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Résumé  
 

Cet article propose et justifie théoriquement des méthodes de bootstrap pour des régressions 

où certains régresseurs sont des facteurs estimés à partir de panel de données de grandes 

dimensions. Nous obtenons nos résultats sous la condition que       , où        (N 

et T sont les dimensions individuelle et temporelle du panel respectivement), ce qui permet à 

l’erreur d’estimation des facteurs d’affecter la loi asymptotique de l’estimateur des moindres 

carrés ordinaires (MCO). Nous considérons des méthodes de bootstrap basées sur les résidus 

et donnons des conditions de haut niveau sur les résidus bootstrap et les erreurs 

idiosyncrasiques telles que la loi bootstrap de l’estimateur des MCO est convergente. Par la 

suite, nous vérifions ces conditions pour un algorithme du wild bootstrap. 

 

Nos résultats sont les suivants. Lorsque c = 0, comme dans Bai et Ng (2006), la condition 

essentielle pour la validité du bootstrap est la capacité de la régression bootstrap à reproduire 

la dépendance temporelle des scores de la régression originale.  La dépendance transversale 

ou temporelle des erreurs idiosyncrasiques du modèle à facteurs est négligeable 

asymptotiquement puisque la loi asymptotique des MCO n’est pas affectée par ces 

phénomènes. Cependant, lorsque c > 0, une procédure de bootstrap à deux étapes est 

nécessaire pour capter l’incertitude reliée à l’estimation des facteurs qui apparaît comme un 

biais asymptotique (tel que discuté récemment par Ludvigson et Ng (2009b). Parce que ce 

biais dépend de la dépendance transversale des erreurs idiosyncrasiques, la validité du 

bootstrap dépend de sa capacité à reproduire cette dépendance. 

 
Mots clés : Modèle à facteurs, bootstrap, biais asymptotique. 
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1 Introduction

Factor-augmented regressions where some of the regressors, called factors, are estimated from a large

set of data are increasingly popular in empirical work. Inference in these models is complicated by

the fact that the regressors are estimated and thus measured with error. Recently, Bai and Ng (2006)

derived the asymptotic distribution of the OLS estimator in this case under a set of standard regularity

conditions. In particular, they show that the asymptotic distribution of the OLS estimator is una¤ected

by the estimation of the factors when
p
T=N ! 0; where N and T are the cross-sectional and the

time series dimensions, respectively. While their simulation study does not consider inference on the

coe¢ cients themselves (they look at the conditional mean), they report noticeable size distortions in

some situations.

The main contribution of this paper is to propose and theoretically justify bootstrap methods for

inference in the context of the factor-augmented regression model. Shintani and Guo (2011) prove the

validity of the bootstrap to carry out inference on the persistence of factors, but not in the context of

factor-augmented regressions. Recent empirical applications of the bootstrap in this context include

Ludvigson and Ng (2007, 2009a,b) and Gospodinov and Ng (2011), where the bootstrap has been

used in the context of predictability tests based on factor-augmented regressions without theoretical

justi�cation. Our main contribution is to establish the �rst order asymptotic validity of the bootstrap

for factor-augmented regression models under assumptions similar to those of Bai and Ng (2006) but

without the condition that
p
T=N ! 0: Speci�cally, we assume that

p
T=N ! c, where 0 � c < 1,

thus allowing for the possibility that factor estimation error a¤ects the limiting distribution of the

OLS estimator. As it turns out, when c > 0, an asymptotic bias term appears in the distribution,

re�ecting the contribution of factors estimation uncertainty. This bias problem was recently discussed

by Ludvigson and Ng (2009b), who proposed an analytical bias correction procedure. Instead, here

we focus on the bootstrap and provide a set of conditions under which it can reproduce the whole

limiting distribution of the OLS estimator, including the bias term.

The bootstrap method we propose is made up of two main steps. In a �rst step, we obtain a

bootstrap panel data set from which we estimate the bootstrap factors by principal components.

The bootstrap panel observations are generated by adding the estimated common components from

the original panel and bootstrap idiosyncratic residuals. In a second step, we generate a bootstrap

version of the response variable by again relying on a residual-based bootstrap where the bootstrap

observations of the dependent variable are obtained by summing the estimated regression mean and a

bootstrap regression residual. To mimic the fact that in the original regression model the true factors

are latent and need to be estimated, we regress the bootstrap response variable on the estimated

bootstrap factors. This produces a bootstrap OLS estimator whose bootstrap distribution can be used

to replicate the distribution of the OLS estimator.

We �rst provide a set of high level conditions on the bootstrap residuals and idiosyncratic errors

2



that allow us to characterize the limiting distribution of the bootstrap OLS estimator under the

assumption that
p
T=N ! c; where 0 � c < 1. These high level conditions essentially require that

the bootstrap idiosyncratic errors be weakly dependent across individuals and over time and that the

bootstrap regression scores satisfy a central limit theorem. We then verify these high level conditions

for a residual-based wild bootstrap scheme, where the wild bootstrap is used to generate the bootstrap

idiosyncratic error term in the �rst step, and also in the second step when generating the regression

residuals. The two steps are performed independently of each other.

A crucial result in proving the �rst order asymptotic validity of the bootstrap in this context is the

consistency of the bootstrap principal component estimator. Given our residual-based bootstrap, the

�latent�factors underlying the bootstrap data generating process (DGP) are given by the estimated

factors. Nevertheless, these are not identi�ed by the bootstrap principal component estimator due to

the well-known identi�cation problem of factor models. By relying on results of Bai and Ng (2011) (see

also Stock and Watson (2002)), we show that the bootstrap estimated factors identify the estimated

factors up to a change of sign. Contrary to the rotation indeterminacy problem that a¤ects the

principal component estimator, this sign indetermination is easily resolved in the bootstrap world,

where the bootstrap rotation matrix depends on bootstrap population values that are functions of the

original data. As a consequence, to bootstrap the distribution of OLS estimator, our proposal is to

rotate the bootstrap OLS estimator using the feasible bootstrap rotation matrix. This amounts to

sign-adjusting the bootstrap OLS regression estimates asymptotically.

Our results can be summarized as follows. When c = 0, as in Bai and Ng (2006), the crucial

condition for bootstrap validity is the ability of the bootstrap regression scores to mimic the serial

dependence and heteroskedasticity of the original regression scores. For instance, a wild bootstrap

in the second-step of our residual-based bootstrap is appropriate if we assume the regression errors

to be a possibly heteroskedastic martingale di¤erence sequence (as in Bai and Ng (2006)). Under a

more general dependence assumption, the wild bootstrap is not appropriate and we should instead

consider a block bootstrap. We do not pursue this possibility here but note that our bootstrap high

level conditions would be useful in establishing the validity of the block bootstrap in this context as

well. Mimicking the cross sectional and/or serial dependence of the idiosyncratic errors in the panel

factor model is asymptotically irrelevant when c = 0 since the limiting distribution of the original OLS

estimator does not depend on these dependencies under this condition. Thus, a wild bootstrap in the

�rst step of the residual-based bootstrap is asymptotically valid under the general setup of Bai and

Ng (2006) that allows for weak time series and cross sectional dependence in the idiosyncratic error

term. In fact, a simple one-step residual-based bootstrap method that does not take into account the

factor estimation uncertainty in the bootstrap samples (i.e. a bootstrap method based only on the

second step of our proposed method) is asymptotically valid when c = 0.1 Instead, when c > 0, a two-

1We do not consider this here because factor estimation uncertainty has an impact in �nite samples. For instance,
Yamamoto (2011) compares bootstrap methods with and without factor estimation for the factor-augmented vector
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step residual-based bootstrap is required to capture the asymptotic bias term that re�ects the factors

estimation error. Because the bias depends on the cross sectional dependence of the idiosyncratic

error term, bootstrap validity depends crucially on the ability of the bootstrap panel factor model to

capture this cross sectional dependence. Since the wild bootstrap generates bootstrap idiosyncratic

errors that are heteroskedastic but independent along the time and cross sectional dimensions, this

method is consistent only under cross sectional independence of the idiosyncratic errors.

The rest of the paper is organized as follows. In Section 2, we �rst describe the setup and the

assumptions, and then derive the asymptotic theory of the OLS estimator when
p
T=N ! c: In Section

3, we introduce the residual-based bootstrap method and characterize a set of conditions under which

the bootstrap distribution consistency follows. Section 4 proposes a wild bootstrap implementation of

the residual-based bootstrap and proves its consistency. Section 5 discusses the Monte Carlo results

and Section 6 concludes. Three mathematical appendices are included. Appendix A contains the

proofs of the results in Section 2, Appendix B the proofs of the results in Section 3, and Appendix C

the proofs of the results in Section 4.

A word on notation. As usual in the bootstrap literature, we use P � to denote the bootstrap

probability measure, conditional on a given sample. For any bootstrap statistic T �NT , we write

T �NT = oP � (1), in probability, or T �NT !P � 0, in probability, when for any � > 0, P � (jT �NT j > �) =

oP (1). We write T �NT = OP � (1), in probability, when for all � > 0 there exists M� < 1 such that

limN;T!1 P [P � (jT �NT j > M�) > �] = 0: Finally, we write T �NT !d� D; in probability, if conditional on

a sample with probability that converges to one, T �NT weakly converges to the distribution D under

P �, i.e. E� (f (T �NT ))!P E (f (D)) for all bounded and uniformly continuous functions f .

2 Asymptotic theory when
p
T=N ! c; where 0 � c <1

We consider the following regression model

yt+h = �0Ft + �
0Wt + "t+h; t = 1; : : : ; T � h; (1)

where h � 0: The q observed regressors are contained in Wt. The r unobserved regressors Ft are the

common factors in the following panel factor model,

Xit = �0iFt + eit; i = 1; : : : ; N; t = 1; : : : ; T; (2)

where the r� 1 vector �i contains the factor loadings and eit is an idiosyncratic error term. In matrix
form, we can write (2) as

X = F�0 + e;

where X is a T �N matrix of stationary data, F = (F1; : : : ; FT )
0 is T � r, r is the number of common

factors, � = (�1; : : : ; �N )
0 is N � r, and e is T �N:

autoregression (FAVAR) model and concludes that the latter is worse than the �rst in terms of �nite sample accuracy.
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The factor-augmented regression model described in (1) and (2) has recently attracted a lot of

attention in econometrics. One of the �rst papers to discuss this model in the forecasting context

was Stock and Watson (2002): Recent empirical applications include Ludvigson and Ng (2007) who

consider predictive regressions of excess stock returns and augment the usual set of predictors by

including estimated factors from a large panel of macro and �nancial variables, Ludvigson and Ng

(2009a,b) who consider this approach in the context of predictive regressions of bond excess returns,

Gospodinov and Ng (2011) who study predictive regressions for in�ation using principal components

from a panel of commodity convenience yields, and Eichengreen, Mody, Nedeljkovic, and Sarno (2009)

who use common factors extracted from credit default swap (CDS) spreads during the recent �nancial

crisis to look at spillovers across banks.

Estimation proceeds in two steps. Given X, we estimate F and � with the method of principal

components. In particular, F is estimated with the T � r matrix ~F =
�
~F1 : : : ~FT

�0
composed

of
p
T times the eigenvectors corresponding to the r largest eigenvalues of of XX 0=TN (arranged in

decreasing order), where the normalization
~F 0 ~F
T = Ir is used. The matrix containing the estimated

loadings is then ~� =
�
~�1; : : : ; ~�N

�0
= X 0 ~F

�
~F 0 ~F

��1
= X 0 ~F=T:

In the second step, we run an OLS regression of yt+h on ẑt =
�
~F 0t W 0

t

�0
, i.e. we compute

�̂ �
�
�̂

�̂

�
=

 
T�hX
t=1

ẑtẑ
0
t

!�1 T�hX
t=1

ẑtyt+h; (3)

where �̂ is p� 1 with p = r + q:

As is well known in this literature, the principal components ~Ft can only consistently estimate a

transformation of the true factors Ft, given by HFt; where H is a rotation matrix de�ned as

H = ~V �1
~F 0F

T

�0�

N
; (4)

where ~V is the r � r diagonal matrix containing on the main diagonal the r largest eigenvalues of

XX 0=NT , in decreasing order.

One important implication is that �̂ consistently estimates � �
�
�0H�1 �0

�0
; and not

�
�0 �0

�0
:

In particular, given (1), adding and subtracting appropriately yields

yt+h =
�
�0H�1 �0

�| {z }
=�0

�
~Ft
Wt

�
| {z }

=ẑt

+ �0H�1
�
HFt � ~Ft

�
+ "t+h;

or, equivalently,

yt+h = ẑ0t� + �
0H�1

�
HFt � ~Ft

�
+ "t+h; (5)

where the second term represents the contribution from estimating the factors.

Recently, Bai and Ng (2006) derived the asymptotic distribution of
p
T
�
�̂ � �

�
under a set of

regularity conditions and the assumption that
p
T=N ! 0. Our goal in this section is to derive the
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limiting distribution of �̂ under the assumption that
p
T=N ! c; where c is not necessarily zero. We

use the following assumptions, which are similar to Bai�s (2003) assumptions and slightly weaker than

the Bai and Ng (2006) assumptions. We let zt =
�
F 0t W 0

t

�0
, where zt is p� 1, with p = r + q.

Assumption 1 - Factors and factor loadings

(a) E kFtk4 �M and 1
T

PT
t=1 FtF

0
t !P �F > 0; where �F is a non-random r � r matrix.

(b) The loadings �i are either deterministic such that k�ik �M , or stochastic such that E k�ik4 �M:

In either case, �0�=N !P �� > 0, where �� is a non-random matrix.

(c) The eigenvalues of the r � r matrix (���F ) are distinct.

Assumption 2 - Time and cross section dependence and heteroskedasticity

(a) E (eit) = 0, E jeitj8 �M:

(b) E (eitejs) = �ij;ts, j�ij;tsj � ��ij for all (t; s) and j�ij;tsj � � ts for all (i; j) such that 1N
PN
i;j=1 ��ij �

M; 1T
PT
t;s=1 � ts �M , and 1

NT

P
t;s;i;j j�ij;tsj �M:

(c) For every (t; s), E
���N�1=2PN

i=1 (eiteis � E (eiteis))
���4 �M:

Assumption 3 - Moments and weak dependence among fztg, f�ig and feitg.

(a) E
�
1
N

PN
i=1

 1p
T

PT
t=1 Fteit

2� �M , where E (Fteit) = 0 for all (i; t).

(b) For each t; E
 1p

TN

PT
s=1

PN
i=1 zs (eiteis � E (eiteis))

2 �M; where zs =
�
F 0s W 0

s

�0
:

(c) E
 1p

NT

PT
t=1 zte

0
t�
2 �M , where E

�
zt�

0
ieit
�
= 0 for all (i; t).

(d) E
�
1
T

PT
t=1

 1p
N

PN
i=1 �ieit

2� �M; where E (�ieit) = 0 for all (i; t).

(e) As N;T ! 1; 1
TN

PT
t=1

PN
i=1

PN
j=1 �i�

0
jeitejt � � !P 0; where � � limN;T!1

1
T

PT
t=1 �t > 0;

and �t � V ar
�

1p
N

PN
i=1 �ieit

�
:

Assumption 4 - weak dependence between idiosyncratic errors and regression errors

(a) For each t and h � 0; E
��� 1p
TN

PT�h
s=1

PN
i=1 "s+h (eiteis � E (eiteis))

���2 �M:

(b) E
 1p

NT

PT�h
t=1

PN
i=1 �ieit"t+h

2 �M , where E (�ieit"t+h) = 0 for all (i; t) :

Assumption 5 - moments and CLT for the score vector

(a) E ("t+h) = 0 and E j"t+hj2 < M:

(b) E kztk4 �M and 1
T

PT
t=1 ztz

0
t !P �zz > 0:
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(c) As T !1; 1p
T

PT�h
t=1 zt"t+h !d N (0;
) ; where E

 1p
T

PT�h
t=1 zt"t+h

2 < M , and


 � limT!1 V ar
�

1p
T

PT�h
t=1 zt"t+h

�
> 0:

Assumption 1(a) imposes the assumption that factors are non-degenerate. Assumption 1(b) ensures

that each factor contributes non-trivially to the variance of Xt, i.e. the factors are pervasive and a¤ect

all cross sectional units. These assumptions ensure that there are r identi�able factors in the model.

Recently, Onatski (2011) considers a class of �weak� factor models, where the factor loadings are

modeled as local to zero. Under this assumption, the estimated factors are no longer consistent for

the unobserved (rotated) factors. In this paper, we do not consider this possibility. Assumption 1(c)

ensures that Q � p lim
�
~F 0F=T

�
is unique. Without this assumption, Q is only determined up to

orthogonal transformations. See Bai (2003, proof of his Proposition 1).

Assumption 2 imposes weak cross-sectional and serial dependence conditions in the idiosyncratic

error term eit. In particular, we allow for the possibility that eit is dependent across individual units

and over time, but we require that the degree of dependence decreases as the time and the cross

sectional distance (regardless of how it is de�ned) between observations increases. This assumption is

compatible with the approximate factor model of Chamberlain and Rothschild (1983) and Connor and

Korajczyk (1986, 1993), in which cross section units are weakly correlated. Assumption 2 allows for

heteroskedasticity in both dimensions and requires the idiosyncratic error term to have �nite eighth

moments.

Assumption 3 restricts the degree of dependence among the vector of regressors fztg, the factor
loadings f�ig and the idiosyncratic error terms feitg. If we assume that fztg, f�ig and feitg are
mutually independent (as in Bai and Ng (2006)), then Assumptions 3(a), 3(c) with zt = Ft and 3(d)

are implied by Assumptions 1 and 2. Similarly, Assumption 3(b) holds if we assume that fztg and
feitg are independent and the following weak dependence condition on feitg holds

1

NT 2

X
t;s;l;u

X
i;j

jCov (eiteis; ejleju)j < � <1: (6)

Bai (2009) relies on a similar condition (part 1 of his Assumption C.4) to establish the asymptotic

properties of the interactive e¤ects estimator. As he explains, this condition is slightly stronger than

the assumption that the second moment of N�1=2PN
i=1 �i is bounded, where �i �

�
T�1=2

PT
t=1 eit

�2
�

E
�
T�1=2

PT
t=1 eit

�2
(note that V ar

�
N�1=2PN

i=1 �i

�
equals the left hand side of the above inequality

without the absolute value). It holds if eit is i.i.d. over i and t and E
�
e4it
�
< M: Assumptions 3(a)-3(c)

are equivalent to Assumptions D, F1 and F2 of Bai (2003) when zt = Ft.

To describe Assumption 3(e), for each t, let

�t �
1p
N

NX
i=1

�ieit; and �t � V ar (�t) = E
�
�t�

0
t

�
;

since we assume that E (�ieit) = 0 for all (i; t). Assumption 3(e) requires that 1T
PT
t=1

�
�t�

0
t � E

�
�t�

0
t

��
7



converges in probability to zero. This follows under weak dependence conditions on f�ieitg over (i; t).
�t is related to the asymptotic variance of

p
N
�
~Ft �HFt

�
, as shown by Bai (2003, cf. Theorem 1).

Assumption 4 imposes weak dependence between the idiosyncratic errors and the regression errors.

Part (a) holds if feitg is independent of f"tg and the weak dependence condition (6) holds. Similarly,
part (b) holds if f�ig ; feisg and f"tg are three mutually independent groups of random variables and

Assumption 2 holds.

Assumption 5 imposes moment conditions on f"t+hg, on fztg and on the score vector fzt"t+hg.
Part b) requires fztz0tg to satisfy a law of large numbers. Part c) requires the score to satisfy a

central limit theorem, where 
 denotes the limiting variance of the scaled average of the scores. The

dependence structure of the scores fzt"t+hg dictates the form of the covariance matrix estimator

to be used for inference on �. For instance, Bai and Ng (2006) impose the assumption that "t+h

is a martingale di¤erence sequence with respect to fzt; yt; zt�1; yt�1; : : :g when h > 0: Under this

assumption, 
 = lim 1
T

PT�h
t=1 E

�
ztz

0
t"
2
t+h

�
; and the appropriate covariance matrix estimator is an

heteroskedasticity robust variance estimator. As we will see later, the form of 
 will also dictate the

type of bootstrap we should use. In particular, under the martingale di¤erence sequence on "t+h, a

wild bootstrap method will be appropriate. Section 4 will consider this speci�c bootstrap scheme.

Given Assumptions 1-5, we can state our main result as follows. We introduce the following

notation:

H0 � p limH = V �1Q��; Q � p lim

 
~F 0F

T

!
; V � p lim ~V ; and

�0 � diag (H0; Iq) :

Additionally, we let �WF = E (WtF
0
t).

Theorem 2.1 Let Assumptions 1-5 hold. If
p
T=N ! c; with 0 � c <1, then

p
T
�
�̂ � �

�
!d N (�c��;��) ;

where �� = (�00)
�1��1zz 
�

�1
zz �

�1
0 , and

�� �
�
��
��

�
=
�
�0�zz�

0
0

��1� � ~F + V � ~FV
�1

�W ~FV � ~FV
�1

��
H�1
0

�0
�; with

� ~F � V �1
�
Q�Q0

�
V �1;

�W ~F � p lim

 
W 0 ~F

T

!
= �WFH

0
0:

If �WF = 0, the asymptotic bias is equal to

�c��̂ = �c
� �

� ~F + V � ~FV
�1� �H�1

0

�0
�

0

�
:

Theorem 2.1 gives the asymptotic distribution of
p
T
�
�̂ � �

�
under the condition that

p
T=N ! c;

where 0 � c < 1: When c = 0, we obtain the same limiting distribution as in Bai and Ng (2006)

8



under a set of assumptions that is weaker than theirs, as we discussed above. As in Bai and Ng (2006),

factors estimation error does not contribute to the asymptotic distribution when c = 0. This is no

longer the case when c > 0. Under this alternative condition, an asymptotic bias appears, as was

recently discussed by Ludvigson and Ng (2009b) in the context of a simpler regression model without

observed regressors Wt. Our Theorem 2.1 complements their results by providing an expression of the

bias for �̂ when the factor-augmented regression model includes also observed regressors in addition

to the unobserved factors Ft.

Several remarks follow. First, the expression for �� is proportional to
�
H�1
0

�0
� = p lim �̂, implying

that when � = 0, no asymptotic bias exists independently of the value of c. Second, the asymptotic

bias for both �̂ and �̂ is a function of

� ~F � V �1Q�Q0V �1 = lim
N;T!1

1

T

TX
t=1

V �1Q�tQ
0V �1;

where V �1Q�tQ0V �1 is the asymptotic variance of
p
N
�
~Ft �HFt

�
(see Bai (2003)). Thus, the bias

depends on the sampling variance-covariance matrix of the estimation error incurred by the principal

components estimator ~Ft, averaged over time. This variance matrix depends on the cross sectional

dependence of feitg via �t � V ar
�

1p
N

PN
i=1 �iei

�
. As we will see next, the main implication for the

validity of the bootstrap is that it needs to reproduce this cross sectional dependence when c 6= 0

but not otherwise. Third, the existence of measurement error in ~Ft contaminates the estimators of

the remaining parameters �, i.e. �̂ is asymptotically biased due to the measurement error in ~Ft: The

asymptotic bias associated with �̂ will be zero only in the special case when the observed regressors

and the factors are not correlated (i.e. �WF = 0) (or when � = 0).

3 A general residual-based bootstrap

The main contribution of this section is to propose a general residual-based bootstrap method and

discuss its consistency for factor-augmented regression models under a set of su¢ cient high-level condi-

tions on the bootstrap residuals. These high level conditions can be veri�ed for any bootstrap scheme

that resamples residuals. We verify these conditions for a two-step wild bootstrap scheme in Section

4.

3.1 Bootstrap data generating process and estimation

Let
�
e�t = (e

�
1t; : : : ; e

�
Nt)

0	 denote a bootstrap sample from n
~et = Xt � ~� ~Ft

o
and

�
"�t+h

	
a bootstrap

sample from
n
"̂t+h = yt+h � �̂0 ~Ft � �̂

0
Wt

o
. We consider the following bootstrap DGP:

y�t+h = �̂0 ~Ft + �̂
0
Wt + "

�
t+h; t = 1; : : : ; T � h; (7)

X�
t = ~� ~Ft + e

�
t ; t = 1; : : : ; T: (8)

9



Estimation proceeds in two stages. First, we estimate the factors by the method of principal

components using the bootstrap panel data set fX�
t g. Second, we run a regression of y�t+h on the

bootstrap estimated factors and on the �xed observed regressors Wt.

More speci�cally, given fX�
t g, we estimate the bootstrap factor loadings and the bootstrap factors

by minimizing the bootstrap objective function

V � (F;�) =
1

TN

TX
t=1

NX
i=1

�
X�
it � �0iFt

�2
subject to the normalization constraint that F 0F=T = Ir: The T � r matrix containing the estimated
bootstrap factors is denoted by ~F � =

�
~F �1 ; : : : ;

~F �T

�0
and it is equal to the r eigenvectors of X�X�0=NT

(multiplied by
p
T ) corresponding to the r largest eigenvalues. TheN�r matrix of estimated bootstrap

loadings is given by ~�� =
�
~�
�
1; : : : ;

~�
�
N

�0
= X�0 ~F �=T .

Given the estimated bootstrap factors ~F �t , the second estimation stage is to regress y
�
t+h on

ẑ�t =
�
~F �0t W 0

t

�0
: Because the bootstrap scheme used to generate y�t+h is residual-based, we �x

the observed regressors Wt in the bootstrap regression. We replace ~Ft with ~F �t to mimic the fact that

in the original regression model the factors Ft are latent and need to be estimated with ~Ft. This yields

the bootstrap OLS estimator

�̂
�
=

 
1

T

T�hX
t=1

ẑ�t ẑ
�0
t

!�1
1

T

T�hX
t=1

ẑ�t y
�
t+h: (9)

�̂
�
is the bootstrap analogue of �̂, the OLS estimator based on the original sample.

3.2 Bootstrap high level conditions

In this section, we provide a set of high level conditions on fe�itg and
�
"�t+h

	
that will allow us to

characterize the bootstrap distribution of �̂
�
.

Condition A� (weak time series and cross section dependence in e�it)

(a) E� (e�it) = 0 for all (i; t) :

(b) 1
T

PT
t=1

PT
s=1 j�stj

2 = OP (1), where �st = E�
�
1
N

PN
i=1 e

�
ite
�
is

�
:

(c) 1
T 2
PT
t=1

PT
s=1E

�
��� 1p
N

PN
i=1 (e

�
ite
�
is � E� (e�ite�is))

���2 = OP (1) :

Condition B* (weak dependence among ẑt; ~�i; and e�it )

(a) 1
T

PT
t=1

PT
s=1

~Fs ~F
0
t
�
st = OP (1) :

(b) 1
T

PT
t=1E

�
 1p

TN

PT
s=1

PN
i=1 ẑs (e

�
ite
�
is � E� (e�ite�is))

2 = OP (1), where ẑs =
�
~F 0s W 0

s

�0
:

(c) E�
 1p

TN

PT
t=1

PN
i=1 ẑt

~�
0
ie
�
it

2 = OP (1) :

10



(d) 1
T

PT
t=1E

�
 1p

N

PN
i=1

~�ie
�
it

2 = OP (1) :

(e) 1
T

PT
t=1

�
~�0e�tp
N

��
e�0t
~�p
N

�
� �� = oP � (1) ; in probability, where �� � 1

T

PT
t=1 V ar

�
�

1p
N
~�0e�t

�
> 0:

Condition C* (weak dependence between e�it and "�t+h)

(a) 1
T

PT
t=1E

�
��� 1p
TN

PT�h
s=1

PN
i=1 "

�
s+h (e

�
ite
�
is � E� (e�ite�is))

���2 = OP (1).

(b) E�
 1p

TN

PT�h
t=1

PN
i=1

~�ie
�
it"
�
t+h

2 = OP (1), where E
�
e�it"

�
t+h

�
= 0 for all (i; t).

(c) 1
T

PT�h
t=1

PT
s=1

~Fs"
�
t+h

�
st = OP � (1), in probability.

Condition D* (bootstrap CLT)

(a) E�
�
"�t+h

�
= 0 and 1

T

PT�h
t=1 E

� ��"�t+h��2 = OP (1) :

(b) 
��1=2 1p
T

PT�h
t=1 ẑt"

�
t+h !d� N (0; Ip), in probability, where E�

 1p
T

PT�h
t=1 ẑt"

�
t+h

2 = OP (1), and


� � V ar�
�

1p
T

PT�h
t=1 ẑt"

�
t+h

�
> 0:

Conditions A*-D* are the bootstrap analogue of Assumptions 1 through 5. However, contrary

to Assumptions 1-5, which pertain to the data generating process and cannot be veri�ed in practice,

Conditions A*-D* can be veri�ed for any particular bootstrap algorithm used to generate the bootstrap

residuals and idiosyncratic error terms. More importantly, we can devise bootstrap schemes to verify

these conditions and hence ensure bootstrap validity. For instance, part (a) of Condition A* requires

the bootstrap mean of e�it to be zero for all (i; t) whereas part (a) of Condition D* requires that the same

is true for "�t . The practical implication is that we should make sure to construct bootstrap residuals

with mean zero, e.g. to recenter residuals before applying a nonparametric bootstrap method. Parts

b) and c) of Condition A* impose weak dependence conditions on fe�itg over (i; t). For instance, these
conditions are satis�ed if we resample fe�itg in an i.i.d. fashion over the two indices (i; t). Condition
B* imposes further restrictions on the dependence among ẑt, ~�i and the idiosyncratic errors e�it. Since

ẑt and ~�i are �xed in the bootstrap world, Condition B* is implied by appropriately restricting the

dependence of e�it over (i; t). Similarly, Condition C* restricts the amount of dependence between

fe�isg and
�
"�t+h

	
. If these two sets of bootstrap innovations are independent of one another, then

weak dependence on fe�isg su¢ ces for Condition C* to hold. Finally, Condition D* requires the

bootstrap regression scores ẑt"�t+h to obey a central limit theorem in the bootstrap world.

3.3 Bootstrap results

Under Conditions A*-D*, we can show the consistency of the bootstrap principal component estimator
~F � for a rotated version of the true �latent�bootstrap factors ~F , a crucial result in proving the �rst

order asymptotic validity of the bootstrap in this context.
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More speci�cally, according to (7)-(8), the common factors underlying the bootstrap panel data

fX�
t g are given by ~Ft (with ~� as factor loadings). Nevertheless, just as ~Ft estimates a rotation of Ft,

the estimated bootstrap factors ~F �t estimate H
� ~Ft, where H� is the bootstrap analogue of the rotation

matrix H de�ned in (4), i.e.

H� = ~V ��1
~F �0 ~F

T

~�0~�

N
; (10)

where ~V � is the r � r diagonal matrix containing on the main diagonal the r largest eigenvalues of

X�X�0=NT , in decreasing order.

Lemma 3.1 Assume Assumptions 1-5 hold and suppose we generate bootstrap data
�
y�t+h; X

�
t

	
ac-

cording to the residual-based bootstrap DGP (7) and (8) by relying on bootstrap residuals
�
"�t+h

	
and

fe�t g such that Conditions A*-D* are satis�ed. Then, as N;T !1,

1

T

TX
t=1

 ~F �t �H� ~Ft

2 = OP �
�
��2NT

�
;

in probability, where �NT = min
�p

N;
p
T
�
:

According to Lemma 3.1, the time average of the squared deviations between the estimated boot-

strap factors ~F �t and a rotation of the �latent�bootstrap factors given by H
� ~Ft vanishes in probability

under the bootstrap measure P � as N;T ! 1, conditional on a sample which lies in a set with
probability converging to one. Contrary to H, H� does not depend on population values and can

be computed for any bootstrap sample, given the original sample. Hence, rotation indeterminacy is

not a problem in the bootstrap world. Because the bootstrap factor DGP (8) satis�es the constraints

that ~F 0 ~F=T = Ir and ~�0~� is a diagonal matrix, we can actually show that H� is asymptotically (as

N;T !1) equal to H�
0 = diag (�1), a diagonal matrix with diagonal elements equal to �1, where the

sign of is determined by the sign of ~F �0 ~F=T (see Lemma B.1; the proof follows by arguments similar

to those used in Bai and Ng (2011) and Stock and Watson (2002)). Thus, the bootstrap factors are

identi�ed up to a change of sign.

The main implication from Lemma 3.1 is that the bootstrap OLS estimator that one obtains from

regressing y�t+h on ẑ
�
t estimates a rotated version of �̂, given by �

� �
�
�̂0H��1 �̂

0
�0
= ��0�1�̂, where

�� = diag (H�; Iq) : Asymptotically, �� is equal to ��0�10 �̂, where �� = diag (H�
0 ; Iq), which can be

interpreted as a sign-adjusted version of �̂.

Our next result characterizes the asymptotic bootstrap distribution of
p
T
�
�̂
� � ��

�
when

p
T=N !

c, with 0 � c <1. We add the two following conditions.

Condition E*. p lim
� = �0
�00:

Condition F*. p lim�� = Q�Q0:
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� is the bootstrap variance of the scaled average of the bootstrap regression scores ẑt"�t+h (as

de�ned in Condition D*(b)). Since ~Ft estimates a rotated version of the latent factors given by

H0Ft, ẑt estimates a rotated version of zt given by �0zt, and therefore 
� is the sample analog of

�0
�
0
0 provided we choose "

�
t+h to mimic the time series dependence of "t+h. Condition E* imposes

formally this condition. Similarly, by Condition B*(e), �� � 1
T

PT
t=1 V ar

�
�

1p
N

PN
i=1

~�ie
�
it

�
. Because

~�i estimates Q�i, �� is the sample analogue of Q�Q0 if we choose e�it to mimic the cross sectional

dependence of eit (interestingly enough, mimicking the time series dependence of eit is not relevant).

Condition F* formalizes this requirement.

Theorem 3.1 Let Assumptions 1-5 hold and consider any residual-based bootstrap scheme for which

Conditions A*-D* are veri�ed. Suppose
p
T=N ! c, where 0 � c < 1. If in addition the two

following conditions hold: (1) Condition E* is veri�ed, and (2) c = 0 or Condition F* is veri�ed; then

as N;T !1,
p
T
�
�̂
� � ��

�
!d� N

�
�c
�
��00
��1

��;
�
��0

0��1�����10

�
;

in probability, where �� �
�
���10

�0
�̂;with ��0 = p lim�� = diag (H�

0 ; Iq) a diagonal matrix with �1 in
the main diagonal, and �� and �� are as de�ned in Theorem 2.1.

According to Theorem 3.1,
p
T
�
�̂
� � ��

�
is asymptotically distributed as a normal random vector

with mean equal to �c (��00 )
�1��: Just as the asymptotic bias of

p
T
�
�̂�

�
H�1�0 �� is proportional to�

H�1�0 �, the bootstrap asymptotic bias is proportional to �H��1
0

�0
�̂. Since �̂ converges in probability

to
�
H�1�0 �, the bootstrap bias of �̂� converges to �c (H�0

0 )
�1�� provided we ensure that Condition F*

is satis�ed. The bootstrap bias of �̂
�
depends both on the bootstrap analogue of �W ~F = p lim W 0 ~F

T =

�WFH
0
0 and on

�
H��1
0

�0
�̂: Since the bootstrap analogue of �W ~F is p lim

W 0 ~F �

T , which converges to

�W ~FH
�0
0 , the rotation matrix H

�0
0 �cancels out� with

�
H��1
0

�0
�̂, leaving the bootstrap bias of �̂

�

una¤ected by the sign problem that arises for �̂� (Lemma B.4 formalizes this argument). Similarly,

the asymptotic variance-covariance matrix of �̂
�
is equal to (��0

0)�1���
��1
0 provided we choose "�t+h

so as to verify Condition E*.

For bootstrap consistency, we need the bootstrap bias and variance to match the bias and variance

of the limiting distribution of the original OLS estimator. Since H�
0 (hence �

�
0) is not necessarily

equal to the identity matrix, Theorem 3.1 shows that this is not the case. Hence, the bootstrap

distribution of
p
T
�
�̂
� � ��

�
is not a consistent estimator of the sampling distribution of

p
T
�
�̂ � �

�
in general. This is true even if we choose "�t+h and e

�
it so that Conditions E* and F* are satis�ed. The

reason is that the bootstrap factors are not identi�ed. In particular, because the bootstrap principal

components estimator does not necessarily identify the sign of the bootstrap factors, the mean of each

element of
p
T
�
�̂
� � ��

�
corresponding to the coe¢ cients associated with the latent factors may have

the �wrong�sign even asymptotically. The same �sign�problem will a¤ect the o¤-diagonal elements

of the bootstrap covariance matrix asymptotically (although not the main diagonal elements). As we
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mentioned above, the coe¢ cients associated with Wt are correctly identi�ed in the bootstrap world as

well as in the original sample and therefore this sign problem does not a¤ect these coe¢ cients.

In order to obtain a consistent estimator of the distribution of
p
T
�
�̂ � �

�
, our proposal is to

consider the bootstrap distribution of the rotated version of
p
T
�
�̂
� � ��

�
given by

p
T (��0�̂� � �̂).

This rotation is feasible because �� does not depend on any population quantities and can be computed

for any bootstrap and original samples. Since �� is asymptotically equal to ��0 = diag (�1; Iq) =
diag

�
sign

�
~F �0 ~F

�
; Iq

�
, ��0�̂

�
is asymptotically equal to a sign-adjusted version of �̂

�
. The following

result is an immediate corollary to Theorems 2.1 and 3.1.

Corollary 3.1 Under the conditions of Theorem 3.1, if
p
T=N ! c, where 0 � c <1, as N;T !1;

then supx2Rp
���P � �pT ���0�̂� � �̂� � x

�
� P

�p
T
�
�̂ � �

�
� x

����!P 0:

Corollary 3.1 justi�es the use of a residual-based bootstrap method for constructing bootstrap

percentile con�dence intervals for the elements of �. When c = 0, the crucial condition for bootstrap

validity is Condition E*, which requires f"�t g to be chosen so as to mimic the dependence structure
of the scores zt"t+h. This condition ensures that the bootstrap variance-covariance matrix of ��0�̂

�

is correct asymptotically. When c 6= 0, Condition F* is also crucial to ensure that the bootstrap

distribution correctly captures the bias. When both Conditions E* and F* are satis�ed, the bootstrap

contains a built-in bias correction term that is absent in the Bai and Ng (2006) asymptotic normal

distribution, and we might expect it to outperform the normal approximation. A bootstrap method

that does not involve factor estimation in the bootstrap world will not contain this bias correction and

will not be valid in this context.

4 Wild bootstrap

In this section we propose a particular bootstrap method for generating
�
"�t+h

	
and fe�itg and show

its �rst-order asymptotic validity under a set of primitive conditions.

Bootstrap algorithm

1. For t = 1; : : : ; T , let

X�
t =

~� ~Ft + e
�
t ;

where fe�t = (e�1t; : : : ; e�Nt)g is such that

e�it = ~eit�it;

is a resampled version of
n
~eit = Xit � ~�

0
i
~Ft

o
obtained with the wild bootstrap. The external

random variables �it are i.i.d. across (i; t) and have mean zero and variance one.

2. Estimate the bootstrap factors ~F � and the bootstrap loadings ~�� using X�.
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3. For t = 1; : : : ; T � h; let

y�t+h = �̂0 ~Ft + �̂
0
Wt + "

�
t+h;

where the error term "�t+h is a wild bootstrap resampled version of "̂t+h, i.e.

"�t+h = "̂t+hvt+h,

where the external random variable vt+h is i.i.d. (0; 1) and is independent of �it.

4. Regress y�t+h generated in 3. on the estimated bootstrap factors and the �xed regressors ẑ
�
t =�

~F �0t ;W
0
t

�0
. This yields the bootstrap OLS estimators

�̂
�
=

 
T�hX
t=1

ẑ�t ẑ
�0
t

!�1 T�hX
t=1

ẑ�t y
�
t+h.

To prove the validity of this residual-based wild bootstrap, we add the following assumptions.

Assumption 6. �i are either deterministic such that k�ik � M < 1, or stochastic such that
E k�ik12 � M < 1 for all i; E kFtk12 � M < 1; E jeitj12 � M < 1; for all (i; t) ; and
for some q > 1, E j"t+hj4q �M <1; for all t; h:

Assumption 7. E ("t+hjyt; Ft; yt�1; Ft�1; : : :) = 0 for any h > 0, and Ft and "t are independent of

the idiosyncratic errors eis for all (i; s; t).

Assumption 8. E (eitejs) = 0 if i 6= j.

Assumption 6 strengthens the moment conditions assumed in Assumption 1.b), 2.a), and 5.a),

respectively. The moment conditions on �i, Ft and eit su¢ ce to show that E
���0iFseit��4 < M (while

maintaining that E jeitj8 < M). If we assume that the three groups of random variables fFtg, feitg
and f�ig are mutually independent (as in Bai and Ng (2006)), then it su¢ ces that E k�ik4 �M <1,
E kFtk4 �M <1 (and E jeitj8 < M).

Assumption 7 was used by Bai and Ng (2006). It imposes a martingale di¤erence condition on the

regression errors "t+h, implying that these are serially uncorrelated but possibly heteroskedastic. In

addition, "t is independent of eis for all (i; t; s). Under Assumption 7,


 = limV ar

 
1p
T

T�hX
t=1

zt"t+h

!
= lim

1

T

T�hX
t=1

E
�
ztz

0
t"
2
t+h

�
;

which motivates using a wild bootstrap to generate "�t+h. For this bootstrap scheme,


� =
1

T

T�hX
t=1

ẑtẑ
0
t"̂
2
t+h;

which corresponds to the estimator used by Bai and Ng (2006) (cf. their equation (3)) and is consis-

tent for �0
�00 under Assumptions 1-7. We assume independence between eit and "t+h and generate
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"�t+h independently of e
�
it; but we conjecture that our results will be valid under weak forms of corre-

lation between the two sets of errors because the limiting distribution of the OLS estimator remains

unchanged under Assumptions 1-5, which allow for dependence between eit and "t+h; as we proved in

Theorem 2.1.

Assumption 8 assumes cross section independence in feitg, but allows for serial correlation and
heteroskedasticity in both directions. This assumption motivates the use of a wild bootstrap to

generate fe�itg. For this bootstrap scheme, we can show that

�� =
1

T

TX
t=1

1

N

NX
i=1

~�i~�
0
i~e
2
it �

1

T

TX
t=1

~�t;

where ~�t corresponds to estimator (5a) in Bai and Ng (2006, p. 1140). As shown by Bai and Ng, this

estimator is consistent for Q�Q0 under cross section independence (and potential heteroskedasticity).

Assumption 8 assumes this is the case and thus justi�es Condition F* in this context. As we discussed

in the previous section, Condition F* is not needed if c = 0. Thus, a wild bootstrap is still asymp-

totically valid if the idiosyncratic errors are cross sectionally (and serially) dependent when
p
T=N

converges to zero (as assumed in Bai and Ng (2006)).

Our main result is as follows.

Theorem 4.1 Suppose that a residual-based wild bootstrap is used to generate fe�itg and
�
"�t+h

	
with

E� j�itj4 < C for all (i; t) and E� jvt+hj4q < C for all t; for some q > 1: Under Assumptions 1-7, if
p
T=N ! c, where 0 � c < 1, and either Assumption 8 holds or c = 0, the conclusions of Corollary

3.1 follow.

5 Monte Carlo results

In this section, we report results from a simulation experiment that documents the properties of our

bootstrap procedure in factor-augmented regressions.

The data-generating process (DGP) is similar to the one used in Ludvigson and Ng (2009b) to

analyze bias. We consider the single factor model:

yt = �Ft + "t; (11)

where Ft is drawn from a standard normal distribution independently over time. The regression error

"t will either be standard normal or heteroskedastic over time. The (T �N) matrix of panel variables
is generated as:

Xit = �iFt + eit; (12)

where �i is drawn from a U [0; 1] distribution (independent across i) and the properties of eit will be

discussed below. The only di¤erence with Ludvigson and Ng (2009b) is that they draw the loadings

from a standard normal distribution. The use of a uniform distribution increases the cross-correlations
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and leads to larger biases without having to set the idiosyncratic variance to large values (they set

it to 16 in one experiment). Note that this DGP satis�es the conditions PC1 in Bai and Ng (2011)

which implies that H0 = �1:
We consider two values for the coe¢ cient, either � = 0 or 1. We consider six di¤erent scenarios

outlined in the table below. When � = 0; the OLS estimator is unbiased, and the properties of the

idiosyncratic components do not matter asymptotically. This leads us to consider only one scenario

with � = 0: The other �ve scenarios have � = 1 but di¤er according to the properties of the regression

error, "t; and of the idiosyncratic error, eit:

DGP � "t eit

1 (homo-homo) 0 N (0; 1) N (0; 1)
2 (homo-homo) 1 N (0; 1) N (0; 1)

3 (hetero-homo) 1 N
�
0;
F 2t
3

�
N (0; 1)

4 (hetero-hetero) 1 N
�
0;
F 2t
3

�
N
�
0; �2i

�
5 (hetero-AR) 1 N

�
0;
F 2t
3

�
AR+N

�
0; �2i

�
6 (hetero-CS) 1 N

�
0;
F 2t
3

�
CS +N (0; 1)

DGP 1 is the simplest case with � = 0 and both error terms i.i.d. standard normal in both

dimensions. DGP 2 is the same but with � = 1: This will allow us to isolate the e¤ect of a non-

zero coe¢ cient on bias and inference while keeping everything else the same. The third experiment

introduces conditional heteroskedasticity in the regression error. We do so by making the variance of

"t depend on the factor and scale so that the asymptotic variance of �̂; �a; is 1 in all experiments.

The fourth DGP adds heteroskedasticity to the idiosyncratic error. The variance of eit is drawn

from U [:5; 1:5] so that the average variance is the same as the homoskedastic case. The �fth DGP

introduces serial correlation in the idiosyncratic error term with autoregressive parameter equal to 0.5.

The innovations are scaled by
�
1� :52

�1=2 to preserve the variance of the idiosyncratic errors. Finally,
the last experiment introduces cross-sectional dependence among idiosyncratic errors. The design is

similar to the one in Bai and Ng (2006): the correlation between eit and ejt is 0:5ji�jj if ji� jj � 5:
We concentrate on inference about the parameter � in (11) :We consider asymptotic and bootstrap

symmetric percentile t con�dence intervals at a nominal level of 95%. We report experiments based

on 1000 replications with B = 399 bootstrap repetitions. We consider three values for N (50, 100,

and 200) and T (50, 100, and 200).

We tailor our inference procedures to the properties of the error terms. In other words, when "t is

homoskedastic (DGP 1 and 2), we use the variance estimator under homoskedasticity:

�̂�̂ = �̂2"

 
1

T

T�hX
t=1

~F 2t

!�1
(13)
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whereas we use the heteroskedastic-robust version for DGPs 3-6:

�̂� =

 
1

T

T�hX
t=1

~F 2t

!�1 
1

T

T�hX
t=1

~F 2t "̂
2
t+h

! 
1

T

T�hX
t=1

~F 2t

!�1
: (14)

Similarly, we use the homoskedastic estimator of � for cases 1-3, the heteroskedasticity-robust

estimator for cases 4-5, and the CS-HAC estimator of Bai and Ng (2006) in case 6 with the window

size n equal to min
�p

N;
p
T
�
. We consider the wild residual-based bootstrap described in Section 4

with the two external variables �it and vt both drawn from i.i.d. N (0; 1) :

We report two sets of results. The �rst set of results is the bias of the OLS estimator. Because

the OLS estimator does not converge to � but to H�10� (and H converges to +1 or -1) and because

its bias is proportional to this, the bias will be positive for some replications and negative for others.

Reporting the average bias over replications is therefore misleading in this situation. To circumvent

this, we report the bias of the rotated OLS coe¢ cient, H 0�̂: This rotated coe¢ cient converges to � in

all replications. Note that this rotation is not possible in the real world since the matrix H depends

on population parameters. Note also that this rotation is possible in the bootstrap world (and indeed

necessary to obtain consistent inference of the entire coe¢ cient vector, see Corollary 3.1). For the

bootstrap world, we report the average of H 0H�0�̂� �H 0�̂; again to ensure that the sign of this bias

is always the same. Secondly, we present coverage rates of the associated con�dence intervals. For

comparison, we also include results for the case where factors do not need to be estimated and are

treated as observed (row labeled "true factor" in the tables). This quanti�es the loss from having to

estimate the factors.

Table 1 provides results for the �rst two DGPs and illustrates our results. For each DGP, the top

panel gives the bias associated with the OLS estimator as well as the plug-in and bootstrap estimates.

The second panel for each design provides the coverage rate of intervals based on asymptotic theory,

either using the OLS estimator or its bias-corrected version, based on OLS using true factors, and

based on the wild bootstrap. From table 1, we see that, as expected, bias is nil when � = 0 (case 1).

When � 6= 0; a negative bias appears. DGP 2 shows that the magnitude of this bias is decreasing in
N (and T ): The sample estimate of this quantity provides a reasonable approximation to it. However,

the bootstrap captures the behavior of the bias well as predicted by theory and better than the sample

estimate.

Coverage rates are consistent with these �ndings. When � = 0 (DGP 1), asymptotic theory is

nearly perfect and matches closely the results based on the observed factors. In case 2, with � = 1;

OLS inference su¤ers from noticeable distortions for all sample sizes. This is because the estimator

is biased and the associated t-statistic is not centered at 0. Analytical bias correction corrects most

of these distortions. The bootstrap provides even better inference and is quite accurate for N � 100:
This loss in accuracy in inference is due to the estimation of the factors as illustrated by the results

with the true factors.
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Tables 2 and 3 provide results for the other DGPs and show the robustness of the results to the

presence of heteroskedasticity in both errors (DGPs 3 and 4), and serial correlation in the idiosyncratic

errors (DGP 5). The bias results in table 2 are very similar to those in table 1, although coverage

rates reported in table 3 deteriorate relative to the simpler homoskedastic case. The presence of cross-

sectional dependence (DGP 6) is interesting. Firstly the bias is larger here (because � also includes

cross-product terms). Secondly, the wild bootstrap is theoretically not valid since it does not replicate

the cross-sectional dependence. Indeed, we see that, contrary to the other cases, the sample estimate

of the bias is often better than the bootstrap, especially with N = 50:

6 Conclusion

The main contribution of this paper is to give a set of su¢ cient high-level conditions under which

any residual-based bootstrap method is valid in the context of the factor-augmented regression model

in cases where
p
T=N ! c; 0 � c < 1: Our results show that two crucial conditions for bootstrap

validity in this context are that the bootstrap regression scores replicate the time series dependence

of the true regression scores, and that either c = 0 or the bootstrap replicates also the cross-sectional

dependence of the idiosyncratic error terms.

Our high-level conditions can be checked for any implementation of the bootstrap in this context.

We verify them for a particular scheme based on a two-step application of the wild bootstrap. Al-

though the wild bootstrap preserves heteroskedasticity, its validity depends on a martingale di¤erence

condition on the regression errors and on cross-sectional independence of the idiosyncratic errors when

c 6= 0.
The martingale di¤erence condition on the regression errors was used in Bai and Ng (2006), but it

is overly restrictive when the forecasting horizon h is larger than one. Thus, relaxing this assumption

is important. Although our general results in Sections 2 and 3 allow for serial correlation in the scores

(see in particular our Assumption 5(b)), the particular implementation of the two-step residual-based

wild bootstrap we consider in Section 4 is not robust to serial dependence. A block bootstrap based

method is required in this case. We plan on investigating the validity of such a method in future work.

Our high-level conditions will be useful in establishing this result.

A second important extension of the results in this paper is to propose a bootstrap scheme that

is able to replicate the cross-sectional dependence of the idiosyncratic error term. As our results

show, this is crucial for capturing the bias when c 6= 0. Our wild bootstrap based method does not

allow for cross-sectional dependence. Because there is no natural cross-sectional ordering, devising a

nonparametric bootstrap method that is robust to cross-sectional dependence of unknown form is a

challenging task.

Another important extension of the results in this paper is the construction of interval forecasts,

which we are currently investigating. Finally, the extension to factor-augmented vector autoregressions
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(FAVAR) �rst suggested by Boivin and Bernanke (2003) is also important. This case has recently been

analyzed by Yamamoto (2011), who proposes a bootstrap scheme that exploits the VAR structure in

the factors and the panel variables.
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A Appendix A: Proofs of results in Section 2

We rely on the following lemmas to prove Theorem 2.1.

Lemma A.1 Let Assumptions 1-5 hold. Then, 1
T

PT�h
t=1

�
~Ft �HFt

�
"t+h = OP

�
1

�NT
p
T

�
, where

�NT = min
�p

N;
p
T
�
:

Lemma A.2 Let Assumptions 1-5 hold. Then, if
p
T=N ! c, where 0 � c <1; for any �xed h � 0;

a) 1p
T

PT�h
t=1

�
~Ft �HFt

��
~Ft �HFt

�0
= cV �1Q�Q0V �1 + oP (1) :

b) 1p
T

PT�h
t=1 HFt

�
~Ft �HFt

�0
= cQ�Q0V �2 + oP (1) :

c) 1p
T

PT�h
t=1 Wt

�
~Ft �HFt

�0
= c�WFH

0
0Q�Q

0V �2 + oP (1) :

d) Letting � ~F � V �1Q�Q0V �1, we have that

1p
T

T�hX
t=1

~Ft

�
~Ft �HFt

�0 �
H�1�0 � = c

�
� ~F + V � ~FV

�1� p lim (�̂)| {z }
�B�

+ oP (1) ; (15)

and

1p
T

T�hX
t=1

Wt

�
~Ft �HFt

�0 �
H�1�0 � = c

�
�W ~FV � ~FV

�1� p lim (�̂)| {z }
�B�

+ oP (1) ; (16)

where �W ~F = p lim
�
W 0 ~F
T

�
= �WFH

0
0, with �WF � E (WtF

0
t).

Proof of Theorem 2.1. Write

p
T
�
�̂ � �

�
=

 
1

T

T�hX
t=1

ẑtẑ
0
t

!�1
8>>>>>>>>><>>>>>>>>>:

1p
T

T�hX
t=1

�
HFt
Wt

�
"t+h| {z }

�A

+
1p
T

T�hX
t=1

�
~Ft �HFt

0

�
"t+h| {z }

�B

� 1p
T

T�hX
t=1

ẑt

�
~Ft �HFt

�0 �
H�1�0 �| {z }

�C

9>>>>>>>>>=>>>>>>>>>;
: (17)

By Assumption 5 and given the de�nition of �0 = diag (p limH; Iq),

A =

�
H 0
0 Iq

�
1p
T

T�hX
t=1

zt"t+h !d N
�
0;�0
�

0
0

�
:

By Lemma A.1, B !P 0 and by Lemma A.2d),

C = � 1p
T

T�hX
t=1

�
~Ft
Wt

��
~Ft �HFt

�0 �
H�1�0 � = �c� B�

B�

�
+ oP (1) ;
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where B� and B� are as de�ned in (15) and (16). Given Assumptions 1-5,

1

T

T�hX
t=1

ẑtẑ
0
t = �0

 
1

T

T�hX
t=1

ztz
0
t

!
�00 + oP (1) = �0�zz�

0
0 + oP (1) :

This implies that if
p
T=N ! c;

p
T
�
�̂ � �

�
!d N (�c��;��) ; with �� = �0�10 ��1zz 
�

�1
zz �

�1
0 , and

�� �
�
��
��

�
=
�
�0�zz�

0
0

��1� � ~F + V � ~FV
�1

�W ~FV � ~FV
�1

�
p lim (�̂) :

When �WF � E (WtF
0
t) = 0, we have that �W ~F = 0, implying that

�� =

�
H 0�1
0 ��1F H�1

0 0

0 ��1W

��
� ~F + V � ~FV

�1

0� V � ~FV
�1

�
p lim (�̂)

=

�
� ~F + V � ~FV

�1

0

�
p lim (�̂) ;

since H 0�1
0 ��1F H�1

0 = Ir given that we can show that H0�F = Q = (H 0
0)
�1 :

Proof of Lemma A.1. The proof is based on the following identity:

~Ft �HFt = ~V �1

 
1

T

TX
s=1

~Fsst +
1

T

TX
s=1

~Fs�st +
1

T

TX
s=1

~Fs�st +
1

T

TX
s=1

~Fs�st

!
� ~V �1 (A1t +A2t +A3t +A4t) ; (18)

where

st = E

 
1

N

NX
i=1

eiseit

!
, �st =

1

N

NX
i=1

(eiseit � E (eiseit)) ;

�st =
1

N

NX
i=1

�0iFseit = F 0s
�0et
N

and �st = F 0t
�0es
N

= �ts:

Using the identity (18), we have that

1

T

T�hX
t=1

�
~Ft �HFt

�
"t+h = ~V �1 (I + II + III + IV ) ;

where

I =
1

T 2

T�hX
t=1

TX
s=1

~Fsst"t+h; II =
1

T 2

T�hX
t=1

TX
s=1

~Fs�st"t+h;

III =
1

T 2

T�hX
t=1

TX
s=1

~Fs�st"t+h; and IV =
1

T 2

T�hX
t=1

TX
s=1

~Fs�st"t+h:

Since ~V �1 = OP (1) (see Lemma A.3 of Bai (2003), which shows that ~V !P V > 0), we can ignore
~V �1. Start with I. We can write

I =
1

T 2

T�hX
t=1

TX
s=1

�
~Fs �HFs

�
st"t+h +H

1

T 2

T�hX
t=1

TX
s=1

Fsst"t+h � I1 + I2:
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We can show that I2 = OP
�
1
T

�
by showing that E kI2k = O

�
1
T

�
. Ignoring H (which is OP (1)), we

have

E kI2k � 1

T 2

T�hX
t=1

TX
s=1

E kFsst"t+hk �
1

T 2

T�hX
t=1

TX
s=1

jstj
�
E kFsk2

�1=2 �
E j"t+hj2

�1=2
� �

1

T

 
1

T

TX
t;s

jstj
!
= O

�
1

T

�
;

since E kFsk2 �M and E j"t+hj2 �M for some constantM <1, and 1
T

PT
t;s jstj < M by assumption.

For I1, repeated application of the Cauchy-Schwartz inequality implies that

kI1k =

 1T
TX
s=1

�
~Fs �HFs

� 1
T

T�hX
t=1

st"t+h

! �
 
1

T

TX
s=1

 ~Fs �HFs2!1=2
0@ 1
T

TX
s=1

����� 1T
T�hX
t=1

st"t+h

�����
2
1A1=2

� 1p
T

0BBBBB@
1

T

TX
s=1

 ~Fs �HFs2| {z }
OP (��2NT ) by Lemma A.1 of Bai (2003)

1CCCCCA
1=20BBBB@ 1T

TX
s=1

T�hX
t=1

jstj2| {z }
OP (1)

1

T

T�hX
t=1

"2t+h| {z }
OP (1)

1CCCCA
1=2

= OP

�
1p
T�NT

�
:

Thus, I = OP

�
1p
T�NT

�
. Next, consider II. We have that

II =
1

T 2

T�hX
t=1

TX
s=1

�
~Fs �HFs

�
�st"t+h +H

1

T 2

T�hX
t=1

TX
s=1

Fs�st"t+h � II1 + II2:

We can show that

kII1k �
 
1

T

TX
s=1

 ~Fs �HFs2!1=2| {z }
OP (��1NT )

0@ 1
T

TX
s=1

����� 1T
T�hX
t=1

�st"t+h

�����
2
1A1=2

| {z }
OP

�
1p
NT

�
= OP

�
1p

NT�NT

�
:

Indeed,

1

T

TX
s=1

E

����� 1T
T�hX
t=1

�st"t+h

�����
2

=
1

T

TX
s=1

E

����� 1T
T�hX
t=1

 
1

N

NX
i=1

(eiseit � E (eiseit))
!
"t+h

�����
2

=
1

TN

1

T

TX
s=1

E

����� 1p
TN

T�hX
t=1

NX
i=1

(eiseit � E (eiseit)) "t+h

�����
2

| {z }
=O(1) by Assumption 4(a)

= O

�
1

TN

�
:

For II2, ignoring H (which is OP (1)), we have that

II2 =
1

T 2

T�hX
t=1

TX
s=1

Fs�st"t+h =
1p
TN

1

T

T�hX
t=1

 
1p
TN

TX
s=1

NX
i=1

Fs (eiteis � E (eiteis))
!

| {z }
�mt

"t+h �
1p
TN

1

T

T�hX
t=1

mt"t+h:
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We can show that 1
T

PT�h
t=1 mt"t+h = OP (1) ; implying that II2 = OP

�
1p
NT

�
. By Cauchy-Schwartz

inequality, we have that

1

T

T�hX
t=1

mt"t+h �
 
1

T

T�hX
t=1

kmtk2
!1=2 

1

T

T�hX
t=1

"2t+h

!1=2
= OP (1) ;

given that E j"t+hj2 < M < 1, provided 1
T

PT�h
t=1 kmtk2 = OP (1), or 1

T

PT�h
t=1 E kmtk2 = O (1), by

Markov�s inequality. But

1

T

T�hX
t=1

E kmtk2 �
1

T

TX
t=1

E

 1p
TN

TX
s=1

NX
i=1

Fs (eiteis � E (eiteis))

2

= O (1)

by Assumption 3(b). Thus, II = OP

�
1p
NT

�
: Next, consider

III =
1

T 2

T�hX
t=1

TX
s=1

~Fs�st"t+h =
1

T 2

T�hX
t=1

TX
s=1

�
~Fs �HFs

�
�st"t+h+H

1

T 2

T�hX
t=1

TX
s=1

Fs�st"t+h � III1+III2:

Starting with III1, we have that

kIII1k �
 
1

T

TX
s=1

 ~Fs �HFs2!1=2| {z }
OP (��1NT )

0@ 1
T

TX
s=1

����� 1T
T�hX
t=1

�st"t+h

�����
2
1A1=2

| {z }
OP

�
1p
TN

�
= OP

�
1p

TN�NT

�

since

1

T

TX
s=1

E

����� 1T
T�hX
t=1

�st"t+h

�����
2

=
1

T

TX
s=1

E

����� 1T
T�hX
t=1

�
F 0s
�0et
N

�
"t+h

�����
2

=
1

T

TX
s=1

E

�����F 0s 1

TN

T�hX
t=1

�0et"t+h

�����
2

� 1

T

TX
s=1

kFsk2| {z }
=OP (1)

� 1

TN
E

 1p
TN

T�hX
t=1

�0et"t+h


2

| {z }
=O(1) by Assumption 4(b)

= OP

�
1

TN

�
:

Ignoring again H and replacing �st with its de�nition, we have that

III2 =
1

T 2

T�hX
t=1

TX
s=1

Fs�st"t+h =
1

T 2

T�hX
t=1

TX
s=1
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�
F 0s
�0et
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OP (1)
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�
1p
TN

�
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�
1p
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�
;

given Assumption 4(b). Thus, III = OP

�
1p
TN

�
: For IV; write

IV =
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T 2
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TX
s=1

�
~Fs �HFs

�
�st"t+h +H

1

T 2

T�hX
t=1

TX
s=1

Fs�st"t+h � IV1 + IV2.
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For IV1, we have that

kIV1k �
 
1
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:

Indeed,
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=OP (1) by Assumption 5(c)

For IV2, we have that

IV2 =
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;

given Assumptions 3(c) and 5(b). Thus, we have shown that under our assumptions,

I+II+III+IV = OP
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�NT
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NT

�
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�
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�
:

Proof of Lemma A.2. Proof of part a) Using the identity (18), we can write

B �
p
T
1

T

T�hX
t=1

�
~Ft �HFt

��
~Ft �HFt

�0
=

p
T ~V �1

1

T

T�hX
t=1

(A1t +A2t +A3t +A4t) (A1t +A2t +A3t +A4t)
0 ~V �1;

where Ait (i = 1; : : : ; 4) are de�ned in (18). We analyze each term separately (ignoring ~V �1).
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: Thus,
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given Assumption 3(c).

Thus, it follows that the only term that contributes in a non-negligible way to

p
TB = ~V �1

1p
T

T�hX
t=1

(A1t +A2t +A3t +A4t) (A1t +A2t +A3t +A4t)
0 ~V �1

is the term that depends on 1
T

PT�h
t=1 A3tA

0
3t: More precisely, since ~V !P V (by Lemma A.3 of

Bai (2003)), we have that
p
TB = cV �1Q�Q0V �1 + oP (1) ;

which proves the result.
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Proof of part b). Consider now

C � H
1p
T

T�hX
t=1

Ft

�
~Ft �HFt

�0
:

Replacing ~Ft �HFt = ~V �1 (A1t +A2t +A3t +A4t) yields
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where Ait are as de�ned previously. Again, we consider each term separately.
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0
1t = OP

�
1

�NT
p
T

�
, which implies that

p
THbf1 ~V

�1 = oP (1)
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�
term is equal to a11:1 in part a). Next, consider bf1:2 :
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given the moment conditions on Ft and the weak dependence assumptions on eit. Thus,

bf1 � bf1:1 + bf1:2 = OP
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as we wanted to prove.
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0
2t = OP

�
1

�NT
p
TN

�
+ OP

�
1p
TN

�
= OP

�
1p
TN

�
; which

implies that
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For bf2:2, we have that (ignoring H),
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using again Assumption 3(b) to bound the second term.

� We can show that bf3 � 1
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0
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�
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�
; implying that

p
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=
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Proof.

bf3 � 1
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so that by Cauchy-Schwartz inequality and Assumption 3(c), we get that
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This concludes the proof that
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�
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:

� We can show that
p
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0
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Proof. Replacing A4t with its de�nition yields
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given Assumptions 1, 3(c) and the fact that H = OP (1) : Thus,
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where the �rst term is OP (1) and the second term can be shown to be OP
�
1
N

�
: Thus, we will

get a non negligible contribution from bf4:1 when multiplying by
p
T . Speci�cally, using the

usual decomposition for ~Fs �HFs, we have that
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We �rst show that the �rst, second and last terms are oP (1) when multiplied by
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T . To end
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For the �rst term in (20), 1T
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p
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Next, we analyze the dominant term in bf4:1 which comes from the contribution involving A3s.

For this term, we have that
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it follows that

C = cH0�F�Q
0V �1V �1 + oP (1) = cQ�Q0V �2 + oP (1) ;

because H0 = p limH is such that H0�F = Q: Indeed, note that H0 = p limH = V �1Q��;
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Proof of part c). The proof follows closely the proof of part b) by relying on moment and
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we verify
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Tdi = oP (1) for i = 1; 2; 3 by using the same arguments as for bf1, bf2 and bf3. The only

term that has a nonzero contribution is d4. Following the same arguments as for bf4; we have that
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This ends the proof.

Proof of part d). This follows immediately from parts a), b) and c) of this Lemma.

B Appendix B: Proofs of results in Section 3

This Appendix is organized as follows. First, we provide some auxiliary lemmas, then we prove the

results in Section 3, and �nally we prove the auxiliary lemmas.

Lemma B.1 Let H� = ~V ��1
~F �0 ~F
T

~�0 ~�
N . Under Conditions A*-D*, we have that if �NT = min

�p
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T
�
;
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�
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�
, in probability, i.e. H� is asymptotically an orthogonal matrix.

b) H� = H�
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�
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�
, in probability, where H�

0 is a diagonal matrix with �1 on the main diagonal.
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Lemma B.2 Assume Assumptions 1-5 hold and suppose we generate bootstrap data
�
y�t+h; X

�
t

	
ac-

cording to the residual-based bootstrap DGP (7) and (8) by relying on bootstrap residuals
�
"�t+h

	
and

fe�t g such that Conditions A*-D* are satis�ed. Then, as N;T !1,

1

T

T�hX
t=1

�
~F �t �H� ~Ft

�
"�t+h = OP �

�
1

�NT
p
T

�
;

in probability, for h � 0.

Lemma B.3 Suppose conditions A*-D* hold. Then, as N;T !1;

a)

1

T

T�hX
t=1

�
~F �t �H� ~Ft

��
~F �t �H� ~Ft

�0
=

1

N
~V ��1H�

"
1

T

T�hX
t=1

 
~�0e�tp
N

! 
e�0t ~�p
N

!#
H�0 ~V ��1

+OP �

�
1

T

�
+OP �

�
1

N�NT

�
+OP �

�
1p
NT

�
:

b)

1

T

T�hX
t=1

H� ~Ft
�
~F �t �H� ~Ft

�0
= H� 1

N

 
1

T

T�hX
t=1

~Ft ~F
0
t

!"
1

T

TX
s=1

 
~�0e�sp
N

! 
e�0s ~�p
N

!# 
~F 0 ~F �

T

!
~V ��2

+OP �

�
1

�NT
p
T

�
+OP �

�
1

N�NT

�
:

c)

1

T

T�hX
t=1

Wt

�
~F �t �H� ~Ft

�0
=
1

N

 
1

T

T�hX
t=1

Wt
~F 0t

!"
1

T

TX
s=1

 
~�0e�sp
N

! 
e�0s ~�p
N

!# 
~F 0 ~F �

T

!
~V ��2

+OP �

�
1

�NT
p
T

�
+OP �

�
1

N�NT

�
:
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Proof of Lemma 3.1. The proof is based on the following identity:

~F �t �H� ~Ft = ~V ��1

0BBBB@ 1T
TX
s=1

~F �s 
�
st| {z }

�A�1t

+
1

T

TX
s=1

~F �s �
�
st| {z }

�A�2t

+
1

T

TX
s=1

~F �s �
�
st| {z }

�A�3t

+
1

T

TX
s=1

~F �s �
�
st| {z }

�A�4t

1CCCCA ;

where

�st = E�

 
1

N

NX
i=1

e�ise
�
it

!
, ��st =

1

N

NX
i=1

(e�ise
�
it � E� (e�ise�it)) ;

��st =
1

N

NX
i=1

~�
0
i
~Fse

�
it = ~F 0s

~�0e�t
N

and ��st =
1

N

NX
i=1

~�
0
i
~Fte

�
is = ��ts:

Ignoring ~V ��1 (which is OP � (1)), it follows that

1

T

TX
t=1

 ~F �t �H� ~Ft

2 � 1

T

TX
t=1

�
kA�1tk

2 + kA�2tk
2 + kA�3tk

2 + kA�4tk
2
�
;

By the Cauchy-Schwartz inequality,
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s=1
~F �s 

�
st

2 � �PT
s=1

 ~F �s 2��PT
s=1 

�2
st

�
; implying that

1

T

TX
t=1

kA�1tk
2 � 1

T

 
1

T

TX
s=1

 ~F �s 2
!

| {z }
=
k ~F�k2
T

=r because
~F�0 ~F�
T

=Ir

 
1

T

TX
t=1

TX
s=1

�2st

!
| {z }

=OP (1) by Condition A*(b).

= OP

�
1

T

�
:

For the second term, we have that

1

T

TX
t=1

kA�2tk
2 �

 
1

T

TX
s=1

 ~F �s 2
!

| {z }
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1

T 2

TX
t=1

TX
s=1
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2

!
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OP�( 1N )

= OP �

�
1

N

�
:

In particular, by Condition A*(c), we can show that

1

T 2

TX
t=1

TX
s=1

E� j��stj
2 =

1

N

1

T 2

TX
t=1

TX
s=1

E�

����� 1pN
NX
i=1

(e�ise
�
it � E� (e�ise�it))

�����
2

= OP

�
1

N

�
;

which explains why the second term is OP �
�
1
N

�
: For the third term,

1

T

TX
t=1

kA�3tk
2 =

1

T

TX
t=1

T�2


TX
s=1

~F �s ~F
0
s

~�0e�t
N


2

� 1

T

TX
t=1

 ~�0e�tN

2 T�1

TX
s=1

~F �s ~F
0
s


2

= OP �

�
1

N

�
;

since
T�1PT

s=1
~F �s ~F

0
s

2 � r2; whereas by Condition B*(d) and Markov�s inequality, 1T
PT
t=1

 ~�0e�tN 2 =
OP �

�
1
N

�
: The fourth term in dt follows by the same arguments.
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Proof of Theorem 3.1. The proof follows the proof of Theorem 2.1. In particular, we can write the

bootstrap analogue of (17), viz

p
T
�
�̂
� � ��

�
=

 
1

T

T�hX
t=1

ẑ�t ẑ
�0
t

!�1
(A� +B� + C�) ;

where conditional on the original data, with probability converging to one, we have that

A� = ��
1p
T

T�hX
t=1

ẑt"
�
t+h !d� N

�
0;��0
�

�0
0

�
;

given Conditions D*(b) and E*, and given that ��0 � p lim��; B� = 1p
T

PT�h
t=1

�
~F �t �H� ~Ft

�
"�t+h =

oP � (1) (given Lemma B.2);

C� = � 1p
T

T�hX
t=1

ẑ�t

�
~F �t �H� ~Ft

�0 �
H��1�0 �̂!P � �c

�
��00
��1

��� ;

where ��� �
�
B�0� ; B

�0
�

�0
is de�ned in Lemma B.4. Under Assumptions 1-5, p lim ~V = V and

p lim �̂ = (H 0
0)
�1 �, p lim ~�W ~F = �W ~F , and p lim�

� = Q�Q0 by Condition F*, which implies that

��� !P ��; and �nally 1
T

PT�h
t=1 ẑ

�
t ẑ
�0
t = �

�
0�0�zz�

0
0�

�0
0 +oP � (1). This implies that

p
T
�
�̂
� � ��

�
!d�

N
�
�c (��00 )

�1��; (�
�0
0 )
�1�� (�

�
0)
�1
�
, in probability.

Proof of Corollary 3.1. By Theorem 2.1, under Assumptions 1-5, and if
p
T=N ! c, 0 � c <

1,
p
T
�
�̂ � �

�
!d Z � N (�c��;��) : Thus, from a multivariate version of Polya�s Theorem (cf.

Battacharya and Rao (1986)), it follows that supx
���P �pT ��̂ � �� � x

�
� � (x;�c��;��)

��� = o (1),

where � (x;�c��;��) denotes the distribution function of Z. Then, the result follows if we show that

sup
x

���P �pT ���0�̂� � �̂� � x
�
� � (x;�c��;��)

��� = oP (1) : (21)

Under the stated assumptions, from Theorem 3.1 we have that
p
T
�
��0�̂

� � �̂
�
!d� N (�c��;��), in

probability. By arguing along subsequences and applying Polya�s Theorem, this su¢ ces to show (21).

Proof of Lemma B.1. For part a), writing

~F �0 ~F

T
=
1

T

�
~F � � ~FH�0

�0
~F +

1

T
H� ~F 0 ~F ;

and noting that 1
T
~F 0 ~F = Ir, yields

H� =
~F �0 ~F

T
+OP �

�
��2NT

�
; (22)

where we used Lemma B.3 to bound the second term. Now right multiply by H�0 to get

H�H�0 =
~F �0 ~F

T
H�0 +OP �

�
��2NT

�
=

~F �0
�
~FH�0 � ~F � + ~F �

�
T

+OP �
�
��2NT

�
=
~F �0 ~F �

T
+OP �

�
���2NT

�
= Ir +OP �

�
���2NT

�
;
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where again we used Lemma B.3 and the fact that by construction
~F �0 ~F �

T = Ir. This shows that

H�0 = H��1 +OP �
�
��2NT

�
, i.e. H� is asymptotically an orthogonal matrix. The eigenvalues of H� are

therefore +1 or -1, for large N and T . For part b), by de�nition,

H� = ~V ��1

 
~F �0 ~F

T

!
~�0~�

N
= ~V ��1H�

~�0~�

N
+OP �

�
��2NT

�
;

given (22). Left multiplying both sides by ~V � yields

~V �H� = H�
~�0~�

N
+OP �

�
��2NT

�
= H� ~V +OP �

�
��2NT

�
; (23)

since ~V =
~�0 ~�
N by construction of the principal components. By Lemma A.3 of Bai (2003), ~V !P V > 0

and therefore we can write that

~V �H� = H�V + oP � (1) ;

or, transposing, that

V H�0 = H�0 ~V � + oP � (1) :

Thus, H�0 is (for large N and T ) the matrix of eigenvectors of V . Since V is a diagonal matrix,

H�0 is also diagonal, asymptotically. Moreover, because V has distinct eigenvalues (by assumption), it

follows that its eigenvectors have only one nonzero value and this is +1 or -1 (becauseH� is orthogonal).

Therefore H�0 is for large N and T a diagonal matrix with �1 in the main diagonal (in particular,
H� = diag(sign( ~F �0 ~F ))). Part c) follows from (23) by right multiplying by H�0 and using parts a)

and b).

Proof of Lemma B.2. The proof follows exactly as the proof of Lemma A.1, thus we only

highlight the di¤erences. Throughout, we denote with a star the bootstrap analogue of a given

formula in that proof. First, to bound I�2 , the bootstrap analogue of I2, we use directly Condition

C*(c) to conclude that I�2 = OP �
�
1
T

�
, in probability. Second, to bound I�1 , we rely on Lemma 3.1 and

on Conditions A*(b) and D*(a). For II�1 , we use Condition C*(a) instead of Assumption 4(a). For

II�2 , we use Condition B*(b) instead of Assumption 3(b) to show that
1
T

PT�h
t=1 E

� km�
t k
2 = OP (1),

and Condition D*(a) instead of Assumption 5(a) to show that 1
T

PT�h
t=1 "

�2
t+h = OP � (1), in probability.

To bound III�1 and III
�
2 ; we rely on Condition C*(b) instead of Assumption 4(b). Finally, to bound

IV �, we rely on Conditions B*(d) and D*(b) instead of Assumptions 3(d) and 5(b), respectively.

Proof of Lemma B.3. Proof of part a). We follow closely the proof of Lemma A.2. Speci�cally,

we analyze each of the terms in

1

T

T�hX
t=1

�
~F �t �H� ~Ft
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�0
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�
3t +A

�
4t) (A

�
1t +A

�
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3t +A

�
4t)

0 ~V ��1:

In particular, by Lemma 3.1, and the appropriate bootstrap high level conditions, we can show that:

� 1
T

PT�h
t=1 A

�
1tA

�0
1t = OP �

�
1
T

�
, in probability, using Condition A*(b).
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� 1
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�
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�
, in probability, using Conditions A*(c) and B*(b).
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Thus, we conclude that
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Proof of part b). We analyze each of the terms in
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T
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�
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�
2t +A

�
3t +A

�
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T
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~FtA
�0
it , for j = 1; : : : ; 4: Following exactly the same steps as in the proof of

part b) of Lemma A.2, we can show that:
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1
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p
T

�
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�
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probability, given in particular Condition B*(c) and Lemma 3.1. Thus, we can conclude that
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Proof of part c). This follows by the same arguments used in the proof of part c) of Lemma A.1.
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Proof of Lemma B.4. From prove part a) of Lemma B.3, and noting that
~F 0 ~F
T = Ir, we have

that
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T�hX
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�
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�
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0

��1 ~V �1�� ~V �1�̂+ oP � (1)
where the second equality uses Condition B*(e), and the third equality follows from Lemma B.1.c).

The last equality uses the fact that H�
0 = diag (�1), which implies that H��1 (H�0)�1 �̂ = �̂+ oP � (1).

This proves part a). Similarly, from part b) of Lemma B.3 and given Condition B*(e), we get that
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T
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0�
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where the second equality uses the fact that 1T
PT�h
t=1

~Ft ~F
0
t = Ir+oP (1) ; the third equality uses Lemma

B.1.c) and the fact that
~F 0 ~F �

T
~V ��1 = ~V �1H�0, and the last equality holds because H��1 (H�0)�1 =

Ir + oP � (1), in probability.

To prove part c), we note that from part c) of Lemma B.3, we have that
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by relying on the same arguments as those used to prove part b).
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C Appendix C: Proofs of results in Section 4

First, we state an auxiliary result and its proof. Then we prove Theorem 4.1.

Lemma C.1 Suppose Assumptions 1-5 hold. If in addition either: (1) fFsg, f�ig and feitg are
mutually independent and for some p � 2, E jeitj2p � M < 1; E k�ikp � M < 1 and E kFtkp �
M < 1, or (2) for some p � 2, E jeitj3p � M < 1; E k�ik3p � M < 1 and E kFtk3p � M < 1, it
follows that

(i) 1
T

PT
t=1

 ~Ft �HFtp = OP (1) ;

(ii) 1
N

PN
i=1

~�i �H�10�i

p = OP (1) ;

(iii) 1
TN

PT
t=1

PN
i=1 ~e

p
it = OP (1) :

Proof of Lemma C.1. Proof of (i). We rely on the following identity (see Bai and Ng (2002),

proof of Theorem 1):
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where  st =
1
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i=1 eiseit; �st =

1
N
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0
iFseit; and �st = �ts: It follows that by the c� r inequality,
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p

; bt =
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p
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p

:

Let �st denote either  st, �st or �st. We can write
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p
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s=1
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2
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where the inequality follows by Cauchy-Schwartz. It follows that
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where the last inequality follows again by the c� r inequality. Thus it su¢ ces to show that E j�stjp �
M <1 to prove that the above term is OP (1). Starting with �st =  st,

E j stjp = E

����� 1N
NX
i=1

eiteis

�����
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� 1

N
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E jeiteisjp �
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�
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�M <1;

given that we assume E jeitj2p �M <1: When �st = �st, we have that
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E
���0iFseit��p � �E k�ieitk 3p2 �2=3 �E kFsk3p�1=3 � �E k�ik3pE jeitj3p�1=3 �E kFsk3p�1=3 �M

given the assumptions that E k�ik3p � M , E kFsk3p � M , and E jeitj3p � M in obtaining the last

inequality. Note that if we assume that f�ig, fFsg and feitg are three mutually independent groups
of random variables, then it su¢ ces that E k�ikp � M , E kFskp � M , and E jeitjp � M to bound

E
���0iFseit��p : The term that depends on �st = �st can be dealt with similarly.

Proof of (ii). Note that ~� = X0 ~F
T , which implies that ~�0 =
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For the �rst term, we have that
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�
H 0�1�i
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k�ikp :

Now, T�1=2 ~Fp = �T�1  ~F2�p=2 =  T�1 TX
t=1

 ~Ft2!p=2 = rp=2;
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given that ~F 0 ~F=T = Ir. Similarly, under Assumptions 1-5,

T�1=2 � ~F � FH 0
�p =  T�1 TX

t=1

 ~Ft �HFt2!p=2 = OP

�
��pNT

�
= OP (1) :

Since
H 0�1p = OP (1), it follows that the �rst term is OP (1) provided E k�ikp � M < 1, which

holds by assumption.

For the second term,
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T�1 � ~F � FH 0
�0
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p = T�1=2 � ~F � FH 0
�p 1
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T�1=2eip ;
where the �rst factor is OP (1) and the second factor is dominated by
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TX
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e2it

!p=2
� 1

NT

NX
t=1

TX
t=1

epit;

which is OP (1) given the assumption that E jeitjp � M: The third term can be bounded similarly

using in particular the fact that E kFtk2 �M <1:
Proof of (iii). We can write

~eit = eit � �0iH�1
�
~Ft �HFt

�
�
�
~�i �H�10�i

�0
~Ft;

which implies that
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~�i �H�10�i

p 1
T

TX
t=1

 ~Ftp :
The �rst term is OP (1) given that E jeitjp = O (1); the second term is OP (1) since E k�ikp = O (1)

and given part (i); and the third term is OP (1) given parts (ii) and (iii), since in particular

1
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 ~Ftp � 1

T
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HFt + � ~Ft �HFt�p � 2p�1 kHkp 1
T

TX
t=1

kFtkp +
1

T

TX
t=1

 ~Ft �HFtp! = OP (1) :

Proof of Theorem 4.1. We verify Condition A*-F*. We start with Condition A*. Since e�it =

~eit�it where i.i.d. (0; 1) across (i; t), part a) follows immediately. For part b), note that �st =
1
N

PN
i=1 ~eit~eis1 (t = s) ; which implies that 1

T

PT
t;s 

�2
st =

1
T

PT
t=1

�
1
N

PN
i=1 ~e

2
it

�2
: This expression is

bounded by 1
T

PT
t=1

1
N

PN
i=1 ~e

4
it; which is OP (1) under our assumptions by an application of Lemma

C.1 (iii) with p = 4: For c), note that for any (t; s),

E�

����� 1pN
NX
i=1

(e�ite
�
is � E� (e�ite�is))

�����
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=
1

N

NX
i=1
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�
e�ite
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is; e

�
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�
:
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For the wild bootstrap where e�it = ~eit�it, with �it i.i.d. across (i; t),
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�
e�ite

�
is; e

�
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�
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�
= ~eit~eis~ejt~ejsCov

�
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�
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�
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2
isV ar (�it�is) if i = j
0 if i 6= j

;

which implies that
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=
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2
isV ar (�it�is) :

Thus, condition A*(c) becomes
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~e4it = OP (1) ;

for some constants �� and C, which holds given Lemma C.1 (iii) with p = 4: For Condition B*(a),

under the wild bootstrap, in particular the bootstrap time series independence, we have that
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;

which is OP (1) under our assumptions. For Condition B*(b), we have that
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where
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0@ 1p
N
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:

Using the properties of the wild bootstrap, in particular the bootstrap cross sectional independence,

we can show that
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�
e�ite

�
is; e

�
jte

�
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�
= 0 when i 6= j for any t; s; l:
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�
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�
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�
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�
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2
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� (�it�is) if s = l:
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It follows that
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This expression is OP (1) under our assumptions. Next consider Condition B*(c). We have that
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But by Cauchy-Schwartz,
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under our conditions. In particular, note that
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and use Lemma C.1 (ii) with p = 4 to bound the second term. The �rst term is bounded by the

assumptions on f�ig. For Condition B*(d), we have that
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since Cov
�
�it; �jt

�
= 0 and V ar (�it) = 1: Thus, Condition B*(d) becomes
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under our assumptions, by an application of Lemma C.1. For Condition B*(e), we need to show that
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This expression has mean zero under the bootstrap measure by construction. So, it su¢ ces to show

that its variance tends to zero in probability. Take the case where the number of factors r is equal to

1, for simplicity. Then,
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Using the properties of the wild bootstrap, we can show that Cov�
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This implies that for some �nite constant ��;
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provided 1
N
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i=1

~�
4
i = OP (1) and 1
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i=1
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t=1 ~e

4
it = OP (1), which holds under our moment as-

sumptions by an application of lemma C.1 with p = 4: Thus, �� = 1
T
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t=1

1
N

PN
i=1

~�
2
i ~e
2
it for the wild

bootstrap. Condition F* is satis�ed because by Bai and Ng (2006), �� !P Q�Q0.

Next, we verify Condition C*. For t = 1; : : : ; T � h, let "�t+h = "̂t+hvt+h, where vt+h �i.i.d.(0; 1).
Part a) follows as Condition B*(b), using the independence between "�t+h and e

�
it: For part b), we have
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that
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under our assumptions and using the same arguments used above to show condition B*(b). Part c)

follows because �st = 0 for t 6= s and by repeated application of Cauchy-Schwartz inequality, we have

that
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under our assumptions, provided in particular that 1
T

PT�h
t=1 "

�4
t+h = OP � (1) in probability. For this,

it su¢ ces that 1T
PT�h
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� �"�4t+h� = OP (1) : But by the properties of the wild bootstrap on "�t+h, we

have that
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which is veri�ed under our conditions. Finally. we verify Condition D*. E�
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= 0 by construction.

Moreover, we have that 1
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assumptions. So, part a) is veri�ed. For part b) of Condition D*, we need to verify that the bootstrap

CLT result holds for the wild bootstrap. By the Cramer-Wold device, it su¢ ces to show that
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�
t+h| {z }

�w�t

!d� N (0; 1) ;

in probability for any ` such that `0` = 1. Note that w�t is an heterogeneous array of independent

random variables (given that "�t+h is conditionally independent but heteroskedastic). Thus, we apply
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a CLT for heterogeneous independent arrays. Note that E� (w�t ) = 0 and
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Thus, it su¢ ces to verify Lyapunov�s condition, i.e. for some r > 1; 1
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by an application of Lemma C.1. Since 
� = 1
T

PT�h
t=1 ẑtẑ

0
t"̂
2
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� converges

to �0
�00 > 0, by Bai and Ng (2006). Thus, Condition E* is satis�ed. Condition F* was veri�ed in

the main text.
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T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

bias -0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

estimate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DGP 1 WB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

alpha = 0

homo, homo

OLS 94.0 95.4 95.0 94.5 95.7 94.2 95.7 94.4 94.1

BC 91.0 93.1 91.9 93.1 94.0 93.3 95.1 93.8 93.7

True factor 93.8 95.5 94.3 94.3 95.4 93.7 95.0 94.6 94.1

WB 96.9 96.2 95.8 96.0 97.0 95.1 96.7 94.7 94.3

bias -0.17 -0.14 -0.13 -0.11 -0.09 -0.08 -0.09 -0.06 -0.05

estimate -0.09 -0.09 -0.10 -0.05 -0.05 -0.05 -0.03 -0.03 -0.03

DGP 2 WB -0.12 -0.11 -0.10 -0.09 -0.07 -0.06 -0.07 -0.05 -0.04

alpha = 1

homo, homo

OLS 71.1 66.0 50.7 84.7 83.1 79.3 88.3 89.8 88.1

BC 83.0 88.1 86.5 88.6 90.4 90.2 90.1 92.1 92.7

True factor 93.8 95.5 94.3 94.3 95.4 93.7 94.6 94.6 94.1

WB 90.9 92.7 90.7 93.8 93.7 92.0 93.8 94.5 94.3

Bias

Coverage rate

Coverage rate

Table 1: Bias and coverage rate of 95% CIs for delta - Homoskedastic cases

N = 50 N = 100 N = 200

Bias



T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

DGP 3 bias -0.16 -0.14 -0.13 -0.11 -0.09 -0.07 -0.09 -0.06 -0.05

alpha = 1 estimate -0.09 -0.09 -0.10 -0.05 -0.05 -0.05 -0.03 -0.03 -0.03

hetero, homo WB -0.12 -0.11 -0.10 -0.09 -0.07 -0.06 -0.07 -0.05 -0.04

DGP 4 bias -0.17 -0.15 -0.14 -0.12 -0.10 -0.08 -0.10 -0.06 -0.05

alpha = 1 estimate -0.10 -0.10 -0.10 -0.05 -0.06 -0.06 -0.03 -0.03 -0.03

hetero, hetero WB -0.13 -0.12 -0.11 -0.10 -0.08 -0.07 -0.08 -0.06 -0.04

DGP 5 bias -0.19 -0.16 -0.15 -0.13 -0.10 -0.08 -0.10 -0.07 -0.05

alpha = 1 estimate -0.09 -0.10 -0.10 -0.05 -0.06 -0.06 -0.03 -0.03 -0.03

hetero, AR+hetero WB -0.13 -0.11 -0.11 -0.09 -0.08 -0.07 -0.08 -0.06 -0.04

DGP 6 bias -0.23 -0.21 -0.20 -0.15 -0.13 -0.11 -0.11 -0.08 -0.07

alpha = 1 estimate -0.11 -0.12 -0.12 -0.07 -0.07 -0.08 -0.04 -0.04 -0.04

hetero, CS+homo WB -0.10 -0.09 -0.09 -0.08 -0.07 -0.06 -0.07 -0.05 -0.04

Table 2. Bias in estimation of alpha - More general cases

N = 50 N = 100 N = 200



T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

DGP 3 OLS 63.5 57.3 45.6 76.5 78.4 76.2 80.6 85.0 86.0

alpha = 1 BC 81.5 84.3 84.0 83.1 87.6 88.0 83.5 89.6 89.6

hetero, homo True factor 93.3 93.6 93.5 90.2 93.1 92.9 88.9 94.3 92.8

WB 93.1 92.3 91.1 93.5 93.4 92.1 92.6 94.0 92.5

DGP 4 OLS 58.8 51.8 38.7 73.0 75.3 73.1 78.7 84.5 84.6

alpha = 1 BC 78.5 81.1 82.1 82.5 87.1 86.6 83.2 89.3 89.3

hetero, hetero True factor 93.3 93.6 93.5 90.2 93.1 92.9 88.9 94.3 92.8

WB 93.7 92.8 91.8 92.9 93.8 92.3 92.6 93.6 93.1

DGP 5 OLS 54.7 49.0 36.7 72.4 72.9 72.6 76.9 83.7 83.4

alpha = 1 BC 74.6 79.7 81.1 80.8 86.3 87.8 81.1 88.5 88.1

hetero, AR + hetero True factor 93.3 93.6 93.5 90.2 93.1 92.9 88.9 94.3 92.8

WB 91.2 90.8 91.1 91.8 92.8 92.4 91.3 93.1 92.3

DGP 6 OLS 42.2 30.6 13.7 65.8 65.2 54.7 76.1 79.5 78.3

alpha = 1 BC 68.3 67.2 61.4 77.5 81.7 81.1 80.0 87.9 87.4

hetero, CS + homo True factor 93.3 93.6 93.5 90.2 93.1 92.9 88.9 94.3 92.8

WB 81.5 75.1 59.4 87.5 84.5 80.3 88.6 90.2 87.3

Table 3: Coverage rate of 95% CIs for delta - More general cases

N = 50 N = 100 N = 200


