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Résumé / Abstract 
 

Nous proposons un modèle dynamique de gestion des écosystèmes par la théorie des graphes en tant 

que contrôle d’un système en réseau composé de nœuds cibles et de nœuds non identifiés. Le réseau 

est représenté par un graphe complet dans lequel tous les nœuds sont connectés par une arête unique. 

Les nœuds cibles sont attirés par une fonction objectif issue d’un processus externe de gestion des 

écosystèmes. Ils tirent le réseau vers la position de l’objectif qui peut être non-nulle ou stationnaire. La 

politique de gestion est considérée réussie si le graphe reste connecté dans le temps, c'est-à-dire que les 

nœuds cibles atteignent l’objectif et les nœuds non identifiés restent dans l’enveloppe convexe. Lors de 

la transposition du réseau écosystémique dans le temps, le modèle génère un Théorème de 

l’Impossibilité ainsi qu’un Critère de Durabilité qui maintient la pleine connectivité du réseau. Ce 

dernier peut aisément être relié à la définition générale de la durabilité comme la préservation de 

l’intégrité écologique. Enfin, nous identifions trois règles de gestion pour assurer le maintien de la 

connectivité dans le temps, sachant les propriétés de la fonction objectif de transposition, la nature des 

connexions, et les retards de réactualisation de l’utilité entre les nœuds. 

 

Mots clés : bioéconomie, gestion des écosystèmes, théorie des graphes, 

connectivité. 

 

We propose a dynamic graph-theoretic model for ecosystem management as a control over networked 

system composed of target nodes and unmarked nodes. The network is represented by a complete 

graph, in which all vertices are connected by a unique edge. Target nodes are attracted by the 

objective function issued from the external ecosystem management. They pull the network towards the 

objective position, which is either non-null or stationary. The management policy is considered 

successful if the graph remains connected in time, that is, target nodes attain the objective and 

unmarked nodes stay in the convex hull. At the time of the ecosystem network transfer, the model yields 

an Impossibility Theorem as well as a Sustainability Criterion to maintain full connectivity of the 

network. The latter can be easily linked to the general definition of sustainability as ecosystem 

integrity preservation. At last, we identify three management rules to ensure the maintenance of 

connectivity in time, given the properties of the objective transposition function, the nature of 

connections and utility updating time-delays between the nodes. 

 

Keywords: bioeconomics, ecosystem management, graph theory, connectedness. 
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1. Introduction 

 

"Ecosystem management is management driven by explicit goals, executed by policies, 

protocols, and practices, and made adaptable by monitoring and research based on our best 

understanding of the ecological interactions and processes necessary to sustain ecosystem 

composition, structure, and function" (Christensen et al. 1996). 

 Ecosystem management aims at maintaining ecosystem health and integrity, given the 

numerous goods and services they provide. Health is the capacity of ecosystems to maintain 

their functions (Constanza et al. 1992). We can mention hydrologic flux and storage, 

biological productivity, maintenance of biological diversity as some of the ecosystem 

processes; food, construction materials, medicinal plants and tourism as part of the ecosystem 

goods; maintenance of hydrological cycles, climate regulation, sanitization of air and water, 

maintenance of the gaseous composition, etc. as some of the ecosystem services. In a word: 

they are vital for all forms of life. Integrity consists in maintaining ecosystem’s self-

organizing structural complexity (Callicott 1993).  

 Ecological systems are dynamic systems because their change is normal and 

ubiquitous, so sustainability does not imply maintenance of the status quo. Besides, 

ecosystem status quo usually leads to failure in the long term (Connell and Sousa 1983). 

Studies of ecosystems as evolutionary networked systems have recently been proposed 

(Strogatz 2001, Fath 2004, Jordan and Scheuring 2004, Fath and Grant 2007, Lanzen 2007) 

but these studies do not consider connectivity issues. From the ecological perspective, high 

connectivity implies much interaction of animals, plants, energy, water, nutrients or other 

matter among elements (Cantwell and Forman 1993). 

 The behavior of the ecosystem depends on the exchange of conservative resources 

between organisms. The network analysis enables to represent these organisms and exchanges 
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as a collection of storages and flows (Fath and Patten 1998). The importance of 

interconnections within ecosystems is one of the most important lessons learned from 

ecological research and natural resource management experience (Peterson 1993). 

Ecosystems are connected networks (Patten 1984, Higashi and Patten 1989). They are 

regulated across many control variables in interactive networks. Pichai et al. (2001) 

developed graph-theoretic procedures to identify the minimal sets of connections which are 

essential for preserving the structural properties of the system. Because a precise number of 

species to maintain key ecosystem processes is futile (Christensen et al. 1996), we do not 

reduce ecosystem networks to their minimal sets and study their general connectivity instead. 

We identify network targets under the strict constraint of complete connectedness 

maintenance. No formal model about the connectivity issue for the networked system control 

in the ecosystem management has yet been proposed. This paper is a response to this 

shortage.  

 Our work was inspired by the literature on controllability and stability of leader-

follower networks (Ji et al. 2008, Rahmani et al. 2009, Gustavi et al. 2010). We consider the 

ecosystem management as a control over networked system composed of target nodes and 

unmarked nodes. Target nodes can be biodiversity elements that need to be managed in order 

to achieve the environmental policy, and unmarked nodes are then all the other elements 

indirectly incorporated in the policy, for they are fully connected to target nodes. The network 

is represented by a complete graph, in which all vertices are connected by a unique edge. 

Target nodes are attracted by the objective function issued from the external human 

ecosystem management. They pull the network towards the objective position. The objective 

can either be reconfiguration or stationarity upholding. On the one hand, the objective 

function, which depends on the distance between the objective position and the target node 

position, can be non-null, implying that target nodes must reach new positions set up by the 
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environmental policy. On the other hand, the objective function can be null or stationary. In 

this case, target nodes must be maintained as they stand. The environmental policy then seeks 

to avoid degradation or deterioration of targeted elements, which would cause the ecosystem 

vulnerability. The management policy is considered successful if the graph remains connected 

in time, that is, target nodes attain the objective and unmarked nodes remain within the graph. 

 Fisher et al. (1991) call for coordinated controls in a dynamic model of fishery and 

water resource management. Albers (1996) presents a spatial-intertemporal model for 

economic management of tropical forests. She introduces ecological constraints such as 

spatial interactions. However, her focus is on impact of the uncertainty and the discount rate. 

Smith et al. (2009) consider both linked subsets and distributed controls, but they use 

estimating models of parameters subjected to optimization techniques. Our will is to 

apprehend a general sustainable management towards natural systems, when the latter are 

viewed as dynamic networks, but also to display policy rules for an efficient management. 

 We propose a dynamic graph-theoretic model, in which the evolution of the network 

given the objective function is studied. It yields a theorem of impossibility within the 

ecosystem network transfer as well as a sustainability criterion to maintain full connectivity of 

the network in time, which enables to safeguard its utility domain. Our definition of 

sustainability can be easily linked to the general definition of sustainability as the ecosystem 

integrity preservation. Furthermore, our model can stand for wanting theoretic background 

needed for decision support systems in ecosystem management (Reynolds 2005, Jensen et al. 

2009). Although theoretic models are often criticized because they simplify the factual 

complexity, they can be highly useful in identifying sensitive ecosystem components or in 

simulating alternatives (Lee 1993). 

 For example, the inability to monitor and manage all aspects of biodiversity has led to 

the development of paradigms that focus either on single species or whole ecosystems. Both 
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have advocates and detractors (Payton et al. 2002). The keystone species concept can allow 

managers to combine the best features of both paradigms. A keynote species is considered a 

species whose effect is disproportionally large relative to its abundance (Power et al. 1996). 

Our model encompasses both paradigms in a sense that targeting specific nodes, which can be 

interpreted as keynote species among other things, does not neglect the complexity and high 

connectedness of the entire ecological network. 

 After this starting section, we introduce the ecosystem management model in Section 

2. Section 3 clarifies the methodology of subset identification. The dynamic behavior of 

network is modeled in Section 4. Ensuing management prescriptions are given in Section 5. 

Section 6 concludes. 

 

2. The model 

 

We consider network closed-loop systems in which the system outputs are used as the system 

inputs. We know that an ecosystem component has a dual role as a receiver and transmitter of 

interactions (Patten 1981). Let N  be the number of nodes evolving in 
2
. The two 

dimensional case corresponds to nodes moving either towards the objective position or 

maintaining themselves at a certain distance with their surroundings. Let 2

ix   denote the 

position of node i in the network. The set of all possible positions of the dynamical system is 

the configuration space. It is spanned by the stack vector of all the control inputs 

1[ ,..., ]T T T

Nx x x  which denotes the aggregated state of the network as an involution. In our 

case, involution implies the maintenance of the network during the dynamic transposition to 

an objective. The stack vector reflects the environmental policy space towards the network, 

for the control inputs are amassed and configured so as to arrive at the environmental 

objectives.  
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 The trajectory of a node obeys the model of a single-integrator dynamics 

 

, {1,..., }ix c i N    (1) 

 

where ic  denotes the control input for each node. The ecosystem manager identifies the subset 

of target nodes 
t  and the subset of unmarked nodes 

u , such that  

 

t u    and t u    (2) 

 

The number of nodes in each subset is given by | |=t

tN  and | |=u

uN  respectively. Each 

node has a utility domain (0, ]u  , from which it gets utility from other nodes. This utility 

domain depends on the Euclidean distance d from other nodes. All nodes within the utility 

domain of a node form its utility node set. 

 

Definition 1: For ,i j , and for node i’s utility node set { :0 | | }i i i jj x x       , the 

utility domain iju  is defined as I ( )
iij iju d  where 

 

 if  
I ( )

0   if  i

ij i

ij

i

d j
d

j



 


 

 

Definition 2: For j  , the network utility domain ( )i j ijU u    is the sum of utility 

domains contained in the network utility set.  

 



6 

 

Interactions in the system are represented by a complete graph { , }V E   which defines the 

topology. The graph consists of vertices {1,..., }V N  indexed by the node members and the 

set of edges {( , ) }jE i j V V i   |  that represent inter-node interactions. The set of edges 

E and the graph   vary in time. 

 The Euclidean norm distance between two random nodes i and j is 

 

1
2| | [( ) ( )] 0T

ij ji i j i j i jd d x x x x x x        (3) 

 

So the time derivative of the squared distance equals 

 

2 2 2( ) ( )T

ij ij ij i j i jd d d x x x x     (4) 

 

When the distance equals the utility domain or 
ij ijd u , the condition for nodes i and j to 

evolve connected is 2 0ijd  . ijd  depends on the trajectories of nodes i and j. 

 

3. Subsets identification 

 

We have ecosystem networks represented by graphs composed of a large number of nodes. 

Ecosystem managers can either select a group of target nodes or identify a subset of target 

nodes by linking nodes according to their interactions. In the second case, how can we 

identify the subsets of target nodes? We have 3 types of interactions between nodes: 

- \t t : Target node-target node type of interaction 

- \u u : Unmarked node-unmarked node type of interaction 

- \t u : Target node-unmarked node type of interaction 
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Let us select a node from the graph and start to connect it to other nodes by any of the three 

types of interactions. By choosing the type of interaction, we implicitly identify target and 

unmarked nodes and their respective subsets. This method brings us to the rationale of 

Ramsey’s coloring of the edges in a graph in more than one color (Graham et al. 1990, 

Chomette 2010). 

 Let n denote a large number of nodes in a complete graph 
n . Let k be the number of 

nodes in subgraph 
i

k

n    in which all nodes are connected by the same type de interaction 

i  (for i r ). We call 
r

k

  a monotype subgraph of k nodes. 

 We note 
1 2

( , ,..., )
r

n k k k    if n is such that connecting nodes in n  induces a 

monotype subgraph 
r

k

  in which all interactions are of ( )i i r  th type. This means that n 

nodes in n  are contained in 
r

k

  subgraphs of k nodes. In this monotype subgraph 
r

k

 , all 

nodes are connected either by \t t  or by \u u  or by \t u . When 
1 2

...
r

k k k     , we have 

( )
r

n k  . In our case, we need to consider 3r  . 

 

Identification Theorem (Ramsey): Let k and r be integers. For every interaction in n  in 

one of ( )i i r   types, there exists n such that 
r

k

n   . 

 

Proof in the Appendix. 

 

We now know that the subset of target nodes exists. It then belongs to the ecosystem manager 

to decide on the ‘coloring’ of the ecosystem network. While in Ramsey’s work, the coloring 

of edges did not imply anything else but the number of colors, we have different types of 

interactions which decide on specific attributes of the nodes at stake. Indeed, if the ecosystem 
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manager decides to connect two nodes by 
\t t , she specifies that both nodes are target nodes. 

The same reasoning applies with other two types of interactions. Therefore, some limitations 

on the coloring must be posited in order to achieve the identification of the subgraphs. 

 

Coherence Principle: Let i and j be two connected vertices in the graph such that 

{( , ) | }
i

i j V V i     and ii


 . For any vertex k, one must verify {( , ) | }
i

i k V V i    . 

 

The Principle says that adding an extra node to a subset of connected nodes must not modify 

the attributes of already connected nodes. Otherwise, the paradox of multiple attributes of one 

node can occur, making the subsets of target and unmarked nodes unidentifiable. 

 In terms of graph construction, it means that the starting interaction of two identified 

nodes within the graph decides on the respective attributes of those nodes. All the remaining 

interactions in the network must be made from this starting subset and each additional 

interaction in the graph must be decided with respect to the existing attribute of already 

connected nodes. 

 

4. Dynamic Network Behavior 

 

The dynamics of unmarked nodes is given by the Laplacian-based control strategy 

(consensus) differential equation, meaning that each node moves in the direction of the 

average position of its utility nodes (Mesbahi and Egerstedt 2010). Indeed, the interaction 

between nodes’ dynamics is realized through the control input ( )ic t , assumed to be the sum of 

the differences between states of a node and its neighbors.  We introduce the utility updating 

time-delay parameter [0,1]  , such that 1   means the absence of delay. When the node is 

transposed to some coordinates issued from the ecosystem management, it might update its 
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utility from its utility nodes with a certain amount of delay. Time-delay can be problematic 

should the nodes update their utility coordinates too tardily to remain connected to other 

nodes; the rationale is that the time-delay can jeopardize the connectivity between the nodes. 

Our way of modeling time-delay differs from that of Olfati Saber and Murray (2004) but 

keeps the aim of studying consensus criteria when update responses are delayed.  

 For a random unmarked node ui  we have 

 

ii i i i k kx N x x    
 

ui   (5) 

 

This dynamics is completely distributed. Indeed, a node needs only to obtain the utility of its 

utility nodes in order to implement its own utility update. A consensus problem is when 

spatially distributed elements of a network must reach overall utility without recourse to a 

central coordinator (Spanos et al. 2005). As well, the Laplacian dynamics has the advantage 

of converging to a steady-state, and we know that natural ecosystems operate near steady-

states (Patten 2010). 

 The dynamics of target nodes is also based on the consensus equation but also on the 

objective term which transposes the network to the objective position x g . For node i 

assume | |i id g x  . The dynamics for a random target node ti  is given by  

 

( , )
ii i i i k k ix N x x F x g     

 
ti   (6) 

 

where ( , )iF x g  is the objective transposition function such as 
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(| |)( ) if  0
( , )

0                             if  0

i i i

i

i

f g x g x d
F x g

d

  
 


 (7) 

 

At any ix g , the direction of ( , )iF x g  is towards the objective position and the magnitude 

is decided by a continuous scalar function ( ) 0if d   which depends on node i’s distance to g. 

( , )iF x g  is continuous when (0) 0f   and lim ( , ) 0x g F x g  . The objective transposition 

function comes from the attraction-repulsion functions used in swarm (Gazi and Passino 

2004) and rendezvous (Gustavi et al. 2010) models. In these models, the motion dynamics 

also depends on the distance between two agents and the function of attraction ( )f   without 

the recourse of a central coordinator. In a swarm model considered in a Euclidean space, all 

agents move simultaneously and know the exact relative position of all other agents. 

 For ui  the trajectory is given by 

 

ii i i i k kx N x x      (8) 

 

If 0iN  , the unmarked node will not move. When the graph stays connected, the consensus 

equation drives nodes to the same state value. Thus, if 0iN  , by setting 1

iN
  , we obtain 

 

k

i i

x

i i i k N
x x     .  (9) 

 

Corollary 1: The trajectory of unmarked node converges to the barycenter of the subgraph 

i   .  

 

For ti , we have  
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(| |)( )
ii i i i k k ix N x x f g x g x        . (10) 

 

If 0iN  , the target node will, depending on (| |)f g x , either not move or head to g. If 

0iN   and ( , ) 0iF x g  , by setting 1
(| |)iN f g x


 

  we get 

 

( )

(| |)

k

i i

x

i i k iN

i i

i i

N f g x g
x x

N f g x




  
  

 

| |
. 

(11) 

 

Corollary 2: The trajectory of target node converges to an aggregate of the barycenter of the 

subgraph i    and the objective position g. 

 

 

Fig. 1 Complete graph with an objective position 

 

(9) and (11) guarantee the boundedness of solutions of the system. This property yields the 

following lemma. 

 

Lemma 1: Let   be a graph consisting of unmarked and target nodes. When   is the convex 

hull containing the nodes in   and the objective position g, we have  

 

Co( )g   

( )if d

N

ix

kx

g

kx

kx
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Proof (see Ji et al. 2008 and Gustavi et al. 2010) 

 

For ui , if 0iN  , the trajectory of unmarked node converges to the barycenter of the 

subgraph i   . Due to convexity, the barycenter lies within the convex hull. We conclude 

that the trajectory of unmarked node i lies within  . 

 For ti , if 0iN  , the trajectory of i converges to an aggregate of the barycenter of 

the subgraph i    and the objective position g. By the convexity of  , node i remains in 

 . 

 Since the trajectories of both the unmarked and target nodes are on the boundary or in 

the interior of  , both nodes stay inside the convex hull. 0  is thus an invariant set.        

 

At the time interval 0t  , the convex hull is
 0 . Now assume that none of the nodes are 

connected to any utility nodes kx , k , and that 
max(| |) ( )jf g x f d    0x  . 

max ( )jf d  is the largest value of ( )jf d  in the convex hull. As the time interval t  , the 

trajectories of nodes in   evolve within 0 . Although the dynamics of target and unmarked 

nodes do not need to be identical, the objective of the ecosystem manager is to bring the 

network to a certain position. Whenever 0id  , given that lim ( )t ix t g   i we have 

  

i ix x   (12) 

 

which yields 
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k

ii

x

i Nk
g 


   (13) 

 

For ( , ) 0iF x g  , the barycenter of the subgraph i  
 
converges (with the risk of delay) to 

the objective position g i  . Therefore, in the limit, the objective position and the 

barycenter overlap. This is impossible because of Corollaries 1 and 2. Pragmatically, this 

means that the ecosystem manager cannot bring the network center of gravity to the objective 

position. The following theorem ensues. 

 

Impossibility Theorem: As t   the terminal barycenter of the subgraph i  
 
cannot 

be g itself; it can at most be near the objective position within the convex hull  . 

 

Proof 

 

By Corollaries 1 and 2, we know that the trajectories of unmarked nodes follow the 

trajectories of target nodes which converge to an aggregate of the barycenter and g. By (13), 

we know that the barycenter of the subgraph i    attains the objective position g i  , 

a result that contradicts the precedent. Finally, by Lemma 1, we know that Co( )g  . 

This ends the proof.                 

 

5. Management prescriptions 

 

The only constraint that can be imposed upon the transposition of the network near the 

objective position is that the graph remains connected. This brings us to the following 

criterion. 
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Sustainability Criterion: For x , assume (0)x  . If Lemma 1 holds and lim ( )t ix t g   

i  , the graph ( )t  remains connected. 

 

Proof (see Dattorro 2005 and Gustavi et al. 2010) 

 

By setting the dynamics via the matrix Kronecker product in stack vector form of the node’s 

positions, we have 

 

2 1 1[( )[ ,..., ] [ ( , ),..., ( , )] ]T T

N nx L I x x F x g F x g    

 

with L the Laplacian matrix of ( )t  and I  the identity matrix of size 2. Let [ ,..., ]Tg g g . 

Taking 1
2
( ) ( )TV x g x g    as a graph-compatible Lyapunov function, which can be 

considered as a function of time, the time derivative yields  

 

2[( ) ( )( )] ( , )t

T

ii
V x g L I x g F x g


      

 

where 0V   is negative semi-definite due to the eigen-properties of 
TL L , which is 

symmetric positive semi-definite, and I  and F being monotically increasing. As long as the 

graph is connected, then L is positive semi-definite and, as such, L  is negative semi-

definite. LaSalle’s invariance principle addresses the asymptotic stability of a system. Given 

the convergence to the objective, the principle gives 0x g   ti   as t   and 

2( ) ( )( ) 0Tx g L I x g   . The system is then stable and x g  will tend to the null-space 

of L  asymptotically. This implies that all scalar positions of all the nodes will tend to the 
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same value. For any vector with identical components such as x g , any consensus is an 

equilibrium. Therefore, the dynamics must converge to a steady state. 

 

Since g is in   and   is convex, i remains in  . By Lemma 1, we know that   is an 

invariant set, and hence the connectivity is ensured. This concludes the proof.         

 

lim ( )x ix t g   i   explains that the trajectory of a node, be it a target node or an 

unmarked node, can at most attain g. Given the Impossibility Theorem, the condition reveals 

that the nodes remain at best within  , as the barycenter cannot overlap with g in ( )t .  

 Sustainability Criterion is the minimal constraint which enables a network to reach the 

objective without compromising its connectivity. Put differently, the condition is a security 

that the graph transposes to the objective position without disconnecting, because 

disconnections induce vulnerability of the system. Further, provided that the graph remains 

connected, any Laplacian consensus is an equilibrium. 

 Nodes are initially within the utility domain, that is, at a distance ijd   . Hence, the 

initial graph (0)  is connected. For an ordered set 1 2{ , ,..., }kW x x x V   and a vertex ix  of 

 , we set up the metric representation of ix  with respect to W such as 

 

( | )ir x W  (14) 

 

By definition, we know that | |i jx x   , and thus ( | ) ( ,0)jr x W   . Likewise, we know that 

max( ) ( )f d f d  , such that | |: 0g x N       for 1     so ( | ) ( ,0)r g W   . 

 We now analyze the connectivity criteria for different types of configurations given 

the utility updating time-delays. 
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 For two random unmarked nodes , ui j , linked by 
\u u , we have 

 

2 2 [ ( )]ij ij ij k i jd Nd d d       (15) 

 

 

Fig. 2 Unmarked nodes 

 

When ijd  , we have 2 0ijd   if ( )ij k i jd d    . If the distance between an unmarked  

node and the barycenter weighted by the net utility time-delay is less than or equal to the 

distance between the nodes, unmarked nodes remain connected. Furthermore, by the law of 

cosines, we have 
, cos( )k i jd d  , so the condition resumes to 

, cos( )

ij

i j

d

i jd 
   . The metric 

yields ( | ) ( ,0)jr x W    and ( | ) ( cos( ),0)kx

N
r W     , thus 

cos( ) i j 
 


   or 

1
cos( ) i j 

   . We thus fall on the secant function such that 
sec( )

i j




   . Assuming 

2
0    gives 1 sec( )

 
    thus 1

i j
   . In parallel, 1   by assumption, so 

i j  . 

If this strict inequality is verified, unmarked nodes will remain connected as t  . 

 

Rule 1: While being taken to the objective position, unmarked nodes must not be driven away 

beyond their utility domain by the utility updating time-delays. Otherwise, they disconnect. A 

necessary and sufficient condition for connectivity is asynchronous time-delays. 

 



ix

jx

g

kx

kx
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For two random target nodes , ti j , linked by 
\t t , and ( , ) 0iF x g   and ( , ) 0jF x g  , we 

have 

 

2 2 [ ( )] 2 [ ( ) ( ) ]ij ij ij k i j ij i i j jd Nd d d d f d d f d d        (16a) 

 

 

Fig. 2 Target nodes and the objective position 

 

We have 2 0ijd   when two conditions are met. The first is ( )ij k i jd d     which occurs for 

i j   (see Rule 1). The second condition implies that ( ) ( ) 0i i j jf d d f d d  . If K   is a 

convex subset of a Banach space and ( )f   a real-valued function that is Fréchet 

differentiable, df  is an increasing monotone operator such that [d ( ) d ( ) ] 0i i j jf d d f d d   

, ti j  . The metric implies that ( ) ( ) 0i i j jf f         or i j    . Thereby, if the 

difference in distances towards the objective position is positive or null, target nodes remain 

within the convex hull. 

 

Rule 2a: The effort engaged to transpose target nodes to the objective position and the 

respective utility updating time-delays it entails must not break their utility domain. 

Otherwise, they disconnect. Necessary and sufficient conditions for connectivity are 

increasing monotone objective function and asynchronous time-delays. 

 

kx

kx

( )if d

( )jf d



ix

jx

g
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For two random target nodes , ti j , linked by 
\t t , and ( , ) 0iF x g   and ( , ) 0jF x g  , and 

for ij ijd u , we have 

 

2 2 [ ( )]ij ij ij k i jd Nd d d       (16b) 

 

 

Fig. 3 Target nodes at the objective position 

 

When ijd  , we have 2 0ijd   if ( )ij k i jd d     which is verified for i j  . 

 

Rule 2b: While being upheld at the objective position, target nodes must not be driven away 

beyond their utility domain by the utility updating time-delays. Otherwise, they disconnect. A 

necessary and sufficient condition for connectivity is asynchronous time-delays. 

 

For two random target nodes , ti j , linked by \t t , and ( , ) 0i i iF x g   and ( , ) 0j j jF x g  , 

where i jg g  or ( ) ( )i i j jf d f d , we have 

 

2 2 [ ( )] 2 [ ( ) ( ) ]ij ij ij k i j ij i i i j j jd Nd d d d f d d f d d        (16c) 

 

ix

jx

g

kx

kx


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Fig. 4 Target nodes and the objective positions 

 

We have 2 0ijd   when two conditions are met. The first condition is ( )ij k i jd d     which is 

verified for i j  . The second condition implies that ( ) ( ) 0i i i j j jf d d f d d   or 
( )

( )

ji i

j j i

df d

f d d
 . 

Since max ( ) ( )f d f d  and max ( )f d Nu , the precedent produces j

i

d Nu
d Nu
 . The metric gives

j

i

N
N






 
  so 1j

i








  and i j    . Once again, if the difference in distances towards separate 

objective positions is positive or null, target nodes remain within the convex hull. 

 

Rule 2c: The efforts engaged to transpose target nodes to the separate objective positions and 

the respective utility updating time-delays they entail must not break their utility domain. 

Otherwise, they disconnect. Necessary and sufficient conditions for connectivity are 

respective maximum pressures on target nodes no greater than the network utility domain and 

asynchronous time-delays. 

 

For two random target nodes , ti j , linked by \t t , for ( , ) 0i i iF x g   and ( , ) 0j j jF x g  , 

where i jg g  or ( ) ( )i i j jf d f d , we have  

 

2 2 [ ( )]ij ij ij k i jd Nd d d       (16d) 

 

ix

jx

kx

kx

( )i if d

( )j jf d

ig

jgN
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Fig. 5 Target nodes at the objective position 

 

When ijd  , we have 2 0ijd   if ( )ij k i jd d     which is verified for i j  . 

 

Rule 2d: While being upheld at the objective position, target nodes must not be driven away 

beyond their utility domain by the utility updating time-delays. Otherwise, they disconnect. A 

necessary and sufficient condition for connectivity is asynchronous time-delays. 

 

For two random nodes ui  and tj , linked by \t u , and for ( , ) 0jF x g  , we have  

 

2 2 [ ( )] 2 ( )ij ij ij k i j ij j jd Nd d d d f d d       (17a) 

 

 

Fig. 6 Unmarked node and target node 

 

By assumption, ( ) 0f d  , so 2 0ijd   as long as i j  .   

 

( )jf d
N

ix

jx

g

kx

kx

ix

jx

kx

kx

ig

jg


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Rule 3a: The effort engaged to transpose the target node to the objective position and the 

respective utility updating time-delays it entails must not break the utility domain between 

target and unmarked nodes. Otherwise, they disconnect. Necessary and sufficient conditions 

for connectivity are positive objective function and asynchronous time-delays. 

 

For two random nodes ui  and tj  linked by 
\t u , and for ( , ) 0jF x g  , we know  

 

2 2 [ ( )]ij ij ij k i jd Nd d d       (17b) 

 

 

Fig. 7 Unmarked node and target node at the objective position 

 

When ijd  , we have 2 0ijd   if ( )ij k i jd d     which is verified for i j  . 

 

Rule 3b: While being upheld at the objective position, unmarked and target nodes must not be 

driven away beyond their utility domain by the utility updating time-delays. Otherwise, they 

disconnect. A necessary and sufficient condition for connectivity is asynchronous time-delays. 

 

Overall, we can see that the time-delay that can be tolerated by a connected network applying 

a consensus protocol depends on rather simple management constraints such as asynchronous 

time-delays and standard criteria towards the objective transposition function. 

 

ix

jx

g



kx
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6. Conclusion 

 

This paper aimed at formalizing the criteria for a sustainable ecosystem management. We first 

proved the existence of a subset of target nodes identified by an anthropogenic controller and 

introduced the Coherence Principle in order to avoid the paradox of multiple attributes over 

nodes. We then modeled the impossibility for a network to translate its barycenter to the 

objective position via Impossibility Theorem.  

 This result enabled to reveal the minimal Sustainability Criterion which ensures that 

the network elements of the ecosystem remain connected while being conveyed to the 

objective position issued from the environmental policy. The criterion guarantees that the 

ecosystem maintains its self-organizing structural complexity or integrity and preserves its 

utility domain. Our approach meets that of Smith et al. (2009) who assert that optimal policies 

must be determined over the subsets of connected systems. At last, we identified three 

management rules to ensure the maintenance of connectivity in time, given the property of the 

objective transposition function, the nature of connections and utility updating time-delays 

between the nodes. 
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Appendix 

 

 Proof of the Identification Theorem 

 

We have to prove the theorem for two types and then extend it to more than two types. That 

is, for every interaction in n  in type i , where 1,2i  , there exists integer n such that 

1 n    or 
2 n   , and then extend the proof to 2i  . 

 

We first prove that the theorem holds for two types of interactions, thus 2r  . 

 

Let 1 2( , )n    be that integer n is true for 1 2( , )  . This means that for every interaction in 

n  in 1  or 2 , we have subgraph 
1

  or 
2

 . By induction, we show that for 1 2( , )   there 
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exists n such that 
1 2( , )n   , that is, the whole graph interacts via the two types of 

interactions. 

 

Let 
1 2( , )   such that 

1 2    . Assume the result is true for some 
1 2( , )   with 

1 2     

and thus for 
1n  and 

2n  such that 
1 2( 1, )n     and 

1 2( , 1)n    . These integers exist 

only because of the induction method. We show that 
1 2n n n   verifies 

1 2( , )n   . 

 

Consider a node 1s  selected from n . Define subsets 1  and 2  of all remaining nodes, 

such that for all 1n ns s  , we have 1

1ns


   if and only if the interaction 1 1( , )
ins s    is of type 

i , where 1,2i  . 

 

Subsets 1  and 2  constitute a partition of the set of the 1n  remaining nodes. Respective 

subgraphs 
1

  and 
2

  are obtained from nodes of these subsets. We have 
1 1| | n   and 

2 2| | n  . 

 

By assumption, we know that 1 1 2( 1, )n    . Hence, 
1 1 1     or 

1 2   . In 

consequence, we have 
2 n   . 

 

We add the node selected at the beginning, which is linked to 
1

  and thus to 
1 1  . We now 

have a complete graph of 1 11 1    , in which all interactions are of the same type. By 

symmetry, we have the same case for 
2 2| | n  . By induction, we conclude that for 1 2( , )   

there exists n such that 1 2( , )n   . 
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Let us now consider the case with more than two types. In this case, 3r  . 

 

The result is immediate by induction. Assume the result holds for 
r  types of interactions. Let 

n be integer such that ( )
r

n k  , and m be integer such that 
2

( )m n  . Then integer m 

verifies 1( )
r

m k   . 

 

For every interaction in m , we already have an interaction of one of two types: the 

interaction is of type 
1  if and only if it was of type 

r  in the previous interaction. By 

induction, it means that the interaction of type 2  was of the type 1r   in the previous 

interaction. 

 

The theorem being proved for two types, we know that m n  . If 
2n    , we have 

2m    and consequently 
1

k

m    as n k . Since ( )
r

n k  , we have 
r

k

m   . This 

ends the proof.                 

 

 Sustainability Criterion 
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