the rate of convergence of the MSE. Our three

estimators involve a regularization or tuning parameter, which needs to be selected in

practice. The expansion of the MSE provides a tool for selecting the regularization pa-

rameter. Following the same approach as in Carrasco (2012), Okui (2011) and Donald

and Newey (2001), we propose a data-driven method for selecting the regularization

parameter based on a cross-validation approximation of the MSE and show that this

selection method is optimal.

The simulations show that the regularized LIML is better than the regularized 2SLS

in almost every case. Simulations show that LIML estimator based on Tikhonov and

Landweber-Fridman regularizations have most of the times smaller median bias and

smaller MSE than LIML estimator based on principal components and than LIML

estimator proposed by Donald and Newey (2001).

There is a growing amount of articles on many instruments and LIML. The �rst

papers focused on the case where the number of instruments grow with the sample

size; n, but remains smaller than n. In this case, 2SLS estimator is inconsistent while

LIML is consistent (see Bekker (1994), Chao and Swanson (2005), Hansen, Hausman,

and Newey (2008), Hausman, Newey, Woutersen, Chao, and Swanson (2012) among

others). Recently, some work has been done in the case where the number of instru-

ments exceed the sample size. Kuersteiner (2012) considers a kernel weighted GMM

estimator, Okui (2011) uses shrinkage. Bai and Ng (2010) and Kapetanios and Mar-

cellino (2010) assume that the endogenous regressors depend on a small number of

3



factors which are exogenous, they use estimated factors as instruments. Belloni, Chen,

Chernozhukov, and Hansen (2012) requires the sparsity of the �rst stage equation and

apply an instrument selection based on Lasso. Recently, Hansen and Kozbur (2013)

propose a ridge regularized jacknife instrumental variable estimator which does not

require sparsity and provide tests with good sizes. The paper which is the most closely

related to ours is that by Donald and Newey (2001) (DN henceforth) which select the

number of instruments by minimizing an approximate MSE. Their method relies on

an a priori ordering of the instruments in decreasing order of strength. Our method

does not require such an ordering of the instruments because all the instruments are

taken into consideration. It assumes neither a factor structure, nor a sparse �rst stage

equation. However, it assumes that the instruments are su¢ ciently correlated among

themselves so that the inversion of the covariance matrix is ill-posed. This condition

is not very restrictive as discussed in Carrasco and Florens (2012).

The paper is organized as follows. Section 2 presents the three regularized LIML

estimators and their asymptotic properties. Section 3 derives the higher order expan-

sion of the MSE of the three estimators. In Section 4, we give a data-driven selection of

the regularization parameter. Section 5 presents a Monte Carlo experiment. Empirical

applications are examined in Section 6. Section 7 concludes. The proofs are collected

in appendix.

2 Regularized version of LIML

This section presents the regularized LIML estimators and their properties. We estab-

lish that, under some conditions, the regularized LIML estimator based on principal

components has �nite moments. We also show that the regularized LIML estimators

are consistent and reach the semiparametric e¢ ciency bound under some standard

assumptions.
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2.1 Presentation of the estimators

The model is 8<: yi =W 0
i�0 + "i

Wi = f(xi) + ui
(1)

i = 1; 2; ::::; n: E(uijxi) = E("ijxi) = 0, E("2i jxi) = �2" > 0. yi is a scalar and xi

is a vector of exogenous variables. Some rows of Wi may be exogenous, with the

corresponding rows of ui being zero. f(xi) = E(Wijxi) = fi is a p�1 vector of reduced

form values. The main focus is the estimation of the p� 1 vector �0.

In Model (1), the asymptotic variance of a
p
n-consistent regular estimators cannot

be smaller than �2"H
�1, where H = E(fif

0
i) (Chamberlain (1987)). This lower bound

is achieved by standard 2SLS if fi can be written as a �nite linear combination of

the instruments. In general, e¢ ciency can be reached only from an in�nite number

of instruments based on power series or exponential functions of xi (see Carrasco and

Florens (2012)). This observation implies that using many instruments is desirable in

terms of asymptotic variance. However, the bias of the instrumental variables estimator

increases with the number of instruments. To avoid a large bias, some form of instru-

ments selection or regularization need to be applied. To address this issue, Carrasco

(2012) proposed a regularized 2SLS estimator building on former work by Carrasco

and Florens (2000). Here, we will apply the same regularizations as in Carrasco (2012)

to LIML.

As in Carrasco (2012), we use a compact notation which allows us to deal with

a �nite, countable in�nite number of moments, or a continuum of moments. The

estimation is based on a sequence of instruments Zi = Z(� ;xi) where � 2 S may be an

integer or an index taking its values in an interval. Examples of Zi are the following.

- S = f1; 2; ::::Lg thus we have L instruments.

- Zij = (xi)j�1 with j 2 S = N, thus we have an in�nite countable instruments.

- Zi = Z(� ;xi) = exp(i� 0xi) where � 2 S = Rdim(xi); thus we have a continuum of

moments.
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The estimation of � is based on the orthogonality condition:

E[(yi �W 0
i�)Zi] = 0:

Let � be a positive measure on S. For a detailed discussion on the role of �, see

Carrasco (2012). We denote L2(�) the Hilbert space of square integrable functions

with respect to �. We de�ne the covariance operator K of the instruments as

K : L2(�) ! L2(�)

(Kg)(�1) =

Z
E(Z(�1;xi)Z(�2;xi))g(�2)�(�2)d�2

where Z(�2;xi) denotes the complex conjugate of Z(�2;xi). K is assumed to be a

compact operator (see Carrasco, Florens, and Renault (2007) for a de�nition). Carrasco

and Florens (2012) show that � can be chosen so that K is compact so that the

compactness assumption is not very restrictive:

Let �j and �j j = 1; 2; ::: be respectively the eigenvalues (ordered in decreasing

order) and the orthogonal eigenfunctions of K. The operator K can be estimated by

Kn de�ned as:

Kn : L
2(�) ! L2(�)

(Kng)(�1) =

Z
1

n

nX
i=1

Z(�1;xi)Z(�2;xi)g(�2)�(�2)d�2

If the number of moment conditions is in�nite, the inverse of Kn needs to be

regularized because it is nearly singular. By de�nition (see Kress, 1999, page 269), a

regularized inverse of an operator K is

R� : L
2(�) ! L2(�)

such that lim
�!0

R�K' = ', 8' 2 L2(�):

We consider four di¤erent types of regularization schemes: Tikhonov (T), Landwer-

ber Fridman (LF), Spectral cut-o¤ (SC) and Principal Components (PC). They are

de�ned as follows:
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1. Tikhonov(T)

This regularization scheme is closely related to the ridge regression1.

(K�)�1 = (K2 + �I)�1K

(K�)�1r =
1X
j=1

�j

�2j + �



r; �j

�
�j

where � > 0 and I is the identity operator.

2. Landweber Fridman (LF)

This method of regularization is iterative. Let 0 < c < 1=kKk2 where kKk is the

largest eigenvalue of K (which can be estimated by the largest eigenvalue of Kn).

'̂ = (K�)�1r is computed using the following procedure:

8<: '̂l = (1� cK2)'̂l�1 + cKr; l=1,2,...,
1

�
� 1;

'̂0 = cKr;

where
1

�
� 1 is some positive integer. We also have

(K�)�1r =
1X
j=1

[1� (1� c�2j )
1
� ]

�j



r; �j

�
�j :

3. Spectral cut-o¤ (SC)

It consists in selecting the eigenfunctions associated with the eigenvalues greater

than some threshold.

(K�)�1r =
X
�2j��

1

�j



r; �j

�
�j ;

for � > 0:

4. Principal Components (PC)

This method is very close to SC and consists in using the �rst eigenfunctions:

(K�)�1r =

1=�X
j=1

1

�j



r; �j

�
�j

1
:; :� represents the scalar product in L2(�) and in Rn (depending on the context).
7



where
1

�
is some positive integer. As the estimators based on PC and SC are

identical, we will use PC and SC interchangeably.

The regularized inverses of K can be rewritten using a common notation as:

(K�)�1r =
1X
j=1

q(�; �2j )

�j



r; �j

�
�j

where for LF q(�; �2j ) = [1 � (1 � c�2j )
1=�], for SC q(�; �2j ) = I(�2j � �), for PC

q(�; �2j ) = I(j � 1=�) and for T q(�; �2j ) =
�2j

�2j + �
.

In order to compute the inverse of Kn; we have to choose the regularization para-

meter �. Let (K�
n )
�1 be the regularized inverse of Kn and P� a n� n matrix de�ned

as in Carrasco (2012) by P� = T (K�
n )
�1T � where

T : L2(�) ! Rn

Tg =

0BBBBBBBBB@



Z1; g

�

Z2; g

�
:

:

Zn; g

�

1CCCCCCCCCA
and

T � : Rn ! L2(�)

T �v =
1

n

nX
j=1

Zivi

such that Kn = T �T and TT � is an n�n matrix with typical element


Zi; Zj

�
n

. Let �̂j ,

�̂1 � �̂2 � ::: > 0, j = 1; 2; ::: be the orthonormalized eigenfunctions and eigenvalues of

Kn and  j the eigenfunctions of TT
�. We then have T �̂j =

p
�j j and T

� j =
p
�j�̂j .

Remark that for v 2 Rn, P�v =
1X
j=1

q(�; �2j )


v;  j

�
 j :

Let W =
�
W 0
1; W

0
2, ..., W

0
n

�0
n � p and y =

�
y01; y

0
2, ..., y

0
n

�0
n � p. Let us de�ne

k-class estimators as

8



�̂ = (W 0 (P� � �In)W )�1W 0 (P� � �In) y:

where � = 0 corresponds to the regularized 2SLS estimator studied in Carrasco (2012)

and

� = �� = min
�

(y �W�)0P�(y �W�)

(y �W�)0(y �W�)

corresponds to the regularized LIML estimator we will study here.

2.2 Existence of moments

The LIML estimator was introduced to correct the bias problem of the 2SLS in the

presence of many instruments. It is thus recognized in the literature that LIML has

better, small-sample, properties than 2SLS. However, this estimator has no �nite mo-

ments. Guggenberger (2008) shows by simulations that LIML and GEL have large

standard deviations. Fuller (1977) proposes a modi�ed estimator that has �nite mo-

ments provided the sample size is large enough. Moreover, Anderson (2010) shows

that the lack of �nite moments of LIML under conventional normalization is a feature

of the normalization, not of the LIML estimator itself. He provides a normalization

(natural normalization) under which the LIML have �nite moments. In a recent pa-

per, Hausman, Lewis, Menzel, and Newey (2011) propose a regularized version of CUE

with two regularization parameters and prove the existence of moments assuming these

regularization parameters are �xed. However, to obtain e¢ ciency these regularization

parameters need to go to zero. In the following proposition, we give some conditions

under which the regularized LIML estimator possesses �nite moments provided the

sample size is large enough.

Proposition 1. (Moments of the regularized LIML)

Assume
�
yi;W

0
i ; x

0
i

	
are iid, "i � iidN (0; �2"), X = (x1; x2; :::; xn). Moreover, assume

that the vector ui is independent of X, independent normally distributed with mean

zero and variance �u. Let � be a positive decreasing function of n.

The rth moment (r = 1; 2; ::) of the regularized LIML estimator with SC regularization

is bounded for all n greater than some n(r).
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Proof In Appendix.

As explained in the proof, we were not able to establish this result for Tikhonov

and LF regularizations, even though it may hold. Indeed, the simulations suggest that

the �rst two moments of the estimators based on T and LF exist.

2.3 Asymptotic properties of the regularized LIML

We establish that the regularized LIML estimators are asymptotically normal and reach

the semiparametric e¢ ciency bound. Let fa(x) be the ath element of f(x).

Proposition 2. (Asymptotic properties of regularized LIML)

Assume
�
yi;W

0
i ; x

0
i

�
are iid, E("2i jX) = �2", E(fif

0
i) exists and is nonsingular, K is

compact, � goes to zero and n goes to in�nity. Moreover, fa(x) belongs to the closure

of the linear span of fZ(:;x)g for a = 1,..., p. Then, the T, LF, and SC estimators of

LIML satisfy:

1. Consistency: �̂ ! �0 in probability as n and n�1=2 go to in�nity.

2. Asymptotic normality: If moreover, each element of E(Z(:;xi)Wi) belongs to the

range of K, then
p
n(�̂ � �0)

d! N
�
0; �2"[E(fif

0
i)]
�1�

as n and n� go to in�nity.

Proof In Appendix.

For the asymptotic normality, we need n� go to in�nity as in Carrasco (2012) for

2SLS.

The assumption "fa(x) belongs to the closure of the linear span of fZ(:;x)g for

a = 1; :::; p" is necessary for the e¢ ciency but not for the asymptotic normality. We

notice that all regularized LIML have the same asymptotic properties and achieve the

asymptotic semiparametric e¢ ciency bound, as for the regularized 2SLS of Carrasco

(2012). Therefore to distinguish among these di¤erent estimators, a higher-order ex-

pansion of the MSE is necessary.
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3 Mean square error for regularized LIML

Now, we analyze the second-order expansion of the MSE of regularized LIML estima-

tors. First, we impose some regularity conditions. Let kAk be the Euclidean norm of

a matrix A. f is the n� p matrix, f = (f(x1); f(x2); :::; f(xn))0.

Let �H be the p� p matrix �H = f 0f=n and X = (x1; :::; xn).

Assumption 1: (i) H = E(fif
0
i) exists and is nonsingular,

(ii) there is a � � 1=2 such that

1X
j=1



E(Z(:; xi)fa(xi)); �j

�2
�2�+1j

<1

where fa is the ath element of f for a = 1; 2:::p

Assumption 2: fWi; yi; xig iid, E("2i jX) = �2" > 0 and E(kuik5jX), E(j"ij5jX)

are bounded.

Assumption 3: (i) E[("i; u0i)
0("i; u

0
i)] is bounded, (ii) K is a compact operator with

nonzero eigenvalues, (iii) f(xi) is bounded.

These assumptions are similar to those of Carrasco (2012). Assumption 1(ii) is

used to derive the rate of convergence of the MSE. More precisely, it guarantees that

k f � P�f k= Op(�
�) for LF and PC and k f � P�f k= Op(�

min(2;�)) for T. The

value of � measures how well the instruments approximate the reduced form, f . The

larger �, the better the approximation is. The notion of asymptotic MSE employed

here is similar to the Nagar-type asymptotic expansion (Nagar (1959)), this Nagar-

type approximation is popular in IV estimation literature. We have several reasons to

investigate the Nagar asymptotic MSE. First, this approach makes comparison with

DN (2001) and Carrasco (2012) easier since they also use the Nagar expansion. Second,

a �nite sample parametric approach may not be so convincing as it would rely on a

distributional assumption. Finally, the Nagar approximation provides the tools to

derive a simple way for selecting the regularization parameter in practice.
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Proposition 3. Let �u" = E(ui"ijxi), �u = E(uiu
0
ijxi) and �v = E(viv

0
ijxi) with

vi = ui � "i
�u"
�2"
. If Assumptions 1 to 3 hold , �v 6= 0, E("2i vi) = 0 and n� ! 1 for

LF, SC,T regularized LIML, we have

n(�̂ � �0)(�̂ � �0)0 = Q̂(�) + r̂(�);

E(Q̂(�)jX) = �2" �H
�1 + S(�) + T (�);

[r̂(�) + T (�)]=tr(S(�)) = op(1);

S(�) = �2"
�H�1[�v

[tr((P�)2)]

n
+
f 0 (1� P�)2 f

n
] �H�1:

For LF, SC, S(�) = Op(1=�n+ �
�) and for T, S(�) = Op(1=�n+ �

min(�;2)):

The MSE dominant terms, S(�), is composed of two variance terms one which

increases when � goes to zero and the other term which decreases when � goes to

zero corresponding to a better approximation of the reduced form by the instruments.

Remark that for � � 2, LF, SC, and T give the same rate of convergence of the MSE.

However, for � > 2, T is not as good as the other two regularization schemes. This is

the same result found for the regularized 2SLS of Carrasco (2012). For instance if f

were a linear combination of the instruments, � would be in�nite, and the performance

of T would be far worse than that of PC or LF.

The MSE formulae can be used to compare our estimators with those in Carrasco

(2012). As in DN, the comparison between regularized 2SLS and LIML depends on

the size of �u". For �u" = 0 where there is no endogeneity, 2SLS has smaller MSE than

LIML for all regularization schemes, but in this case OLS dominates 2SLS. In order

to do this comparison, we need to be precise about the size of the leading term of our

MSE approximation

SLIML(�) = �2"
�H�1[�v

[tr((P�)2)]

n
+
f 0 (I � P�)2 f

n
] �H�1 (2)

for LIML and

S2SLS(�) = �H�1[�u"�
0
u"

[tr(P�)]2

n
+ �2"

f 0 (I � P�)2 f
n

] �H�1
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for 2SLS (see Carrasco (2012)). We know that

SLIML(�) � 1

n�
+ ��

S2SLS(�) � 1

n�2
+ ��

for LF, PC and if � < 2 in the Tikhonov regularization. For � � 2 the leading term of

the Tikhonov regularization is

SLIML(�) � 1

n�
+ �2

S2SLS(�) � 1

n�2
+ �2

The MSE of regularized LIML is of smaller order in � than that of the regularized

2SLS because the bias terms for LIML does not depend on �. This is similar to a

result found in DN, namely that the biais of LIML does not depend on the number of

instruments. For comparison purpose we minimize the equivalents with respect to �

and compare di¤erent estimators at the minimized point. We �nd that T, LF and PC

LIML are better than T, LF and PC 2SLS in the sense of having smaller minimized

value of the MSE, for large n. Indeed, the rate of convergence to zero of S(�) is n�
�

�+1

for LIML and n�
�

�+2 for 2SLS. The Monte Carlo study presented in Section 5 reveals

that almost everywhere regularized LIML performs better than regularized 2SLS.

4 Data driven selection of the regularization pa-

rameter

4.1 Estimation of the MSE

In this section we show how to select the regularization parameter �. The aim is to

�nd the � that minimizes the conditional MSE of 
0�̂ for some arbitrary p � 1 vector
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. This conditional MSE is:

MSE = E[
0(�̂ � �0)(�̂ � �0)0
jX]

� 
0S(�)


� S
(�):

S
(�) involves the function f which is unknown. We will need to replace S
 by an

estimate. Stacking the observations, the reduced form equation can be rewritten as

W = f + u

This expression involves n � p matrices. We can reduce the dimension by post-

multiplying by �H�1
:

W �H�1
 = f �H�1
 + u �H�1
 ,W
 = f
 + u
 (3)

where u
i = u0i �H
�1
 is a scalar. Then, we are back to a univariate equation. Let

v
 = v �H�1
 and denote

�2v
 = 
0 �H�1�v �H
�1
:

Using (2), S
(�) can be rewritten as

�2"[�
2
v


[tr((P�)2)]

n
+
f 0
 (I � P�)

2 f


n
]

We see that S
 depends on f
 which is unknown. The term involving f
 is the same

as the one that appears when computing the prediction error of f
 in (3).

The prediction error
1

n
E
h
(f
 � f̂�
 )0(f
 � f̂�
 )

i
equals to

R(�) = �2u

tr((P�)2)

n
+
f 0
 (I � P�)

2 f


n

As in Carrasco (2012), the results of Li (1986) and Li (1987) can be applied. Let ~� be a

preliminary estimator (obtained for instance from a �nite number of instruments) and

~" = y�W~�. Let ~H be an estimator of f 0f=n, possibly W 0P ~�W=n where ~� is obtained
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from a �rst stage cross-validation criterion based on one single endogenous variable,

for instance the �rst one (so that we get a univariate regression W (1) = f (1) + u(1)

where (1) refers to the �rst column).

Let ~u = (I � P ~�)W , ~u
 = ~u ~H�1
;

�̂2" = ~"
0~"=n; �̂2u
 = ~u

0

 ~u
=n; �̂uv" = ~u

0

"=n:

We consider the following goodness-of-�t criteria:

Mallows Cp (Mallows (1973))

R̂m(�) =
û
 û

n

+ 2�̂2u

tr(P�)

n
:

Generalized cross-validation (Craven and Wahba (1979))

R̂cv(�) =
1

n

û0
 û
�
1� tr(P�)

n

�2 :

Leave-one-out cross-validation (Stone (1974))

R̂lcv(�) =
1

n

nX
i=1

( �W
i � f̂
�

�i
)2;

where ~W
 =W ~H�1
, ~W
i is the i
th element of ~W
 and f̂�
�i = P��i ~W
�i . The n�(n�1)

matrix P��i is such that P
�
�i = T (K�

n�i)T
�
�i are obtained by suppressing i

th observation

from the sample. ~W
�i is the (n � 1) � 1 vector constructed by suppressing the i
th

observation of ~W
 .

The approximate MSE of 
0�̂ is given by:

Ŝ
(�) = �2"

�
R̂(�) + (�̂2v
 � �̂

2
u
 )

tr((P�)2)

n

�

where R̂(�) denotes either R̂m(�), R̂cv(�); or R̂lcv(�).
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Noting that �2v
 � �
2
u
 = ��

2
u
"=�

2
" where �u
" = E (u
i"i). We de�ne

Ŝ
(�) = �2"

"
R̂(�)�

�̂2u
"

�̂2"

tr((P�)2)

n

#
:

The selected regularization parameter2 is

�̂ = arg min
�2Mn

"
R̂(�)�

�̂2u
"

�̂2"

tr((P�)2)

n

#
(4)

where Mn is the index set of �. Mn is a compact subset of [0; 1] for T, Mn is such that

1=� 2 f1; 2; :::; ng for PC, and Mn is such that 1=� is a positive integer no larger than

some �nite multiple of n.

4.2 Optimality

The quality of the selection of the regularization parameter �̂ may be a¤ected by the

estimation of �H. A solution to avoid the estimation of �H is to select 
 such that �H�1


equals a deterministic vector chosen by the econometrician, for instance the unit vector

e. This choice is perfectly �ne as 
 is arbitrary. In this case, W
 = We, f
 = fe, and

u
 = ue. In this section, we will restrict ourselves to this case.

We wish to establish the optimality of the regularization parameter selection criteria

in the following sense
S
(�̂)

inf�2Mn S
(�)

P! 1 (5)

as n and n�!1 where �̂ is the regularization parameter de�ned in (4). The result (5)

does not imply that �̂ converges to a true � in some sense. Instead it establishes that

using �̂ in the criterion S
(�) delivers the same rate of convergence as if minimizing

S
(�) directly. For each estimator, the selection criteria provide a means to obtain

higher order asymptotically optimal choices for the regularized parameter. It also

means that the choice of � using the estimated MSE is asymptotically as good as if

the true reduced form were known.

2We drop �2" because it has no e¤ect on the selection of the regularization parameter.
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Assumption 4:

(i) E[((uie)
8)] is bounded. (i�) ui iid N (0;�u).

(ii) �̂2u

P! �2u
 , �̂

2
u
"

P! �2u
", �̂
2
"
P! �2",

(iii) lim
n!1

sup
�2Mn

�(P��i) <1 where �(P��i) is largest eigenvalue of P
�
�i,

(iv)
X
�

(n ~R(�))�2
P! 0 as n!1 with ~R is de�ned as R with P� replaced by P��i

(v) ~R(�)=R(�) P! 1 if either ~R(�) P! 0 or R(�) P! 0.

Proposition 4. Optimality of SC and LF

Under Assumptions 1-3 and Assumption 4 (i-ii), the Mallows Cp and Generalized

cross-validation criteria are asymptotically optimal in the sense of (5) for SC and LF.

Under Assumptions 1-3 and Assumption 4 (i-v), the leave-one out cross validation is

asymptotically optimal in the sense of (5) for SC and LF.

Optimality of T

Under Assumptions 1-3 and Assumption 4 (i�) and (ii), the Mallows Cp is asymptoti-

cally optimal in the sense of (5) for Tikhonov regularization.

Proof In Appendix.

In the proof of the optimality, we distinguish two cases: the case where the index

set of the regularization parameter is discrete and the case where it is continuous.

Using as regularization parameter 1/� instead of �, SC and LF regularizations have

a discrete index set, whereas T has a continuous index set. We use Li (1987) to

establish the optimality of Mallows Cp, generalized cross-validation and leave-one-out

cross-validation for SC and LF. We use Li (1986) to establish the optimality of Mallows

Cp for T. The proofs for generalized cross-validation and leave-one-out cross-validation

for T regularization could be obtained using the same tools but are beyond the scope

of this paper.

Note that our optimality results hold for a vector of endogenous regressors Wi

whereas DN deals only with the case where Wi is scalar.

We will now provide some simulations to see how well our methods perform.
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5 Simulation study

In this section we present a Monte carlo study. Our aim is to illustrate the quality of

our estimators and compare them to regularized 2SLS estimators of Carrasco (2012)

and DN estimators.

Consider 8<: yi =W 0
i� + "i

Wi = f(xi) + ui

for i = 1; 2; :::; n , � = 0:1 and ("i; ui) � N (0;�) with

� =

0@ 1 0:5

0:5 1

1A :

For the purpose of comparison, we are going to consider three models.

Model 1.

In this model, f is linear as in DN.

f(xi) = x0i�

with xi � iidN (0; IL), L = 15; 30; 50.

As shown in Hahn and Hausman (2003), the speci�cation implies a theoretical �rst

stage R-squared that is of the form

R2f =
�0�

1 + �0�
:

The xi are used as instruments so that Zi = xi. We can notice that the instruments

are independent from each other, this example corresponds to the worse case scenario

for our regularized estimators. Indeed, here all the eigenvalues of K are equal to 1, so

there is no information contained in the spectral decomposition of K. Moreover, if L

were in�nite, K would not be compact, hence our method would not apply. However,

in practical applications, it is not plausible that a large number of instruments would

be uncorrelated with each other.
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Model 1a. �l = d(1 � l=(L + 1))4 ,l = 1; 2; :::; L where d is chosen so that

�0� =
R2f

1�R2f
:

Here, the instruments are ordered in decreasing order of importance. This model

represents a case where there is some prior information about what instruments are

important.

Model 1b. �l =

vuut R2f
1�R2f

, l = 1; 2; :::; L: Here, there is no reason to prefer an

instrument over another instrument as all the instruments have the same weight.

Model 2 (Factor model).

Wi = fi1 + fi2 + fi3 + ui

where fi = (fi1; fi2; fi3)0 � iidN (0; I3), xi is a L� 1 vector of instruments constructed

from fi through

xi =Mfi + �i

where �i � N (0; �2�I3) with �� = 0:3; and M is a L � 3 matrix which elements are

independently drawn in a U[-1, 1].

We report summary statistics for each of the following estimators: Carrasco�s (2012)

regularized two-stage least squares, T2SLS (Tikhonov), L2SLS (Landweber Fridman),

P2SLS (Principal component), Donald and Newey�s (2001) 2SLS (D2SLS), the un-

feasible instrumental variable regression (IV), regularized LIML, TLIML (Tikhonov),

LLIML (Landweber Fridman), PLIML (Principal component), and �nally Donald and

Newey�s (2001) LIML (DLIML). For each of these estimators, the optimal regulariza-

tion parameter is selected using Mallows Cp. We report the median bias (Med.bias),

the median of the absolute deviations of the estimator from the true value (Med.abs),

the di¤erence between the 0.1 and 0.9 quantiles (dis) of the distribution of each esti-

mator, the mean square error (MSE) and the coverage rate (Cov.) of a nominal 95%

con�dence interval. To construct the con�dence intervals to compute the coverage

probabilities, we used the following estimate of asymptotic variance:

V̂ (�̂) =
(y �W�̂)0(y �W�̂)

n
(Ŵ 0�1Ŵ 0Ŵ (W 0Ŵ )�1
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where Ŵ = P�W .

Tables 2, 4, and 6 contain summary statistics for the value of the regularization

parameter which minimizes the approximate MSE. This regularization parameter is the

number of instruments in DN, � for T, the number of iterations for LF, and the number

of principal components for PC3. We report the mean, standard error (std), mode, �rst,

second and third quartile of the distribution of the regularization parameter.

Results on Models 1a and 1b are summarized in Tables 1, 2, 3, and 4. We �rst

start by Model 1a where we can notice that the regularized LIML is better than the

regularized 2SLS in almost every case. This dominance becomes clearer when the

number of instruments increases. We observe that the coverage of regularized 2SLS

is very poor while that for regularized LIML is much better, even though it is quite

below 95%. Within the regularized LIML, T is the best especially when the number of

instruments is very high, except in terms of coverage. However the DLIML is better

than all the regularized LIML except for the coverage rate where PLIML is the best and

for the median bias where TLIML and LLIML are better. But PLIML have very large

MSE, median bias and dispersion. Overall, the performance of TLIML and LLIML is

at par with DLIML even though in Model 1a, the instruments are ordered in decreasing

order of importance which puts DN at an advantage.

In Model 1b when all instruments have the same weights and there is no reason

to prefer one over another, the regularized LIML strongly dominates the regularized

2SLS. The LF and T LIML dominate the DN LIML with respect to all the crite-

ria. We can then conclude that in presence of many instruments and in absence of

a reliable information on the relative importance of the instruments, the regularized

LIML approach should be preferred to DN approach. We can also notice that when

the number of instruments increases the MSE of regularized LIML becames smaller

than those of regularized 2SLS. We observe that the MSE of DLIML explodes while

those of TLIML and LLIML are stable, which can be explained by the existence of the

moments of the regularized LIML, except for the PLIML which MSE also explodes.

3The optimal � for Tikhonov is searched over the interval [0.1,0.5] with 0.01 increment for Models 1a
and 1b and the set {0, 0.000000001, 0.00000001, 0.0000001, 0.0000001, 0.000001, 0.00001, 0.01, 0.1, 0.2}
for Model 2. The range of values for the number of iterations for LF is from 1 to 10 times the number of
instruments and for the number of principal components is from 1 to the number of instruments.
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Table 1: Simulations results of Model 1a with R2f = 0:1, n = 500, 1000 replications
Model 1a T2SLS L2SLS P2SLS D2SLS IV TLIML LLIML PLIML DLIML

L=15 Med.bias 0.101 0.101 0.115 0.052 0.004 0.006 0.007 0.017 0.024
Med.abs 0.113 0.118 0.139 0.105 0.092 0.103 0.102 0.102 0.096
Disp 0.305 0.312 0.367 0.360 0.355 0.391 0.391 0.390 0.363
MSE 0.024 0.024 0.153 0.021 0.019 0.025 0.025 4.5e+28 0.021
Cov 0.811 0.819 0.818 0.900 0.954 0.898 0.902 0.895 0.919

L=30 Med.bias 0.172 0.167 0.180 0.070 0.005 0.007 0.009 0.046 0.024
Med.abs 0.172 0.169 0.204 0.109 0.091 0.106 0.108 0.113 0.100
Disp 0.263 0.291 0.457 0.352 0.370 0.447 0.441 0.433 0.364
MSE 0.039 0.039 11.038 0.024 0.020 0.032 0.032 Inf 0.023
Cov 0.586 0.632 0.712 0.872 0.950 0.820 0.812 0.824 0.894

L=50 Med.bias 0.231 0.219 0.217 0.099 0.004 -0.002 0.007 0.083 0.039
Med.abs 0.231 0.219 0.250 0.123 0.092 0.125 0.128 0.141 0.097
Disp 0.237 0.268 0.568 0.354 0.341 0.470 0.487 0.496 0.367
MSE 0.061 0.057 42.529 0.028 0.020 0.039 0.046 1.5e+30 0.022
Cov 0.294 0.427 0.661 0.833 0.955 0.707 0.732 0.760 0.894

The poor performance of PC 2SLS and LIML in Models 1a and 1b can be explained

by the absence of factor structure. Indeed, all eigenvalues of K (in the population) are

equal to each other and consequently the Mallows Cp tend to select a large number

of principal components (see Tables 2 and 4). The PC LIML is therefore close to the

standard LIML estimator which is known for not having any moments.

Now, we turn to Model 2 which is a factor model. From Table 5, we see that LIML

dominates the 2SLS for all regularization schemes. But, there is no clear dominance

among the regularized LIML as they all perform very well. The DLIML is dominated

by regularized LIML for all measures. From Table 6, we can observe that PC selects

three principal components in average corresponding to the three factors.

We conclude this section by summarizing the Monte Carlo results. LLIML and

TLIML are highly recommended if we are concerned with bias and mean square error.

Selection methods as DN are recommended when the rank ordering of the strength

of the instruments is clear. Otherwise, regularized methods are preferrable. Among

the three regularizations, LF and T are more reliable than PC in absence of factor

structure. Moreover, we observe small mean square errors for T and LF regularized

LIML estimators which suggests the existence of moments.
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Table 2: Properties of the distribution of the regularization parameters Model 1a
Model 1a T2SLS L2SLS P2SLS D2SLS TLIML LLIML PLIML DLIML

L=15 Mean 0.433 18.227 9.074 4.759 0.235 32.721 13.061 6.053
sd 0.114 11.615 4.015 1.816 0.086 9.533 2.374 2.533
q1 0.400 11.000 6.000 4.000 0.180 26.000 12.000 4.000
q2 0.500 15.000 9.000 4.000 0.220 31.000 14.000 5.000
q3 0.500 22.000 13.000 5.000 0.280 37.000 15.000 7.000

L=30 Mean 0.485 12.324 10.490 6.630 0.420 26.669 22.740 9.865
sd 0.064 12.406 7.573 2.480 0.092 9.568 6.873 4.064
q1 0.500 6.000 5.000 5.000 0.340 20.000 18.000 7.000
q2 0.500 9.000 9.000 6.000 0.460 25.000 25.000 9.000
q3 0.500 14.000 14.000 8.000 0.500 31.000 29.000 11.000

L=50 Mean 0.494 9.772 12.743 8.211 0.492 20.383 26.693 13.100
sd 0.040 11.356 12.227 3.528 0.030 7.628 14.082 4.945
q1 0.500 4.000 4.000 6.000 0.500 16.000 15.000 10.000
q2 0.500 7.000 9.000 8.000 0.500 19.000 27.500 12.000
q3 0.500 11.000 17.000 10.000 0.500 24.000 38.000 16.000

Table 3: Simulations results of Model 1 b with R2f = 0:1, n = 500, 1000 replications
Model 1b T2SL L2LS P2LS D2LS IV TLIML LLIML PLIML DLIML

L=15 Med.bias 0.099 0.096 0.112 0.128 -0.006 -0.000 -0.001 0.015 0.011
Med.abs 0.109 0.115 0.141 0.146 0.087 0.103 0.102 0.103 0.101
Disp 0.290 0.297 0.372 0.346 0.347 0.390 0.386 0.380 0.380
MSE 0.023 0.023 0.059 0.042 0.019 0.024 0.025 1.4e+28 0.023
Cov 0.840 0.843 0.837 0.805 0.946 0.897 0.899 0.891 0.895

L=30 Med.bias 0.172 0.165 0.174 0.219 0.006 0.010 0.011 0.042 0.052
Med.abs 0.173 0.165 0.202 0.237 0.091 0.107 0.110 0.111 0.115
Disp 0.264 0.277 0.453 0.457 0.355 0.412 0.421 0.413 0.411
MSE 0.039 0.038 3.682 907.310 0.020 0.030 0.033 1.3e+29 1.7e+30
Cov 0.594 0.643 0.725 0.673 0.952 0.829 0.828 0.806 0.801

L=50 Med.bias 0.237 0.226 0.214 0.257 -0.004 -0.004 0.000 0.082 0.107
Med.abs 0.237 0.226 0.252 0.285 0.089 0.124 0.126 0.137 0.156
Disp 0.235 0.259 0.581 0.590 0.353 0.470 0.489 0.483 0.526
MSE 0.061 0.058 1.794 4.946 0.020 0.039 0.045 4.4e+30 3.8e+30
Cov 0.300 0.406 0.688 0.639 0.951 0.723 0.723 0.752 0.714
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Table 4: Properties of the distribution of the regularization parameters Model 1b
Model 1b T2SL L2SLS P2SLS D2SLS TLIML LLIML PLIML DLIML

L=15 Mean 0.438 18.118 8.909 10.021 0.233 32.909 13.053 14.223
sd 0.112 12.273 3.916 3.995 0.085 9.925 2.463 1.460
q1 0.410 11.000 6.000 7.000 0.170 26.000 12.000 14.000
q2 0.500 15.000 9.000 11.000 0.210 31.000 14.000 15.000
q3 0.500 21.000 12.000 14.000 0.270 37.000 15.000 15.000

L=30 Mean 0.486 11.963 10.431 11.310 0.421 26.584 22.636 25.283
sd 0.059 11.019 7.660 8.634 0.091 9.299 7.160 6.303
q1 0.500 6.000 4.000 4.000 0.360 20.000 18.000 24.000
q2 0.500 9.000 9.000 9.000 0.460 25.000 25.000 28.000
q3 0.500 14.000 15.000 17.000 0.500 31.000 29.000 30.000

L=50 Mean 0.493 10.127 11.911 13.508 0.492 20.146 26.210 29.362
sd 0.043 13.632 11.605 13.943 0.031 7.537 14.197 16.864
q1 0.500 4.000 4.000 3.000 0.500 15.000 15.000 13.000
q2 0.500 7.000 8.000 8.000 0.500 19.000 26.000 33.000
q3 0.500 11.000 16.000 19.000 0.500 24.000 38.000 46.000

Table 5: Simulations results of Model 2 , n = 500, 1000 replications
Model 2 T2SLS L2SLS P2SLS D2SLS IV TLIML LLIML PLIML DLIML
L=15 Med.bias 0.00033 0.00014 0.00033 0.0039 0.00067 -0.00033 -0.00023 -0.00025 0.00047

Med.abs 0.017 0.0174 0.0176 0.0177 0.0179 0.0177 0.0177 0.017 0.017
Disp 0.066 0.066 0.066 0.0658 0.0670 0.067 0.067 0.067 0.068
MSE 0.00069 0.00069 0.00069 0.00070 0.00068 0.00069 0.00069 0.00069 0.00070
cov 0.947 0.946 0.947 0.942 0.952 0.948 0.948 0.948 0.946

L=30 Med.bias 0.0019 0.0016 0.0016 0.0051 0.0013 0.0011 0.00095 0.00095 0.00193
Med.abs 0.016 0.0170 0.0171 0.0174 0.0171 0.0171 0.0172 0.0172 0.0172

Disp 0.0668 0.0671 0.0672 0.0676 0.0668 0.0679 0.0677 0.0677 0.0685
MSE 0.00066 0.00066 0.00066 0.00069 0.00065 0.00066 0.00066 0.00066 0.00068
cov 0.956 0.955 0.955 0.949 0.958 0.953 0.955 0.955 0.946

L=50 Med.bias 0.0010 0.00036 0.000458 0.00352 0.00062 4.7045e-5 -0.00034 -0.00017 0.00108
Med.abs 0.0168 0.0165 0.0165 0.0175 0.0171 0.0167 0.0167 0.0167 0.0177

Disp 0.065 0.0656 0.0655 0.0666 0.0648 0.0656 0.0654 0.065 0.067
MSE 0.00065 0.00066 0.00066 0.00068 0.00065 0.00066 0.00066 0.00066 0.00067
cov 0.945 0.946 0.947 0.946 0.95 0.945 0.944 0.945 0.944
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Table 6: Properties of the distribution of the regularization parameters Model 2
Model 2 T2SLS L2SLS P2SLS D2SLS TLIML LLIML PLIML DLIML
L=15 Mean 0.19431 150 3.012 9.44 0.1334 150 3.0120 13.1350

Sd 0.023543 0 0.10894 1.5306 0.0776 0 0.1089 1.7081
q1 0.2 150 3 9 0.1 150 3 12
q2 0.2 150 3 9 0.2 150 3 14
q3 0.2 150 3 10 0.2 150 3 14

L=30 mean 0.1998 175.48 3.009 11.107 0.14671 225.44 3.009 22.37
Sd 0.0044699 35.078 0.13014 2.2607 0.071249 62.243 0.13014 5.8391
q1 0.2 152 3 10 0.1 172.5 3 17
q2 0.2 173 3 11 0.2 209 3 21
q3 0.2 195 3 11 0.2 300 3 28

L=50 Mean 0.2 140.73 3.015 9.57 0.15795 292.1 3.015 22.223
Sd 2.8325e-15 36.604 0.13709 1.5249 0.061017 175 0.13709 9.1024
q1 0.2 122 3 9 0.1 140 3 14
q2 0.2 137 3 9 0.2 177 3 22
q3 0.2 155 3 11 0.2 500 3 27

6 Empirical applications

6.1 Returns to Schooling

A motivating empirical example is provided by the in�uential paper of Angrist and

Krueger (1991). This study has become a benchmark for testing methodologies con-

cerning IV estimation in the presence of many (possibly weak) instrumental variables.

The sample drawn from the 1980 U.S. Census consists of 329,509 men born between

1930-1939. Angrist and Krueger (1991) estimate an equation where the dependent

variable is the log of the weekly wage, and the explanatory variable of interest is the

number of years of schooling. It is obvious that OLS estimate might be biased because

of the endogeneity of education. Angrist and Krueger (1991) propose to use the quar-

ters of birth as instruments. Because of the compulsory age of schooling, the quarter

of birth is correlated with the number of years of education, while being exogenous.

The relative performance of LIML on 2SLS, in presence of many instruments, has been

well documented in the literature (DN, Anderson, Kunitomo, and Matsushita (2010),

and Hansen, Hausman, and Newey (2008)). We are going to compute the regularized

version of LIML and compare it to the regularized 2SLS in order to show the empirical
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relevance of our method.

We use the model of Angrist and Krueger (1991):

logw = �+ �education+ �01Y + �
0
2S + "

where logw = log of weekly wage, education = year of education, Y = year of

birth dummy (9), S = state of birth dummy (50). The vector of instruments Z =

(1; Y; S;Q;Q � Y;Q � S) includes 240 variables. Table 7 reports schooling coe¢ cients

Table 7: Estimates of the return to education
OLS 2SLS T2SLS L2SLS P2SLS

0.0683 (0.0003) 0.0816 (0.0106) 0.1237 (0.0482) 0.1295 (0.0272) 0.1000 (0.0411)
�= 0.00001 Nb of iterations 700 Nb of eigenfunctions 81

LIML TLIML LLIML PLIML
0.0918 (0.0101) 0.1237 (0.0480) 0.1350 (0.0275) 0.107 (0.0184)

�= 0.00001 Nb of iterations 700 Nb of eigenfunctions 239

generated by di¤erent estimators applied to the Angrist and Krueger data along with

their standard errors in parentheses. Table 7 shows that all regularized 2SLS and LIML

estimators based on the same type of regularization give close results. The coe¢ cients

we obtain by regularized LIML are slightly larger than those obtained by regularized

2SLS suggesting that these methods provide an extra bias correction, as observed in our

Monte Carlo simulations. Note that the bias reduction obtained by regularized LIML

compared to standard LIML comes at the cost of a larger standard error. Among

the regularizations, PC gives estimators which are quite a bit smaller than T and LF.

However, we are suspicious of PC because there is no factor structure here.

6.2 Elasticity of Intertemporal Substitution

In macroeconomics and �nance, the elasticity of intertemporal substitution (EIS) in

consumption is a parameter of central importance. It has important implications for

the relative magnitudes of income and substitution e¤ects in the intertemporal con-

sumption decision of an investor facing time varying expected returns. Campbell and

Viceira (1999) show that when the EIS is less (greater) than 1, the investor�s optimal

consumption-wealth ratio is increasing (decreasing) in expected returns.
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Yogo (2004) analyzes the problem of EIS using the linearized Euler equation. He

explains how weak instruments have been the source for an empirical puzzle namely

that using conventional IV methods the estimated EIS is signi�cantly less than 1 but its

reciprocal is not di¤erent from 1. In this subsection, we follow one of the speci�cations

in Yogo (2004) using quarterly data from 1947.3 to 1998.4 for the United States and

compare all the estimators considered in the present paper. The estimated models are

given by the following equation:

�ct+1 = � +  rf;t+1 + �t+1

and the "reverse regression":

rf;t+1 = �+
1

 
�ct+1 + �t+1

where  is the EIS, �ct+1 is the consumption growth at time t + 1, rf;t+1 is the real

return on a risk free asset, � and � are constants, and �t+1 and �t+1 are the innovations

to consumption growth and asset return, respectively.

To solve the empirical puzzle, we increase the number of instruments from 4 to

18 by including interactions and power functions. The four instruments used by Yogo

(2004) are the twice lagged, nominal interest rate (r), in�ation (i), consumption growth

(c) and log dividend-price ratio (p). The set of instruments is then Z = [r; i; c; p]. The

18 instruments used in our regression are derived from Z and are given by4 II =

[Z;Z:2; Z:3; Z(:; 1) �Z(:; 2); Z(:; 1) �Z(:; 3); Z(:; 1) �Z(:; 4); Z(:; 2) �Z(:; 3); Z(:; 2) �Z(:

; 4); Z(:; 3) � Z(:; 4)].

Since the increase of the number of instruments improves e¢ ciency and regularized

2SLS and LIML correct the bias due to the use of many instruments, the increase of

the number of instruments will certainly enable us to have better points estimates.

Interestingly, the point estimates obtained by LF and T regularized estimators are

close to those used for macro calibrations (EIS equal to 0.71 in our estimations and

0.67 in Castro, Clementi, and Macdonald (2009)). For LF estimator, 2SLS and LIML

4Z:k = [Zkij ] , Z(:; k) is the k
th column of Z and Z(:; k)�Z(:; l) is a vector of interactions between columns

k and l.
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regularizations give very close estimators.

Moreover, the results of the two equations are consistent with each other since we

obtain the same value for  in both equations. PC seems to take too many factors, and

did not perform well, this is possibly due to the fact that there is no factor structure.

Table 8: Estimates of the EIS
2SLS (4 instr) 2SLS (18 instr) T2SLS L2SLS P2SLS

 0.0597 0.1884 0.71041 0.71063 0.1696
(0.0876) (0.0748) (0.093692) ( 0.093689) (0.077808)

� = 0.0001 Nb of iterations 300 Nb of PC 11
1= 0.6833 0.8241 1.406 1.407 0.7890

(0.4825) (0.263) (0.2496) (0.249) (0.246)
� = 0.01 Nb of iterations 300 Nb of PC 17

LIML (4 instr) LIML (18 instr) TLIML LLIML PLIML
 0.0293 0.2225 0.71041 0.71063 0.1509

(0.0994) ( 0.0751) (0.093692) ( 0.093689) (0.077835)
� = 0.01 Nb of iterations 300 Nb of PC 8

1= 34.1128 4.4952 1.407 1.4072 3.8478
(112.7122) (0.5044) (0.249) (0.249) (0.37983)

� = 0.01 Nb of iterations 300 Nb of PC 17

7 Conclusion

In this paper, we propose a new estimator which is a regularized version of LIML es-

timator. Our framework has the originality to allow for a �nite and in�nite number

of moment conditions. We show theoretically that regularized LIML improves upon

regularized 2SLS in terms of smaller leading terms of the MSE. All the regularization

methods involve a tuning parameter which needs to be selected. We propose a data-

driven method for selecting this parameter and show that this selection procedure is

optimal. Moreover, we prove that the LIML estimator based on principal components

has �nite moments. Although, we were not able to prove this result for LIML reg-

ularized with T and LF, the simulations suggest that their �rst two moments exist.

Our simulations show that the leading regularized estimators (LF and T of LIML) are

nearly median unbiased and dominate regularized 2SLS and standard LIML in terms

of MSE.

We restrict our work in this paper to the estimation and asymptotic properties of

regularized LIML with many strong instruments. One possible topic for future research
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would be to extend these results to the case of weak instruments as in Hansen, Haus-

man, and Newey (2008). Moreover, it would be interesting to study the behavior of

other k-class estimators, such as Fuller�s (1977) estimator and bias corrected 2SLS esti-

mator, in presence of many (and possibly weak) instruments. Another interesting topic

is the use of our regularized LIML or 2SLS for inference when facing many instruments

or a continuum of instruments. This would enable us to compare our inference with

those of Hansen, Hausman, and Newey (2008) and Newey and Windmeijer (2009).
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A Proofs

Proof of Proposition 1

We want to prove that the regularized LIML estimators have �nite moments. These

estimators are de�ned as follow 5:

�̂ = (W 0 (P� � ��In)W )�1W 0 (P� � ��In) y

where �� = min
�

(y �W�)0P�(y �W�)

(y �W�)0(y �W�)
and P� = T (K�

n )
�1T �.

Let us de�ne Ĥ =W 0 (P� � ��In)W and N̂ =W 0 (P� � ��In) y thus

�̂ = Ĥ�1N̂ :

If we denote W v = (W1v;W2v; :::;Wnv)
0, Ĥ is a p� p matrix with a typical element

Ĥvl =
X
j

(qj � ��)
D
W v;  ̂j

ED
W l;  ̂j

E

and N̂ is a p� 1 vector with a typical element

Nl =
X
j

(qj � ��)
D
y;  ̂j

ED
W l;  ̂j

E
:

By the Cauchy-Schwarz inequality and because j��j � 1; jqj j � 1; we can prove that

jĤvlj � 2kW lkkW vk and jNlj � 2kykkW lk:

Under our assumptions, all the moments (conditional on X) of W and y are �nite, we

can conclude that all elements of Ĥ and N̂ have �nite moments.

The ith element of �̂ is given by:

�̂i =

pX
j=1

jĤj�1cof(Ĥij)Nj

where cof(Ĥij) is the signed cofactor of Ĥij , Nj is the jth element of N̂ and j : j denotes
5Let g and h be two p vectors of functions of L2(�). By a slight abuse of notation,



g; h0

�
denotes the

matrix with elements


ga; hb

�
; a; b = 1; :::; p
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the determinant.

j �̂i jr� jĤj�rj
pX
j=1

cof(Ĥij)Nj jr

Let �1 > �2 be two regularization parameters. It turns out that P�1 �P�2 is semi

de�nite negative and hence 0 � ��1 � ��2 . This will be used in the proof.
6

We also have that

�� = min
�

(y �W�)0P�(y �W�)

(y �W�)0(y �W�)

� max
c

c0�c

c0c
= max

j
qj :

We want to prove that jĤj � jSj where S is a positive de�nite p � p matrix to be

speci�ed later on.

We want to show that P� � � �
2
In is positive de�nite. Let us consider x 2 Rn. We

have

x0
�
P� � � �

2
In

�
x =

X
j

(qj � � �
2
)


x;  j

�0 

x;  j

�
=

X
j

(qj � � �
2
) k


x;  j

�
k2

=
X

j;qj>� �
2

(qj � � �
2
) k


x;  j

�
k2 (1)

+
X

j;qj�� �
2

(qj � � �
2
) k


x;  j

�
k2 : (2)

We know that qj is a decreasing sequence. Hence there exists j�� such that qj � � �
2
for

j�� < j and qj < � �
2
for j�� > j and

x0
�
P� � � �

2
In

�
x =

X
j�j��

(qj � � �
2
) k


x;  j

�
k2 (1)

+
X
j>j��

(qj � � �
2
) k


x;  j

�
k2 : (2)

The term (1) is positive and the term (2) is negative. As n increases, � decreases and

6Note that if the number of instruments is smaller than n we can compare � obtained with P� replaced
by P , the projection matrix on the instruments, and ��. It turns out that P� � P is de�nite negative for
�xed � and hence 0 � �� � � as in Fuller (1977).
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qj increases for all j while � �
2
also increases. Note that in the case of SC, qj switches

from 1 to 0 at j�� so that the variation in � of qj at j = j�� is greater than the variation

of � �
2
: It follows that j�� increases when � decreases. We were not able to prove this

result in the case of T and LF.

The term (2) goes to zero as n goes to in�nity. Indeed when j�� goes to in�nity, we

have ������
X
j>j��;

(qj � � �
2
) k


x;  j

�
k2
������ �

X
j>j��

k


x;  j

�
k2= op(1):

We can conclude that for n su¢ ciently large, � is small and j�� is su¢ ciently large

for (2) to be smaller in absolute value than (1) and hence x0�
�
P� � � �

2
In

�
x > 0.

Denote S = (� �
2
� ��)W 0W we have

Ĥ = W 0 (P� � ��In)W

= W 0
�
P� � � �

2
In

�
W + (� �

2
� ��)W 0W

= W 0
�
P� � � �

2
In

�
W + S:

Hence,

jĤj = jW 0
�
P� � � �

2
In

�
W + Sj

= jSjjIp + S�1=2W 0
�
P� � � �

2
In

�
WS�1=2j

� jSj:

For n large but not in�nite, � �
2
� �� > 0 and jSj > 0. As in Fuller (1977) using James

(1954), we can show that the expectation of the inverse 2rth power of the determinant of

S exists and is bounded for n greater than some number n(r), since S is expressible as a

product of multivariate normal r.v.. Thus we can apply Lemma B of Fuller (1977) and

conclude that the regularized LIML has �nite rth moments for n su¢ ciently large but

�nite. At the limit when n is in�nite, the moments exist by the asymptotic normality

of the estimators established in Proposition 2.

Proof of Proposition 2

To prove this proposition we �rst need the following lemma.
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Lemma 1 (Lemma A.4 of DN)

If Â P! A and B̂ P! B. A is positive semi de�nite and B is positive de�nite, �0 =

argmin�1=1
� 0A�

� 0B�
exists and is unique (with � = (�1; � 02)

0 and �1 2 R) then

�̂ = argmin�1=1
� 0Â�

� 0B̂�
! �0

Let H = E(fif
0
i) , P

� is a symmetric idempotent matrix for SC and PC matrix

but not necessarily for T and LF.

We want to show that �̂ ! � as n and n�
1
2 go to in�nity.

We know that

�̂ = argmin�
(y �W�)0P�(y �W�)

(y �W�)0(y �W�)

= argmin�
(1;��0) bA(1;��0)0
(1;��0) bB(1;��0)0

where Â = �W 0P� �W=n, B̂ =
�W 0 �W

n
and �W = [y;W ] = WD0 + "e, where D0 = [�0 ; I],

�0 is the true value of the parameter and e is the �rst unit vector.

In fact

Â = �W 0P� �W=n

=
D0
0W

0P�WD0
n

+
D0
0W

0P�"e

n
+
e0"0P�WD0

n
+
e0"0P�"e

n
:

Let us de�ne gn =
1

n

nX
i=1

Z(:;xi)Wi, g = EZ(:;xi)Wi and


g; g0

�
K
is a p�p matrix with

(a, b) element equal to


K� 1

2E(Z(:; xi)Wia);K
� 1
2E(Z(:; xi)Wib)

�
where Wia is the ath

element of Wi vector.

D0
0W

0�WD0
n

= D0
0



(K�

n )
� 1
2 gn; (K

�
n )
� 1
2 g0n
�
D0

= D0
0HD0 + op(1)

! D0
0



g; g0

�
K
D0

as n and n�
1
2 go to in�nity and � ! 0, see the proof of Proposition 1 of Carrasco
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(2012).

We also have by Lemma 3 of Carrasco (2012):
D0
0W

0�"e

n
= D0

0



(K�

n )
� 1
2 gn; (K

�
n )
� 1
2
1

n

nX
i=1

Z(:;xi)"i
�
e = op(1),

e0"0�WD0
n

= e0


(K�

n )
� 1
2
1

n

nX
i=1

Z(:;xi)"i; (K
�
n )
� 1
2 g0n
�
D0 = op(1),

e0"0�"e

n
= e0



(K�

n )
� 1
2
1

n

nX
i=1

Z(:;xi)"i; (K
�
n )
� 1
2
1

n

nX
i=1

Z(:;xi)"
0
i

�
e = op(1):

We can then conclude that Â ! A = D0
0



g; g0

�
K
D0 as n and n�

1
2 go to in�nity

and �! 0.

Note that H =


g; g0

�
K
because by assumption ga = E(Z(:; xi)fia) belongs to the

range of K. Let L2(Z) be the closure of the space spanned by fZ(x; �); � 2 Ig and g1
be an element of this space. If fi 2 L2(Z) we can compute the inner product and show

that


ga; gb

�
K
= E(fiafib) by applying Theorem 6.4 of Carrasco, Florens, and Renault

(2007). Thus A = D0
0HD0.

B̂ ! B = E( �Wi
�W 0
i )

by the law of large numbers with �Wi = [yi W
0
i ]
0.

The LIML estimator is given by

�̂ = argmin�
(1;��0) bA(1;��0)0
(1;��0) bB(1;��0)0 ;

so that it su¢ ces to verify the hypotheses of Lemma 1.

For � = (1;��0)

� 0A� = � 0D0
0HD0�

= (�0 � �)H(�0 � �)0

= (�0 � �)E(fif 0i)(�0 � �)0

Because H is positive de�nite, we have � 0A� � 0, with equality if and only if � = �0.
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Also, for any � = (�1; � 02)
0 6= 0 partitioned conformably with (1; �0), we have

� 0B� = E[(�1yi +W
0
i�2)

2]

= E[(�1"i + (fi + ui)
0(�1�0 + �2))

2]

= E[(�1"i + u
0
i(�1�0 + �2))

2] + (�1�0 + �2)
0H(�1�0 + �2)

Then by H nonsingular � 0B� > 0 for any � with �1�0 + �2 6= 0. If �1�0 + �2 = 0 then

�1 6= 0 and hence � 0B� = �21�
2 > 0. Therefore B is positive de�nite.

It follows that � = �0 is the unique minimum of
� 0A�

� 0B�
.

Now by Lemma 1 we can conclude that �̂
p! �0 as n and n�

1
2 go to in�nity.

Proof of asymptotic normality:

Let A(�) = (y�W�)0P�(y�W�)=n , B(�) = (y�W�)0(y�W�)=n and �(�) =
A(�)

B(�)
.

We know that the LIML is �̂ = argmin�(�):

The gradient and Hessian are given by

��(�) = B(�)�1[A�(�)� �(�)B�(�)]

���(�) = B(�)�1[A��(�)� �(�)B��(�)]�B(�)�1[B�(�)�0�(�)� ��(�)B0�(�)]

Then by a standard mean-value expansion of the �rst-order conditions ��(�̂) = 0

with probability one.
p
n(�̂ � �0) = ���1�� (~�)

p
n��(�0)

where ~� is the mean-value. By Lemma 1, ~� P! �0.

It then follows, as in the proof of Lemma 1, thatB(~�) P! �2"; B�(
~�)

P! �2�u"; �(~�)
p!

0; ��(~�)
P! 0 where �u" = E(ui"i) and B��(~�) = 2W 0W=n

P! 2E(WiW
0
i ); A��(

~�) =

2W 0P�W=n
P! 2H with H = E(fif

0
i).

So that ~�2���(~�)=2
P! H with ~�2 = "0"=n.

Let �̂ =
W 0"

"0"
, � =

�u"
�2"

and v = u� "�0: We have v0P�"=
p
n = Op(1=

p
n�) = op(1)

using Lemma 5(iii) of Carrasco (2012) and E (vi"i) = 0.

�̂� � = Op(1=
p
n) by the Central limit theorem and delta method. Also "0P�" =

Op(1=�) as in Carrasco (2012). So that (�̂� �)"0P�"=
p
n = Op(1=n�) = op(1).

Furthermore, f 0 (I � P�) "=
p
n = Op(�

2
�) = op(1) by Lemma 5(ii) of Carrasco
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(2012) with �� = tr(f 0 (I � P�)2 f=n).

�
p
n~�2��(�0)=2 = (W 0P�"� "0P�"W

0"

"0"
)=
p
n

= (f 0"� f 0 (I � P�) "+ v0P�"� (�̂� �)"0P�")=
p
n

= f 0"=
p
n+ op(1)

d! N (0; �2"H):

The conclusion follows from Slutzky theorem.

Proof of Proposition 3

To prove this proposition, we need some preliminary result. To simplify, we omit

the hats on �j and �j and we denote P
� and q(�; �j) by P and qj in the sequel.

Lemma 2:

Let ~� = "0P"=(n�2") and �̂ = �(�̂) with �(�) =
(y �W�)0P (y �W�)

(y �W�)0(y �W�)
. If the

assumptions of Proposition 2 are satis�ed, then

�̂ = ~�� (�̂2"=�2" � 1)~�� "0f(f 0f)�1f 0"=2n�2" + R̂�

= ~� + o(1=n�);

p
nR̂� = o(��;n);

where ��;n = trace(S(�)).

Proof of Lemma 2: It can be shown similarly to the calculations in Proposition 1

that �(�) is three times continuously di¤erentiable with derivatives that are bounded

in probability uniformly in a neighborhood of �0. For any ~� between �0 and �̂; ���(~�) =

���(�0) +O(1=
p
n). It implies that

�̂ = �0 + [���(�0)]
�1��(�0) +O(1=n):

Then expanding �(�̂) around �0 gives

�̂ = �(�0)� (�̂ � �0)0���(�0)(�̂ � �0)=2 +O(1=n3=2)

= �(�̂0)� ��(�0)0[���(�0)]�1��(�0)=2 +O(1=n3=2):

As in proof of Proposition 1 and in Lemma A.7 of DN
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�
p
n�̂2"��(�0)=2 = h+Op(�

1=2
� +

p
1=n�) with h = f 0"=n. Moreover,

�̂2"���(�0)=2 = �H +Op(�
1=2
� +

p
1=n�)

And by combining these two equalities, we obtain

��(�0)
0[���(�0)]

�1��(�0) = h0 �H�1h=(n�2") +O(�
1=2
� =n+

p
1=(n3�)):

Note also that

�(�0) = (�2"=�̂
2
")
~� = ~�� (�̂2"=�2" � 1)~� + ~�(�̂2" � �2")2=(�̂2"�2")

= ~�� (�̂2"=�2" � 1)~� +O(
p
1=n3�)

��n = tr(S(�))

= tr(�2"
�H�1[�v

tr(P 2)

n
+
f 0(I � P )2f

n
] �H�1)

= tr(�2"
�H�1[�v

tr(P 2)

n
] �H�1) + tr(�2" �H

�1[
f 0(I � P )2f

n
] �H�1)

= O(1=n�) + ��:

We then have that
p
n
p
1=(n3�) = o(��n) and

p
n�1=2� =n = o(��n): Using this and

combining equations give

�̂ = ~�� (�̂2"=�2" � 1)~�� "0f(f 0f)�1f 0"=2n�2" + R̂�

and
p
nR̂� = o(��;n):

By using ~� = O(1=n�), it is easy to prove that �̂ = ~� + o(1=n�) .

Lemma 3: If the assumptions of Proposition 3 are satis�ed, then

i) u0Pu� ~��u = o(1=n�),

ii) E(h~�"0v=
p
njX) = (tr(P )=n)

X
i

fiE("
2
i v
0
ijxi)=n+O(1=(n2�)),

iii) E(hh0 �H�1h=
p
njX) = O(1=n).
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Proof of Lemma 3: For the proof of i), note that E(~�=X) = tr(PE("0"))=n�2" =

tr(P )=n:

Similarly, we have E(u0PujX) = tr(P )�u and by Lemma 5 (iv) of Carrasco (2012)

using " in place of u we have

E[(~�� tr(P )=n)2jX] = [�4"tr(P )2 + o(tr(P )2)]=(n2�4")� (tr(P )=n)2 = o((tr(P )=n)2):

Thus, (~�� tr(P )=n)�u = o(tr(P )=n) = o(1=n�) by Markov inequality.

And u0Pu� tr(P )

n
�u = o(1=n�) such that u0Pu� ~��u = o(1=(n�)).

To show ii) we can notice that

E(h~�"0v=
p
njX) = E(h"0P""0v=(n�2"

p
n)jX)

=
X
i;j;k;l

E(fi"i"jPjk"k"lv
02
l �

2
")jX)

=
X
i

fiPiiE("
4
i v
0
ijxi)=n2�2" + 2

X
i6=j

fiPijE("
2
jv
0
j jxj)=n2

+
X
i6=j

fiPjjE("
2
i vijxi)=n2

= O(1=n) + (tr(P )=n)
X
i

fiE("
2
i v
0
ijxi)=n

This is true because E("4i v
0
ijxi) and E("2i v0ijxi) are bounded by Assumption 2 hence

f 0P�=n is bounded for �i = E("4i v
0
ijxi) and �i = E("2i v

0
ijxi).

For iii)

E(hh0 �H�1h=
p
njX) =

X
i;j;k

E(fi"i"jf
0
j
�H�1fk"kjX)=n2

=
X
i

E("3i jxi)fif 0i �H�1fi=n
2

= O(1=n):

Now we turn to the proof of Proposition 3.

Proof of Proposition 3

Our proof strategy will be very close to those of Carrasco (2012) and DN. To obtain
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the LIML, we solve the following �rst order condition

W 0P (y �W�̂)� �̂W 0(y �W�̂) = 0

with �̂ = �(�̂):

Let us consider
p
n(�̂ � �) = Ĥ�1ĥ with Ĥ =W 0PW=n� �̂W 0W=n and

ĥ =W 0P"=
p
n� �̂W 0"=

p
n:

As in Carrasco (2012) we are going to apply Lemma A.1 of DN7.

ĥ = h+
5X
j=1

T hj + Z
h with h = f 0"=

p
n,

T h1 = �f 0(I � P )"=
p
n = O(�1=2� )

T h2 = v0P"=
p
n = O(

p
1=n�), T h3 = �~�h0 = O(1=n�); T h4 = �~�v0"=

p
n = O(1=n�),

T h5 = h0 �H�1h�u"=2
p
n�2" = O(1=

p
n),

Zh = �R̂�W 0"=
p
n� (�̂� ~�� R̂�)

p
n(W 0"=n��0u") where R̂� is de�ned in Lemma 2.

By using the central limit theorem on
p
n(W 0"=n � �0u") and Lemma 2, Z

h = O(�n�).

The results on order of T hj hold by Lemma 5 Carrasco (2012).

We also have

Ĥ = �H +

3X
j=1

THj + ZH ;

TH1 = �f 0(I � P )f=n = O(��), TH2 = (u0f + f 0u)=n = O(1=
p
n);

TH3 = �~� �H = O(1=n�);

ZH = u0Pu=n� ~��u � �̂W 0W=n+ ~�( �H +�u)� u0(I � P )f=n� f 0(I � P )u=n:

By Lemma 3, u0Pu=n � ~��v = o(1=n�). Lemma 5 (ii) of Carrasco (2012) implies

u0(I � P )f=n = O(�1=2� =
p
n) = o(�n�). By the central limit theorem, W

0W=n =

�H +�u +O(1=
p
n).

�̂W 0W=n� ~�( �H +�u) = (�̂� ~�)W 0W=n+ ~�(W 0W=n� �H � �u)

= o(1=n�) +O(1=n�)O(1=
p
n) = o(�n�)

thus, ZH = o(�n�).

7The expression of Th5 , Z
h and ZH below correct some sign errors in DN
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We apply Lemma A.1 of DN with

T h =

5X
j=1

T hj , T
H =

3X
j=1

THj ,

ZA = (
5X
j=3

T hj )(
5X
j=3

T hj )
0 + (

5X
j=3

T hj )(T
h
1 + T

h
2 )
0 + (T h1 + T

h
1 )(

5X
j=3

T hj )
0;

and

Â(�) = hh0+
5X
j=1

hT h
0

j +

5X
j=1

T hj h
0+(T h1 +T

h
2 )(T

h
1 +T

h
2 )
0�hh0 �H�1

3X
j=1

TH
0

j �
3X
j=1

THj �H�1hh0:

Note that hT h
0

3 � hh0 �H�1TH
0

3 = 0.

Also we have E(hh0 �H�1(TH1 +T
H
2 )jX) = ��2"ef (�)+O(1=n), E(T h1 h0) = E(hT h

0
1 ) =

��2"ef (�), E(T h1 T h
0

1 ) = �2"e2f (�) where

ef (�) =
f 0(I � P )f

n
and e2f (�) =

f 0(I � P )2f
n

.

By Lemma 3 (ii) E(hT h
0

4 jX) =
tr(P )

n

X
i

fiE("
2
i v
0
ijxi)=n+O

�
1

n2�

�
:

By Lemma 5 (iv) of Carrasco (2012), with v in place of u and noting that �v" = 0,

we have

E(T h2 T
h0
2 jX) = �2"�v

tr(P 2)

n
;

E(hT h
0

2 jX) =
X
i

PiifiE("
2
i v
0
ijxi)=n:

By Lemma 3 (iii), E(hT h
0

5 ) = O(1=n).

For �̂ =
X
i

PiifiE("
2
i v
0
ijxi)=n�

tr(P )

n

X
i

fiE("
2
i v
0
ijxi)=n�

X
i

Pii(1�Pii)fiE("2i v0ijxi)=n;

Â(�) satis�es

E(Â(�)jX) = �2" �H + �2"�v
tr(P 2)

n
+ �2"e2f + �̂ + �̂

0
+O(1=n)

We can also show that kT h1 kkT hj k = o(�n�), kT h2 kkTHj k = o(�n�) for each j and

kT hk kkTHj k = o(�n�) for each j and k > 2. Furthermore kTHj k2 = o(�n�) for each j. It

follows that ZA = o(�n�). It can be noticed that all conditions of Lemma A.1 of DN

are satis�ed and the result follows by observing that E("2i v
0
ijxi) = 0. This ends the

proof of Proposition 3.
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To prove the Proposition 4 we need to establish the following result.

Lemma 4 (Lemma A.9 of DN): If sup
�2Mn

(jŜ
(�) � S
(�)j=S
(�))
P! 0, then

S
(�̂)= inf
�2Mn

S
(�)
P! 1 as n and n�!1

Proof of Lemma 4: We have that inf
�2Mn

S
(�) = S
(�
�) for some �� in Mn by

the �niteness of the index set for 1=� for PC, SC and LF and by the compactness of

the index set for T. Then, the proof of Lemma 4 follows from that of Lemma A.9 of DN.

Proof of Proposition 4

We proceed by verifying the assumption of Lemma 4.

Let R(�) =
f 0
 (I � P )

2 f


n
+�2u


tr(P 2)

n
be the risk approximated by R̂m(�), R̂cv(�); or

R̂lcv(�), and S
(�) = �2"

"
f 0
 (I � P )

2 f


n
+ �2v


tr(P 2)

n

#
. For notational convenience,

we henceforth drop the 
 subscript on S and R. For Mallows Cp, generalized cross-

validation and leave one out cross-validation criteria, we have to prove that

sup
�2Mn

�
jR̂(�)�R(�)j=R(�)

�
! 0 (6)

in probability as n and n�!1:

To establish this result, we need to verify the assumptions of Li�s (1987, 1986)

theorems. We treat separately the regularizations with a discrete index set and that

with a continuous index set (Tikhonov regularization). SC and LF have a discrete

index set in terms of 1=�.

Discrete index set:

We recall the assumptions of Li (1987) (A.1) to (A.3�) for m = 2.

(A.1) lim
n!1

sup
�2Mn

�(P ) <1 where �(P ) is the largest eigenvalue of P ;

(A.2) E((uie)
8) <1;

(A.3�) inf
�2Mn

nR(�)!1:

(A.1) is satis�ed because for every � 2 Mn; all eigenvalues fqjg of P are less than

or equal to 1.

(A.2) holds by our assumption 4 (i).

For (A.3�), note that nR(�) = f 0
 (I � P )
2 f
 + �

2
u
 tr(P

2) = Op

�
n�� +

1

�

�
:
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Minimizing w.r. to � gives

� =

�
1

n�

� 1
1+�

hence inf
�2Mn

nR(�) � n�� ! 1; therefore the condition (A.3�) is satis�ed for SC and

LF (and T also).

Note that Theorem 2.1 of Li (1987) use assumption (A.3) instead of (A.3�). How-

ever, Corollary 2.1 of Li (1987) justi�es using (A.3�) when P is idempotent which is

the case for SC. For LF, P is not idempotent however the proof provided by Li (1987)

still applies. Given tr(P 2) = Op

�
1

�

�
for LF, we can argue that for n large enough,

there exists a constant C such that

tr(P 2) � C

n
;

hence Equation 2.6 of Li (1987) holds and Assumption (A.3) can be replaced by (A.3�).

The justi�cation for replacing �2u
", �
2
u
 and �

2
" by their estimates in the criteria is the

same as in the proof of Corollary 2.2 in Li (1987).

For the generalized cross-validation, we need to verify the assumptions of Li�s (1987)

Theorem 3.2. that are recalled below.

(A.4) inf
�2Mn

n�1 kf
 � PW
k ! 0;

(A5) For any sequence f�n 2Mng such that

1

n
tr(P 2)! 0;

we have
�
n�1tr(P )

�2
=(n�1tr(P 2))! 0;

(A.6) sup
�2Mn

n�1tr(P ) � 
1 for some 0 < 
1 < 1;

(A.7) sup
�2Mn

�
n�1tr(P )

�2
=(n�1tr(P 2)) � 
2; for some 0 < 
2 < 1:

Assumption (A.4) holds for SC and LF from R(�) = En�1 kf
 � PW
k ! 0 as n

and n� go to in�nity.

Note that tr (P ) = O
�
��1

�
and tr

�
P 2
�
= O

�
��1

�
: So that n�1tr(P 2)! 0 if and

only if n� ! 1. Moreover 1
n
(tr(P ))2=tr(P 2) = O(1=n�) ! 0 as n� ! 1. This

proves Assumption (A.5) for SC and LF.

Now we turn our attention to Assumptions (A.6) and (A.7). By Lemma 4 of Car-
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rasco (2012), we know that tr(P ) � C1=� and tr(P 2) � C2=�: To establish Assump-

tions (A.6) and (A.7), we restrict the setMn to the setMn =
�
� : � > C=n with C > max(C1; C

2
1=C2)

	
.

This is not very restrictive since � has to satisfy n�!1. It follows that

sup
�2Mn

tr(P )=n = sup
�>C=n

tr(P )=n � C1
C

< 1;

sup
�2Mn

1

n
(tr(P ))2=tr(P 2) = sup

�>C=n

1

n
(tr(P ))2=tr(P 2) � C21

CC2
< 1:

Thus, Assumptions (A.6) and (A.7) hold.

In the case of leave-one-out cross-validation criterion, we need to verify the ss-

sumptions of Theorem 5.1 of Li (1987). Assumption (A.1) to (A.4) still hold as before.

Assumptions (A.8), (A.9), and (A.10) hold by Assumption 4 (iii) to (v) of this paper,

respectively. This ends the proof of (6) for SC and LF.

Continuous index set

The T regularization is a case where the index set is continuous. We apply Li�s

(1986) results on the optimality of Mallows Cp in the ridge regression. We need to check

the Assumption (A.1) of Theorem 1 in Li (1986). (A.1) inf
�2Mn

nR(�)!1 holds using

the same proof as for SC and LF. It follows that (6) holds for T under Assumption 4

(i�).

Given �2" 6= 0 we have R(�) � CS
(�)=�
2
": To see this, replace R(�) and S
(�)

by their expressions in function of
f 0
 (I � P )

2 f


n
and use the fact that �2u
 > �2v
 and

take C = �2u
=�
2
v
 :

jŜ
(�)� S
(�)j = �2"

�����
 
R̂(�)�

�̂2u
"

�̂2"

tr(P 2)

n

!
�
 
�2v


tr(P 2)

n
+
f 0
 (I � P )

2 f


n

!�����
= �2"

�����R̂(�)� f 0
 (I � P )
2 f


n
�
 
�2v
 +

�̂2u
"

�̂2"

!
tr(P 2)

n

�����
= �2"

�����R̂(�)�R(�) + �2u
 tr(P 2)n
�
 
�2v
 +

�̂2u
"

�̂2"

!
tr(P 2)

n

�����
� �2"

���R̂(�)�R(�)���+ �2"
�����
 
�̂2u
"

�̂2"
�
�2u
"

�2"

!
tr(P 2)

n

�����
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Using S
(�) � �2"�
2
v


tr(P 2)

n
and R(�) � CS
(�)=�

2
"; we have

jŜ
(�)� S
(�)j
S
(�)

� C
jR̂(�)�R(�)j

R(�)
+
j �̂

2
u
"

�̂2"
� �2u
"

�2"
j

�2v

:

It follows from (6) and Assumption 4(ii) that sup
�2Mn

jŜ
(�) � S
(�)j=S
(�) ! 0: The

optimality of the selection criteria follows from Lemma 4. This ends the proof of

Proposition 4.
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