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Résumé / Abstract 
 
Nous menons une expérience pour évaluer si le fait qu'un sujet évalue mal ses probabilités de gagner 
peut être une hypothèse alternative à l’aversion au risque pour expliquer les surenchères lors 
d'enchères indépendantes privées au premier prix. Les résultats expérimentaux montrent, en effet, que 
les sujets sous-estiment leurs probabilités de gagner l'enchère et ont tendance à surenchérir. 
Cependant, lorsqu'on leur présente plus de précisions sur leurs prédictions, les sujets apprennent 
d'abord à prédire correctement leurs probabilités de gagner, puis à limiter considérablement la 
surenchère. L'estimation de différents modèles du comportement suggère que i) les sujets sont 
hétérogènes par rapport à leurs préférences du risque et leurs perceptions des probabilités, ii) les sujets 
choisissent leur meilleure réponse conditionnellement aux croyances qu’ils révèlent, et iii) bien que 
nécessaire pour expliquer pleinement le comportement des sujets, l'aversion au risque semble jouer un 
rôle moins important que prévu. Finalement, nos résultats expérimentaux sont consistants avec un 
modèle théorique d'enchères standard qui combine l'aversion au risque et la mauvaise perception des 
probabilités. 
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We conduct an experiment to test whether probability misperception may be a possible alternative to 
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overbidding. The structural estimation of different behavioral models suggests that i) subjects are 
heterogenous with respect to risk preferences and probability perceptions, ii) subjects tend to best-
respond to their stated beliefs, and iii) although necessary to explain fully behavior, risk aversion 
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be consistent with a standard theoretical auction model combining risk aversion and misperception of 
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1. Introduction

There is a wealth of evidence indicating that subjects in independent �rst-price
private-values auctions tend to bid above the risk neutral bayesian Nash equilib-
rium (hereafter RNBNE). Although often rationalized by risk aversion, there does
not seem to be a consensus in the literature around the cause(s) of overbidding.1

In particular, Goeree, Holt and Palfrey (2002) (hereafter GHP) suggest probabil-
ity misperception as a possible alternative to risk aversion.2 The object of the
present paper is twofold: �rst, we conduct an experiment to establish whether or
not subjects perceive correctly their probability of winning the auction; second,
we verify whether misperception of probabilities may be considered a driving force
behind overbidding.
The probability misperception hypothesis may be considered appealing to ex-

plain overbidding. Indeed, it has been repeatedly shown in the psychology lit-
erature on judgment that individuals have biased perceptions of probabilities.
Typically, psychologists have observed a speci�c misperception pattern: individ-
uals overestimate low probabilities, while they underestimate high probabilities.3

Likewise, several individual decision experiments suggest that agents exhibit com-
parable probability distortion patterns when making risky choices.4 It appears
therefore natural to expect that agents may su¤er from similar biases in games
where probabilities are involved.5

1Other potential explanations include a �Joy of winning�(see e.g. Cox, Smith and Walker
1983, 1988), a lack of monetary incentives (the ��at maximum critique� of Harrison 1989),
bidding errors (Kagel and Roth 1992), and asymmetric costs of deviating (Friedman 1992).
See also the December 1992 issue of the American Economic Review for a �avor of the debate
pertaining to the causes of overbidding.

2Cox, Smith and Walker (1985) were in fact the �rst to propose to study �rst-price auctions
with a utility function exhibiting non-linearity in the probabilities. The authors however, only
consider a power probability weighting function, and they conclude without further analysis that
it is observationally equivalent to a model with risk aversion.

3See e.g. Sanders (1973), and Murphy and Winkler (1984) for probability forecasting in
meteorology; Lichtenstein, Slovic, Fischho¤, Layman and Combs (1978), Viscusi, Hakes and
Carlin (1997), and Benjamin, Dougan and Buschena (2001) for predictions of lethal risks; Viscusi
and O�Connor (1984), and Gerkins, DeHaan and Schulze (1988) for perception of job related
hazards; as well as Hurley and Shogren (2004) for evidence in sterile laboratory experiments.

4See the numerous references in Camerer (1995) for probability distortion in lottery choices;
Ali (1977), and Golec and Tamarkin (1998) for horse track betting evidence; as well as Wakker,
Thaler, and Tversky (1997) for probability distortion in insurance decisions.

5It has been suggested that probability distortion may re�ect both the misperceptions that
agents may have on the probabilities they face, as well as intrinsic preferences over probabilities
when making a risky choice (see e.g. Kahneman and Tversky 1979). Following GHP�s suggestion,
we concentrate exclusively throughout the paper on probability misperception.
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It is well known however, that the identi�cation of probability perceptions
separately from preferences is not trivial. Indeed, di¤erent combinations of beliefs
and preferences may generate the same observed behavior. For instance, GHP�s
econometric estimation suggests that a model with a sensible constant relative risk
aversion parameter, and a model in which risk neutral agents misperceive their
probability of winning the auction, both �t bidding choices equally well. GHP
therefore conclude that subjects behave �as if�risk averse, but their auction data
do not enable them to establish unambiguously whether this should be attributed
to probability misperception or risk aversion.6 Following Manski (2002, 2004),
we circumvent this identi�cation problem by simultaneously eliciting choices and
subjective probabilities. As a result, we can test directly which of the proba-
bility misperception or risk aversion hypothesis, is the most relevant to explain
overbidding.
The experiment we propose therefore consists in a �rst-price independent

private-values auction similar to the one in GHP. In addition, we also ask sub-
jects to predict their probability of winning the auction in order to evaluate the
extent of probability misperception. To promote truthful revelation, subjects are
rewarded according to the accuracy of their predictions in addition to their auc-
tion pro�ts. We conduct two di¤erent treatments di¤erentiated by the feed-back
provided to subjects at the end of each round on the precision of their predic-
tions. No information is revealed in treatment 1, while in treatment 2 subjects
are informed of the quality of their predictions.
The experimental outcomes in treatment 1 indicate that subjects overbid, and

underestimate their probability of winning the auction. However, after observing
their objective probability of winning, subjects in treatment 2 not only learn to
make more accurate predictions, but they also drastically curb-down their ten-
dency to overbid. In fact, bidding above the RNBNE virtually disappears once
subjects have learned to predict correctly their probability of winning.
To explain the experimental outcomes, we estimate several structural models

of noisy behavior. The estimation results suggest that subjects are heteroge-
nous with respect to risk preference and probability perception. In addition, and
according with Nyarko and Schotter (2002), we �nd that actions seem to be con-
sistent with beliefs, as subjects appear to �best-respond�to their stated beliefs on
their probability of winning. The structural models also suggest that probability

6Dorsey and Razzolini (2003) face a similar identi�cation problem. Indeed, their experiment
suggests the presence of probability misperception in private-values auctions, but they cannot
formally con�rm this hypothesis as they do not elicit beliefs.
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misperception is a main source of overbidding, and that risk aversion may play a
lesser role than previously believed. In fact, the estimated constant relative risk
aversion parameter drops from 0.6 to 0.2 when one accounts for heterogeneity and
for the probability misperceptions revealed by subjects.
Finally, we con�rm theoretically the link observed in the experiment between

probability misperception and overbidding. To do so, we consider a standard inde-
pendent private-values model combining risk aversion and probability mispercep-
tion. We show that a class of probability misperception functions, encompassing
the distortion identi�ed in our experiment, induces overbidding compared to the
RNBNE under perfect perception.
The paper is structured as follows: the experimental design is presented in

section 2 and discussed in section 3; the experimental outcomes are commented
in section 4; di¤erent noisy models of behavior are estimated and compared in
section 5; we present in section 6 our theoretical results derived from a standard
private-values auction model with probability misperception and risk aversion;
�nally section 7 concludes.

2. The Experimental Design

We present in this section the di¤erent experimental treatments. The choices made
when designing the experiment are then discussed in a subsequent section. The
experiment was conducted with volunteers at the State University of New York
at Stony Brook. There were eight experimental sessions, four for each treatment,
and each session included 10 subjects and 15 rounds. No subject participated in
more than one session. At the beginning of a session, players were assigned to
an isolated computer. Subjects were told in advance how many rounds would be
played, and they knew that the experiment would not exceed one hour and thirty
minutes. Instructions were then read aloud, followed by participants�questions,
and a brief training with the computer software.7

As further discussed in section 3, the experimental design is essentially mo-
tivated by the following three objectives: �rst, the auction has to be similar to
the one in GHP; second, the subjects�behavior in the auction has to be indepen-
dent from the elicitation of their beliefs about their probability of winning; third,
the remuneration scheme must lead subjects to reveal their beliefs as precisely as
possible.

7The complete list of instructions is available in Appendix A.

4



Before describing how the experiment unfolds, we summarize the discrete auc-
tion model in GHP. Two players participate in a sealed bid independent private-
values auction. Each player receives a randomly determined prize-value, which is
equally likely to be $0, $2, $4, $6, $8, or $11. The players must simultaneously
make a sealed bid, which is constrained to be an integer dollar amount. The prize
is awarded to the highest bidder (with ties decided by the �ip of a coin), for a
price equal to his bid. GHP prove that the unique RNBNE is to bid $0, $1, $2, $3,
$4, and $5, for values of respectively $0, $2, $4, $6, $8, and $11. The equilibrium
strategy yields subjects an average pro�t of $1.9 per round.
In each round, subjects are randomly matched in pairs. To avoid reputation

building, the subjects are informed that the assignment is such that it is not
possible to identify the other member of the pair. The problem in each round may
be decomposed in three phases. In phase 1, the GHP�s auction is implemented
in strategy form. In other words, subjects are asked to identify the bid they
would make for each possible prize value. They are told that a prize value will be
assigned to them at the end of the round, and that their conditional choice in phase
1 corresponding to that value would determine what we called their �e¤ective
bid�. Subjects are also informed that the outcome of the auction is decided by
comparing the e¤ective bids of the two members of the pair. We emphasized in
the instructions that subjects should make careful decisions in phase 1, as their
e¤ective bid directly in�uences their auction payo¤s.
In phase 2, subjects are asked to predict their own probability of winning the

auction for a given list of bids. A coin �ip decides whether all subjects must
make their predictions for a list of even bids (i.e. $0, $2, $4, $6, $8 and $10),
or uneven bids (i.e. $1, $3, $5, $7, $9 and $11).8 Subjects are asked to express
as a frequency (i.e. an integer between 0 and 100) their chances of winning the
auction for each of the six bids in the list.9 We carefully explained to participants
that their probability of winning with a given bid is equal to the probability that
this bid is higher than the e¤ective bid of an average person in the room. We
also made them aware that the experiment was designed in such a way that their
choices and payo¤s in phase 1 are completely independent of their choices and

8GHP also conduct a �low cost�treatment with prize values of $0, $2, $4, $6, $8, and $12.
Although this �low cost� treatment was likely to generate slightly more overbidding, it would
have required to ask predictions for either six uneven bids, or seven even bids. To avoid such
asymmetry, we preferred to adopt GHP�s �high cost�treatment.

9In a series of pilot experiments, we experienced di¤erent mechanisms for subjects to express
their beliefs (e.g. a scale, a pie, a comparison with other random events). No substantial
di¤erence was identi�ed in the way subjects reported their beliefs (i.e. the distributions of the
predictions in the various treatments were not statistically di¤erent).
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payo¤s in phase 2 (and vice-versa).
Once every prediction has been submitted, we determine in phase 3 the auc-

tion and prediction payo¤s. To do so, we randomly match subjects in pairs. Then,
we successively stop by each subject computer station, and roll a 6-sided die to
assign a prize value to each participant. As previously mentioned, we determine
a subject�s e¤ective bid by matching his prize value with his corresponding con-
ditional choice in phase 1. The e¤ective bids of the member of each pair are then
compared, and the auction payo¤s are calculated. To determine the prediction
payo¤s, a 6-sided die is �rst rolled once in public. The outcome of the draw de-
termines which of the six integer bids in the list given in phase 2 will be used
to measure the accuracy of the subjects� predictions. The predictions of both
members of a pair are compared with an �objective probability�of winning the
auction for the bid randomly selected. We carefully explained that this objective
probability is calculated precisely by looking at the bid decisions made in phase 1
of that round by all the participants in the room, other than the members of the
pair to which the subject belongs. As further discussed in section 3, the objective
probability di¤ers across pairs, but it is the same for both members of a pair.
The prediction payo¤ is $4 to the member of the pair with the closest prediction
to the objective probability for the bid randomly selected. We told subjects that
in the event of a tie, the allocation of the $4 would be decided by the �ip of a
coin. Note that, to promote a similar level of introspection when selecting bids
and making predictions, we have arranged so that the number of choices and the
expected payo¤s are roughly the same in phases 1 and 2.
At the end of the round, the auction outcomes (i.e. the bids of both members

and their own payo¤s) are revealed to each member of the pair. This is the
only information revealed in treatment 1. In treatment 2, participants are also
informed of the quality of their absolute predictions. More precisely, we presented
both on a graph and in a table the subject�s predictions along with its objective
probabilities of winning for each of the six integer bids in the list given in phase
2. To promote absolute precision, rather than relative precision, we did not reveal
to the subjects in treatments 1 and 2 the predictions payo¤s, nor the accuracy of
any other participant. In other words, subjects do not know until the end of the
session whether their prediction in a given round was more accurate.
Following GHP, subjects were paid in cash at the end of the session half of

their accumulated earnings. The auction earnings in treatment 1 are comparable
to those in GHP (respectively $10.58 versus $10.7 in GHP), but auction payo¤s in
treatment 2 are slightly higher ($11.49). The auction pro�ts increase over time in
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both treatments (from $9.38 in the �rst three periods to $10.25 in the last three
periods of treatment 1, and from $9.00 to $14.06 in treatment 2). Except for the
last three periods of treatment 2, auction pro�ts remain signi�cantly smaller than
the RNBNE expected pro�t of $14.25.

3. Comments on the Experimental Design

We brie�y justify in this section some of the choices concerning the experimental
design. The �rst objective of the paper is to evaluate whether subjects misper-
ceive their probability of winning the auction. To do so, we compare a player�s
predictions with its objective probability, which can only be derived if we observe
his (potential) opponents full bidding strategy. Two features of the design allows
us to infer the subjects strategies: �rst, the possible private-values are discrete
and �nite; second the auction is implemented in its strategic form. As a result, the
design allows us to observe the full bidding strategy for any bidder, and therefore
we can calculate his opponents�objective probability of winning the auction. In
addition, this approach allows us to collect a much larger sample of data in each
round than GHP. This additional information will prove helpful in section 5 when
we estimate di¤erent behavioral models. Note that it has been argued, that the
strategy method may generate di¤erent behaviors in certain experimental games
(see e.g. Roth 1995). For instance, it is conceivable that a subject may regret
his bid selection in phase 1 when he observes the actual prize value assigned to
him. To prevent such a problem, we emphasized to subjects that they had to
select their bids carefully in phase 1, as one of them would directly in�uence their
auction payo¤s. Moreover, we shall see in section 4 that a comparison with the
experimental outcomes obtained by GHP under the extensive implementation of
the game does not indicate any signi�cant treatment e¤ect.10

How to elicit subjective probabilities is a question that has been often de-
bated among psychologists, statisticians and economists. Two desired properties
are di¢ cult to reconcile when devising a mechanism: the ease of implementation
and the theoretical properties. Most psychologists (and some economists) believe
that, if asked, subjects will reveal their best estimates.11 Economists are in gen-
eral concerned that such a simple approach may not incite subjects to report their

10Selten and Buchta (1999), as well as Pezanis-Christou and Sadrieh (2003) adopted an essen-
tially comparable strategy method in an auction experiment. According with our results, they
did not identify the presence of a signi�cant treatment e¤ect.
11See e.g. Lichtenstein et al. (1978), Viscusi et al. (1997), as well as Manski (2004) and the

references therein.
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true probabilities. Instead, economists often prefer to use �proper�scoring rules
for which payo¤s are maximized by truthful revelation (see e.g. De Finetti 1965,
Murphy and Winkler 1970, Savage 1971). It is well known however, that this
procedure is not incentive compatible when subjects�expected utilities are non-
linear in payo¤s and/or in probabilities, as it will turn out to be the case in our
experiment. In addition, scoring rules do not necessarily encourage a subject to
assess as precisely as possible his subjective probability since i) most scoring rules
are essentially �at around the optimum, and ii) untruthful assessments can secure
higher minimum payo¤s. Scoring rules however, have been mostly criticized for
their complexity to be fully comprehended by non-professional forecasters (Hoga-
rth 1987, Wilcox and Feltovich 2000, or Read 2003).12 More importantly, recent
evidence suggest that eliciting beliefs during the course of a repeated game exper-
iment with intrusive procedures such as scoring rules, may alter the way subjects
play the game (Croson 2000, Camerer, Ho and Chong 2001, Rutström and Wilcox
2003). Since no conclusive evidence indicates that scoring rules generate signi�-
cantly more accurate predictions (Camerer and Hogarth 1999, or Sonnemans and
O¤erman 2001), some economists have preferred to abandon this approach in favor
of simpler methods more transparent to subjects (e.g. Dufwenberg and Gneezy
2000, Croson 2000, Wilcox and Feltovich 2000, Charness and Dufwenberg 2003).
Likewise, we adopt a simple method consisting in comparing subjects predictions,
and rewarding only the closest to the objective probability. This technique is com-
monly used in practice to obtain accurate estimates, and it has been shown to be
incentive compatible for subjects with uniformed priors (Ottaviani and Sørensen
2003).13 In fact, only 3 out of the 80 participants declared in a post-experiment
survey that they did not systematically try to report their best estimates.14 In
addition, we will see that our elicitation procedure is further validated by the fact
that the probabilities reported by subjects are consistent with their actions.15

12In fact, several experimental studies based on scoring rules merely ask subjects to trust the
experimenter that truthful revelation is their best strategy (see e.g. O¤erman, Sonnemans and
Schram 1996, O¤erman 2002, Costa-Gomez and Weizsäcker 2004).
13Examples of practical implementations of this method include the National Collegiate

Weather Forecasting Contest, the Earthquake Prediction Contest, the Federal Forecasters Fore-
casting Contest, or the Wall Street Journal semi-annual forecasting survey.
14In addition, 79 out of 80 subjects declared that they perfectly understood the prediction

payment mechanism. In contrast, only 28 out of 40 subjects declared that they systematically
provided their best estimates, and 18 out of 40 subjects declared that they perfectly understood
the prediction payment mechanism, in a comparable experiment conducted with a quadratic
scoring rule.
15For the sake of completeness, we conducted a series of additional sessions with a

quadratic scoring rule. The results obtained, although slightly noisier, are not substan-
tially di¤erent from the one presented here. In other words, our conclusions appear to
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Let us now discuss how subjects�predictions are induced independently from
their bidding behavior. A possible strategy may consist in comparing every sub-
ject�s prediction with a single objective probability of winning, which in this case
would be the average probability of winning calculated with the bids of all partic-
ipants. However, the decisions and payo¤s of a player in phases 1 and 2 are not
independent in this situation, since his bidding decisions in phase 1 in�uence the
objective probability of winning. In this context, one could conceivably imagine
that a player may submit absurd bids in phase 1, to skew knowingly the prob-
ability of winning and improve his chances of winning the prediction reward in
phase 2. The payment scheme adopted in our experiment do not su¤er from this
drawback. Indeed, a subject�s prediction is compared to an objective probability
based on the actions of all participants except the members of the pair to which
he belongs. Therefore, the members of a given pair cannot in�uence with their
bidding decision in phase 1 the objective probability to which they will be com-
pared. In other words, an individual�s payo¤s and actions in phase 1 cannot a¤ect
his payo¤s and actions in phase 2 (and vice versa).
We also strived to �nd an appropriate balance between collecting as much

information as possible, and requiring a similar amount of introspection in each
of the bidding and prediction phase. As a result, we do not ask subjects to make
a prediction for each of the twelve bids between $0 and $11. Instead, we opted
to ask subjects to submit six bids in phase 1, and to make a prediction for a list
of six even or uneven bids in phase 2. A drawback of this approach is that we
do not observe the full probability weighting function (hereafter PWF) for each
subject. However, note that in each period, the unobserved predictions (e.g. the
list of uneven bids) are equally spaced between the answers provided by subjects
(e.g. the list of even bids). Therefore, we can easily infer unobserved predictions
in our subsequent analysis by applying simple interpolation techniques.
We did not want subjects to infer any information from the questions asked

during a round. For instance, we could have asked subjects to predict their prob-
ability of winning for a single bid. This approach would have yielded much less
information, but more importantly, we were concerned that subjects may inter-
pret this as a signal from the experimenter that they should have selected this
bid. Instead, we preferred to ask predictions for either even or uneven bids, which
we believed would be less likely to send any signal.

be robust to the elicitation method employed. A summary of the experimental out-
comes under the quadratic scoring rule may be found on one of the authors� website at
http://www.sceco.umontreal.ca/liste_personnel/armantier/index.htm.
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Finally, the objective of the paper is not only to test for the presence of misper-
ception, but also to compare the explanatory power of the probability mispercep-
tion and risk aversion hypotheses. When designing treatment 2, our contention
was that, given the �nancial incentives, providing feed-back on the accuracy of
their predictions should help subjects correct their perception bias (if any). This
contention was motivated by experiments in psychology showing that training
may signi�cantly reduce judgement errors (see e.g. Fischho¤ 1982). If predictions
biases could be totally eradicated, then we could perfectly distinguish between
probability misperception and risk aversion. Indeed, the probability mispercep-
tion hypothesis would have little credit, if overbidding remains prevalent even
though subjects have correct estimates of their probability of winning. However,
if overbidding is eliminated when perceptions are accurate, then this would indi-
cate that risk aversion may not be the primary source of overbidding as previously
believed. Although we did not expect to eradicate totally perception biases, we
believed that a partial correction would help us better disentangle risk aversion
from probability misperception.

4. Experimental Outcomes

4.1. Treatment 1

The experimental outcomes observed in treatment 1 are summarized in Tables 1
to 3, as well as Figures 1, 3 and 5. Figure 1 displays on the X-axis a subjects�
objective probabilities of winning the auction, and on the Y-axis the subjects�
predictions in treatment 1 (averaged across periods and subjects). The �gure
actually consists of twelve consecutive dots, representing the predictions for integer
bids ranging from $0 to $11. For instance, the �rst dot on the left corresponds to
the predicted probability of winning with a bid b = 0. The diagonal has also been
plotted to guide the eye. If subjects make unbiased predictions, then their stated
probabilities should fall around the diagonal. Figure 1 indicates that subjects
systematically underestimate their probability of winning for any bid between $0
and $11. The underestimation is in fact quite signi�cant for a large number of
bids. For instance subjects believe that their probability of winning with a bid
b = 3 and b = 5 (the RNBNE bids for a private-value of v = 6 and v = 11) are
respectively 19.66% and 44.86%, while the actual probabilities are 47.38% and
74.08%.
It is interesting to note that, although we �nd a slight evidence of overesti-
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mation for the lowest bid (i.e. b = 0) during the �rst three periods, subjects�
predictions did not produce the S-shape pattern of misperception commonly ob-
served in the psychology literature (see e.g., Camerer, 1995). This observation
is consistent with GHP whose results also suggest that the PWF may be con-
vex everywhere. In other words, it appears that subjects in our experiment are
pessimists, and do not exhibit the traditional bias (i.e. overestimate small proba-
bilities and underestimate large probabilities). Similar evidence has been detected
in other experimental studies (e.g. Schotter and Sopher 2001 identify pessimistic
beliefs in an ultimatum game experiment), as well as �eld studies (Giordani and
Soderlin 2003 show that professional forecasters have been historically pessimistic
in their predictions of GDP). Our experimental results may therefore raise the
question of the relevance of S-shaped PWF to apply to private-values auctions,
and may be more generally to game situations.
No evidence of learning may be detected in Figure 1. Indeed, the predictions

in the �rst and last three periods appear indistinguishable. This observation is
only partially con�rmed by the estimation of an econometric model in which the
predictions stated by subjects are assumed to be drawn from a normal distribution
truncated on [0; 100].16 The expected predictions are modeled as

E
h bPi;b;ti = �b �1 + �5bP>5 + �10b P>10 + �i� ; (4.1)

where bPi;b;t is the prediction of player i = 1; :::; 10 in period t = 1; :::; 15 regard-
ing his probability of winning the auction with a bid equal to b = $0; :::; $11;
(P>5; P>10) are two dummy variables de�ned such that P>5 (respectively P>10)
equals one when t > 5 (respectively t > 10), and equals zero otherwise;

�
�b; �

5
b ; �

10
b

�
are parameters to be estimated;17 and �i is a normally distributed individual ran-
dom e¤ect with mean zero and variance �2�.

18 Finally, to account for possible
heteroskedasticity across predictions for di¤erent bid values and/or di¤erent time
periods, we model the standard deviation of the predictions as

Std
� bPi;b;t� = � j
1 � bj
2 t
3 : (4.2)

16The truncation re�ects the fact that subjects�predictions must necessarily lay between 0
and 100.
17The parameter �b may be interpreted as the initial average prediction for a bid b, while �

5
b

and �10b represent the average percentage deviation in the predictions stated for a bid b after
respectively 5 and 10 periods.
18To identify the presence of learning, a non-linear speci�cation of the form (4.1) was preferred

to a more traditional linear regression with time trends, because it enables i) to compare the
speed of learning between early and late periods, and ii) to compare the speed with which
subjects adjust their bids, and the speed with which subjects adjust their predictions.
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This speci�cation of the variance is quite �exible and it allows in particular i) for
subjects to learn to make more homogenous predictions with time (i.e. 
3 < 0);
and ii) for predictions to be more homogenous for low and high bids (for which
most predictions are likely to be close to 0 and 100) than for intermediate bids
(i.e. 
1 2 [0; 11] and 
2 < 0 in which case the variance has an inverse U shape).
The results of the maximum likelihood estimation presented in Table 1 indi-

cate no systematic adjustment, as most estimated parameters
�b�5b ;b�10b � are not

signi�cantly di¤erent from zero.19 Subjects however appear to learn to lower their
predictions for small bids after the �rst �ve periods, since b�5b is signi�cantly smaller
than zero for b = 0; :::; 4. In fact, the reduction in the stated probabilities may be
quite consequent. For instance, when asked to predict their probability of winning
for a bid b = 0 (respectively b = 1), subjects lower their predictions by 55:1% (re-
spectively 43:9%) after the �rst �ve periods, and an additional 24:7% (respectively
16:5%) after period 10. This decrease is consistent with reinforcement learning, as
most subjects did not witness during the experiment any auction won by a bidder
submitting a bid of 0 or 1.20 In other words, the only evidence of learning we �nd
is that subjects quickly reduce their predictions for small bids.
The estimates of the parameters controlling the variance of the predictions are

presented in Table 2. We �nd that b
1 is almost centrally located in [0; 11] ; while b
2
is signi�cantly lower than zero. As expected, this implies that the variance of the
predictions has a nearly symmetrical inverse U-shape. In other words, predictions
are more homogenous for bids with which bidders are almost certain to loose or to
win the auction (i.e. low and high bids). The variance of the predictions, however,
does not seem to contract with time, as b
3 is found to be insigni�cant. Finally,
we identify substantial heterogeneity within the subjects�pool as b�2�, the variance
of the individual random e¤ect, is found to be signi�cant and relatively large.
For instance, a subject with an individual e¤ect equal to one standard deviation
(�i = b��) will submit predictions 12:2% larger than the average bidder (for whom
�i = 0).
Let us now turn to the bids submitted in treatment 1. The average bids ac-

tually submitted for each possible private-value (red line) may be compared in

19Throughout the paper the estimates�standard deviations, and the distributions of the test
statistics have been evaluated by bootstrap, in order to control for the �niteness of the sample
(see Shao and Tu 1995). Note also that the regressions in this section have also been conducted
with dummy variables identifying the session in which the subjects participated. No signi�cant
session e¤ect has been detected.
20Out of the 300 auctions conducted during the four sessions of treatment 1, 2 were won by

a bidder submitting a bid of 0, and 9 by a bidder submitting a bid of 1.
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Figure 3 with the RNBNE (black line). The �gure con�rms that except for low
private-values (i.e. v = 0 and v = 2) subjects tend to bid signi�cantly higher
than the RNBNE. This result does not necessarily imply that subjects are either
risk averse, or not perfectly rational. Indeed, even though subjects do not sub-
mit the RNBNE, it is entirely possible that they best-respond to their opponents
actions, or that their choices are consistent with their beliefs. To explore these
hypotheses, two additional bid functions are also plotted in Figure 3. The blue
line represents a subject�s risk neutral objective best-response. In other words, it
represents what a risk neutral agent should bid if he knew or could infer correctly
the other participants actions. The orange line represents a subject�s risk neutral
subjective best-response. In other words, it represents what a risk neutral agent
should bid conditional on her stated beliefs regarding her probability of winning
the auction.21 Figure 3 indicates that subjects overbid compared to their objective
best-responses. Their actions however, appear to be quite consistent with their
beliefs. Indeed, the average bids submitted for the di¤erent private-values are only
slightly higher than the subjective best-responses.22 The previous results con�rm
that subjects cannot be assimilated to perfectly rational risk neutral agents since
they do not comply with either the RNBNE, or their objective risk neutral best-
responses. Subjects however, may not be far from risk neutral utility maximizers,
since their actions are close to their subjective risk neutral best-responses. Never-
theless, the slight overbidding remaining may still be explained by risk aversion,
although it would suggest that risk aversion may play a lesser role than previously
believed. This conjecture will need to be statistically con�rmed in section 5 when
we estimate noisy behavioral models.
Figure 5 indicates that, if anything, subjects learn to increase slightly their

bid over time. This observation is con�rmed by the estimation of an econometric
model in which the bids are assumed to follow a normal distribution truncated on
[0; 11], and the expected bids are modelled as

E [Bi;v;t] = �v
�
1 + �5vP>5 + �

10
v P>10 + �i

�
; (4.3)

where Bi;v;t is the bid submitted by player i = 1; :::; 10 in period t = 1; :::; 15 for a

21Unlike previous private-values experiments we can compare subjects� choices with their
objective and subjective best-responses. Indeed, two features speci�c to our design enable the
calculation of these best-responses: �rst, the auction is implemented in strategic form; second,
we elicit subjects�beliefs about their probability of winning.
22This observation is consistent with Nyarko and Schotter (2002), as well as Bellemare, Kröger

and van Soest (2005) who �nd that subjects�actions appear to me more compatible with their
subjective rather than their objective best-responses.
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private-value v 2 f0; 2; 4; 6; 8; 11g.23 The remaining parameters and variables are
de�ned as in equation (4.1). Finally, the standard deviation of the bids is also
modeled as

Std (Bi;v;t) = � j
1 � vj

2 t
3 : (4.4)

The maximum likelihood outcomes in Table 1, indicate that subjects only learn
to increase their bids signi�cantly for private-values equal to v = 4 and v = 6. In
other words, we cannot �nd conclusive evidence of systematic strategy adjustment.
The estimates of the standard deviation parameters in Table 2 indicate that i) the
variance of the bids increases with the private-value v (i.e. b
1 is insigni�cant andb
2 is positive), ii) subjects�behavior does not become more homogenous with time
(i.e. b
3 is insigni�cant), and iii) there is signi�cant heterogeneity between subjects
in their bid selection (i.e. b�� is signi�cantly larger than zero). In particular, a
change of one standard deviation in the random e¤ect results in a 14:8% variation
in the bids of an individual across all possible values.
The frequency with which subjects submitted the correct RNBNE bid for a

given private-value is reported in Table 3. This table shows that although subjects
select the RNBNE bid 98:67% and 94:67% of the time for the lowest private-values
of v = 0 and v = 2, they very rarely submit the RNBNE bid for the highest private-
values of v = 8 and v = 11 (respectively 12:17% and 5:67%). These percentages
vary only slightly between the �rst and last three periods, which further con�rms
that subjects do not learn to play the RNBNE bids. The last column of Table
3 represents the frequency with which subjects submit the entire RNBNE bid
function (i.e. B(0) = 0, B(2) = 1, B(4) = 2, B(6) = 3, B(8) = 4 and B(11) = 5).
The correct RNBNE strategy has been chosen only 1:00% of the time overall, but
there seems to be a slight increase between the �rst and last 3 periods from 0:83%
to 4:17%.
Finally, note that the auction outcomes in treatment 1 appear to be both

qualitatively and quantitatively consistent with those in GHP. In other words,
implementing the auction in strategy form, and asking subjects to predict their
probability of winning did not appear to introduce any signi�cant treatment ef-
fect. This result is consistent with Rutström and Wilcox (2003) who suggest that
eliciting beliefs with a non-intrusive procedure does not a¤ect signi�cantly the
way subjects play a game (see also Nyarko and Schotter 2002).

23Note that although bidding is not constrained to [0; 11], we did not observe any bid outside
this interval during the experiment.
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4.2. Treatment 2

The experimental outcomes observed in treatment 2 are summarized in Tables 1
to 3, as well as Figures 2, 4 and 6. Figure 2 shows that providing feed-back has a
dramatic e¤ect on the accuracy of subjects predictions. Indeed, although predic-
tions in the �rst three periods are roughly similar to treatment 1, we see in Figure
2 that subjects make nearly unbiased estimates of their probability of winning
during the last three periods of treatment 2. This observation is con�rmed by the
estimation of an econometric model speci�ed as in (4.1) and (4.2). Indeed, Table
1 indicates that subjects�predictions for all possible bids increase rapidly after
the �rst �ve periods, and keep increasing, although at a slower pace, after period
10. For instance, when asked to predict their probability of winning for a bid
b = 2, subjects increase their predictions by 41:2% after the �rst �ve periods, and
an additional 12:2% after period 10. In other words, from the feed-back provided,
subjects in treatment 2 appear to learn to correct their probability misperception
over time.24 This result seems to contrast sharply with the outcomes in treatment
1.
To con�rm statistically the presence of a treatment e¤ect, we estimate a model

in which the predictions stated by subjects in treatments 1 and 2 are assumed to be
drawn from a normal distribution truncated on [0; 100]. The standard deviations
of the predictions are speci�ed as in (4.2), while the means are now de�ned as

E
h bPi;b;ti = ��b + e�bT2� h1 + ��5b + e�5bT2�P>5 + ��10b + e�10b T2�P>10 + �ii ;

(4.5)
where T2 is a dummy variable equal to 1 when the observation was collected in
treatment 2. The model is estimated by maximum likelihood with the joint sam-
ple consisting of the data collected in treatments 1 and 2. The estimation results
in Table 4 indicate that subjects�predictions in the early periods of treatments
1 and 2 are nearly indistinguishable. Indeed, except for b = 1 and b = 2, the

24Although subjects were explicitly warned that the objective probabilities were likely to
change in successive rounds as other players modify their bidding behavior, a possible strategy for
a subject in treatment 2 could be to report the probabilities revealed to him by the experimenter
in the previous round. The plausibility of this hypothesis is in part a¤ected by the fact that
subjects have a 50% to make predictions for a di¤erent list of bids (either even or uneven bids)
in two consecutive rounds. Inspection of the data also reveals that when a subject has to make
predictions for the same list of bids in rounds t and t� 1 (respectively, t� 2), his prediction for
a given bid in round t equals the probability revealed to him by the experimenter in round t� 1
(respectively, t� 2) only 7:2% (respectively, 3:8%) of the time. In other words, it appears that
subjects do not simply copy the feed-back provided by the experimenter, but instead use this
information to learn to correct their misperceptions.
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parameters e�b are not signi�cantly di¤erent from zero. With time however, sub-
jects in treatment 2 learn to make substantially higher predictions than subjects
in treatment 1, since most of the parameters e�5b and e�10b are signi�cantly greater
than zero.
Let us now turn to the bidding behavior of subjects in treatment 2. Figure 4

indicates that on average subjects still bid above the RNBNE, although overbid-
ding is slightly less prominent than in treatment 1. Figure 4 however, only tells
one part of the story. Indeed, Figure 6 shows a dramatic reduction of overbidding
over time. Although the bids submitted during the �rst three periods are compa-
rable in treatments 1 and 2, subjects in treatment 2 learned to reduce drastically
their bids. In fact, during the last three periods of treatment 2 only the bids
submitted for high private-values exceed slightly (on average) the RNBNE. For
instance, for the highest private-value v = 11, subjects submitted instead of the
RNBNE b = 5, an average bid of 5.29 during the last three periods of treatment
2, compared to 6.57 in treatment 1. This treatment e¤ect is con�rmed by a max-
imum likelihood estimation similar to the one conducted in Section 4.1 where the
expected bids are now de�ned as

E [Bi;v;t] =
�
�v + e�vT2� h1 + ��5v + e�5vT2�P>5 + ��10v + e�10v T2�P>10 + �ii ;

(4.6)
the standard deviations are speci�ed as in (4.4), and the exogenous variables
are de�ned as in (4.5). Table 4 corroborates the fact that subjects in treatment
2 learned to make lower bids than subjects in treatment 1, since most of the
parameters e�5v and e�10v are signi�cantly smaller than zero.
The last two columns of Table 1 also indicate that subjects in treatment 2

adjust their strategy at a slower, but more constant pace than their predictions.
Indeed, we have just seen that subjects in treatment 2 essentially adjust their
predictions within the �rst �ve periods (the average percentage increase in the
predictions is 20:8% within the �rst �ve periods and an additional 6:2% during
the last 5 periods). In contrast, the magnitude of the strategy adjustment is
basically comparable after 5 and 10 periods (the average percentage decrease in
the bids submitted is 8:6% within the �rst �ve periods and an additional 6:8%
during the last 5 periods). In other words, subjects tend to �rst correct their
misperceptions, and then adjust their bidding behavior accordingly. The asym-
metry between the prediction and strategy learning speeds may explain why, in
contrast with treatment 1, subjects do not appear to best-respond to their beliefs
in treatment 2. Indeed, Figure 4 indicates that on average subjects in treatment
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2 bid above their risk neutral subjective best-response. Note however, that after
the adjustment period (i.e. by the end of the session) subjects actions, subjective
and objective risk neutral best-responses become consistent, since perceptions are
almost unbiased, and behavior nearly conforms with the RNBNE.
Finally, one of the most striking di¤erence between treatments 1 and 2 may

be found in Table 3. Indeed, we can see that during the last three periods of
treatment 2, subjects submitted much more frequently the RNBNE bids for each
possible private-value. For instance, subjects submitted the RNBNE bid b = 3 for
a private-value v = 6, 88:33% of the time in treatment 2, versus only 13:33% of
the time in treatment 1. Even more remarkable, subjects precisely complied with
the RNBNE bid function 41:67% of the time in the last three periods of treatment
2, versus 4:17% of the time in treatment 1.
To summarize, subjects overbid and underestimate their probability of winning

in treatment 1. From the feed-back provided in treatment 2, subjects �rst learn to
correct their misperceptions, and then nearly eliminate their tendency to overbid.
This treatment e¤ect is not as surprising as it may �rst appear. Indeed, it seems
natural that the feed-back and the �nancial stimulus lead subjects to correct their
misperceptions. Then, we can reasonably expect a subject to lower his bids, once
he realizes that his probability of winning with any given bid is higher than he
previously believed. For instance, when a subject realizes that he is virtually
guaranteed to win the auction with a bid of b = 5 or b = 6, he should be very
unlikely to submit a higher bid.

5. Noisy Behavioral Models

Although the experimental outcomes just presented suggest that risk aversion may
play a lesser role than previously believed, we can only con�rm this conjecture
statistically by estimating a behavioral model. We adopt the Quantal Response
Equilibrium concept (QRE hereafter) developed by McKelvey and Palfrey (1995)
to model �noisy�decision making. This equilibrium concept has been shown to
be powerful to organize behavior in numerous experimental settings.25 The QRE
approach is based on two key principles: behavior is random, and the probability
to choose an action increases with the expected utility this action may yield. In
other words, agents are not expected to select systematically their best-responses,
but they play these strategies with a higher frequency. A Nash-like condition on

25See e.g. McKelvey and Palfrey (1995, 1998), Yi (2001), Capra, Goeree, Gomez, and Holt
(2002), Anderson, Goeree and Holt (2002), as well as GHP.
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the consistency of actions and beliefs is then imposed to determine the QRE choice
probabilities. We present in the following two versions of the model adapted to our
auction experiment. The �rst version assumes that agents are homogenous, while
the second takes into consideration the possibility that agents may be heterogenous
with respect to risk preference and probability perception.

5.1. Quantal Response Models with Homogenous Agents

Consider the power function probabilistic choice rule adopted by GHP. Under
the assumption that weakly dominated strategies (e.g. bidding above one�s own
private-value) are excluded, the probability that an agent i with a private-value v
selects a bid b 2 f0; 1; :::; vg when facing an opponent j may be written

Pi (b j v) =
fE [U (b; v) j Pj]g1=�

v�1X
eb=0

n
E
h
U
�eb; v� j Pjio1=� ; (5.1)

where U (:) denotes the individual indirect utility function, Pj is the vector of
choice probabilities selected by agent i�s opponent, and � > 0 is a �noise parame-
ter� re�ecting the sensitivity of the choice probabilities to expected utilities. A
large � yields essentially random behavior, while � close to zero implies Nash-like
behavior since best-response strategies are chosen with a probability close to one.
Following GHP, we assume that subjects are homogenous and exhibit constant

relative risk aversion:

U (b; v) =
(v � b)1�r

1� r ;

where r 2 [0; 1[ is the Arrow-Pratt coe¢ cient of relative risk aversion common to
all subjects.26 In this model the actual probability that bidder i wins the auction
with a bid b against an opponent j may be written

PWi (b) =
1

6

X
v2f0;2;4;6;8;11g

X
eb<b

Pj

�eb j v�+ 1

12

X
v2f0;2;4;6;8;11g

Pj (b j v) ;

26The GHP discrete auction model does not have a bayesian Nash equilibrium in pure strategy
for every possible value of the risk aversion parameter r. Therefore, it will not be possible to
estimate a bayesian Nash equilibrium model under risk aversion, as a possible alternative to the
QRE.

18



where the �rst term represents the probability that agent j bids below b when
receiving one of the six possible private-values, and the second term represents a
favorable coin �ip in the event of a tie.
Following GHP, we also assume that subjects misperceive their probability of

winning the auction homogeneously according to the PWF proposed by Prelec
(1998):

�
�
PWi (b)

�
= exp

�
��

�
� ln

�
PWi (b)

����
; (5.2)

where � > 0 and � > 0 are parameters to be estimated. Note that this PWF can
display the typical S-shape pattern for speci�c values of (�; �), and agents have
perfect perceptions when (�; �) = (1; 1).
Agent i expected utility when bidding b for a private-value v is then de�ned

as
E [U (b; v) j Pj] = U (b; v) �

�
PWi (b)

�
:

The symmetric QRE choice probabilities are then such that

Pi (b j v) = Pj (b j v) = P � (b j v) 8v 2 f0; 2; 4; 6; 8; 11g ; 8b � v:

Since the private-values and bids are discrete and �nite, we can �nd the QRE
choice probabilities for any combination of (�; r; �; �) by replacing Pi and Pj by P �

in (5.1), and solving numerically the resulting �xed-point problem. The di¤erent
structural parameters may then be estimated by standard maximum likelihood
techniques, in which a subject�s actions are compared with their corresponding
QRE probabilities of choice:

L (�; r; �; �) =
Y
i;v;t;b

[P � (b j v)]
I
[Bi;v;t=b] ;

where Bi;v;t is the bid actually submitted by bidder i for the private-value v at
period t, and I[Bi;v;t=b] is the indicator function verifying I[Bi;v;t=b] = 1 when Bi;v;t =
b, and I[Bi;v;t=b] = 0 otherwise.
To compare our results with those of GHP, we start by estimating the QRE

model using only the data collected in the auction phase. In other words, we
ignore for the moment the predictions made by subjects about their probability
of winning. Table 6 reports the estimates of the three models considered by GHP.
Namely, we estimate a QRE model with risk aversion and perfect perception, a
QRE model with risk neutrality and perfect perception, and a QRE model with
probability misperception and risk neutrality. As noted in the introduction, the

19



risk aversion parameter r cannot be identi�ed separately from the parameters of
the PWF (�; �) when one relies only on the auction data.27 At this point, this
prevents us from estimating a more general QRE model including simultaneously
probability misperception and risk aversion. Such a model will be estimated next
when we utilize the subjects�predictions in addition to the auction data.
Let us �rst concentrate on the estimation results for treatment 1. Table 6

indicates that the estimation of the QRE model with risk aversion is consistent
with GHP�s results. Indeed, we estimate the noise and risk aversion parameters
to be (b�; br) = (0:067; 0:611), versus (0:08; 0:55) in GHP. Our results are also
compatible with recent estimates of the relative risk aversion parameter in private-
value auctions.28 According with GHP, we �nd that a QRE model under risk
aversion generates a considerably higher log-likelihood (-2,856 versus -5,017 under
risk neutrality), thereby clearly rejecting the risk neutrality hypothesis.29 Finally,
the estimation of a risk neutral QREmodel with probability misperception yields a
PWF of the form � (P ) = P 2:45, closely matching the quadratic PWF obtained by
GHP. The similitude between the estimates in Table 6 and in GHP reinforces the
conjecture that implementing the auction in strategy form, and asking subjects
to make predictions did not introduce any signi�cant treatment e¤ect. It also
con�rms the ability of the QRE to explain behavior with a parsimonious model
in two di¤erent experimental analyses.
The estimated results in treatment 2 vary slightly compared to treatment 1,

but remain within the same order of magnitude. For instance, the noise parameter
in the risk averse QRE model increases slightly in treatment 2 (0:117), while the
risk aversion parameter becomes lower (0:497). These di¤erences may be partially
explained by the dual adjustment process taking place in treatment 2, as subjects
�rst learned to correct their predictions, and then to adjust their strategies.
We now turn to the estimation of a QRE model combining probability mis-

perception and risk aversion. The econometric analysis proceeds in two steps. In
step 1, we use the probabilities of winning predicted by the subjects during the
experiment to estimate by maximum likelihood the PWF parameters (�; �) in the

27Indeed, observe that the two sets of parameters (�; r; �; �) and (k�; k (r � 1) + 1; �; k�),
where k > 0, yield the same choice probability in (5.1).
28See e.g. Cox and Oaxaca (1996), Chen and Plott (1998), Campo, Perrigne and Vuong

(2000), as well as Pezanis-Christou and Romeu (2003) who structurally re-estimate the risk
aversion parameters from several published experimental studies.
29A formal likelihood ratio test for nested hypotheses yields a test statistics of 4,321.653, much

larger than 3.841, the asymptotic critical value corresponding to the signi�cance level 0.05. In
fact, any test of the risk neutrality hypothesis in Tables 6 to 10 yields P -values inferior to 10�50.
Therefore, these P -values and the corresponding test statistics will not be reported in the text.
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model bPi;b;t = exp ��� �� ln �PWi;t (b)����+ �i;b;t ; (5.3)

where bPi;b;t is the prediction of player i in period t regarding his probability of
winning the auction with a bid equal to b, PWi;t (b) is the actual probability that
bidder i wins the auction given the bids submitted by the other subjects in round
t, and �i;b;t is a normal error term with variance �2. In step 2, using the PWF
estimated in step 1, we estimate the structural parameters (�; r) in a QRE model
with probability distortion. As previously shown however, subjects in treatment
2 learned to correct their misperceptions over time.30 Therefore, the shape of
the PWF is likely to di¤er signi�cantly between the �rst and last periods. To
account for this possibility, the PWF has been successively estimated in step 1
with data collected during the entire experiment (i.e. 15 periods), and with the
data collected during the last �ve periods only. The estimation results in step
1 are presented in Table 7. The parameters (�; �) are signi�cantly lower than
(1; 2), which implies that, although of similar shape, the PWF is di¤erent from
the one suggested by GHP. As expected, the PWF estimated with the last �ve
periods of treatment 2 is �atter, re�ecting the fact that subjects make nearly
unbiased estimates. The estimated parameters however, are signi�cantly di¤erent
from (�; �) = (1; 1) which corresponds to the absence of probability distortion.
In other words, although nearly unbiased, subjects�predictions in the last �ve
periods of treatment 2 remain imperfect.
The parameters estimated in step 2 are summarized in Table 8.31 The �rst

element to note is that the log-likelihoods of the QRE models with risk aversion
and risk neutrality are smaller in Table 8 than in Table 6. To test formally which
of these models prevail we adopt the speci�cation test proposed by Vuong (1989)
for non-nested hypotheses. A test therefore consists in comparing the speci�cation
of one of the models estimated with the data collected during all 15 periods in
Table 8, against the speci�cation of its analog in Table 6. For the risk aversion
models in treatments 1 and 2, the adjusted test statistics are respectively 3:929

30Although the estimated values of (�; �) may change signi�cantly between the early and late
periods, the distribution of �i;b;t appears to remain roughly constant over time. In particular,
a model in which the variance is speci�ed as in (4.2) is rejected in favor of the homoscedastic
speci�cation proposed in (5.3) on the basis of a likelihood ratio test (the P -value is 0:256 in
treatment 1 and 0:146 in treatment 2). The data, however, provide evidence of heterogeneity
across subjects which we will account for in the next sub-section.
31Note that the standard deviations in table 8, as well as the test statistics, are robust to the

errors generated by the estimation of the PWF in step 1.
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and 4:260, which correspond to P-values of 1:36E�5 and 6:83E�6.32 For the risk
neutral models in treatments 1 and 2, the adjusted test statistics are respectively
18:322 and 6:057, which correspond to P-values of 2:39E � 32 and 6:71E � 10.
Therefore, one can clearly reject at the usual signi�cance level the pure QRE spec-
i�cations in Table 6, in favor of the corresponding QRE models with probability
misperception in Table 8. In other words, taking into consideration the subjects�
predictions improves signi�cantly the �t of the QRE model. Next, observe that
the estimations of the risk aversion parameter decrease sharply compared to Ta-
ble 6. For instance, the risk aversion parameter estimated with the entire sample
collected in treatment 1 drops from 0:611 to 0:375 when accounting for the stated
predictions. Even more remarkably, this parameter is estimated at 0:234 during
the last �ve periods of treatment 2. This does not imply, however, that agents
behaved as if risk neutral. Indeed, a comparison of the log-likelihoods in Table
8 indicates that the data still strongly reject risk neutrality. In contrast with
the risk aversion coe¢ cients, the estimated �noise parameter�� is comparable in
Tables 6 and 8, except for the last �ve periods of treatment 2 where it becomes
closer to zero. This result re�ects the fact that, as previously mentioned, subjects
behavior nearly conforms with the RNBNE during the last periods of treatment
2.
Finally, we relax the assumption of equilibrium behavior to estimate the risk

aversion parameter. Instead, inspired by the results in section 4, we assume that
subjects best-respond to their stated beliefs about their probability of winning.
In other words, we compare the subjects�actions in the experiment, with their
subjective best-responses. To account for noisy behavior, we consider a Quantal
Best-Response approach in which subjects do not necessarily select their best-
responses with probability one. Instead, according with the basic principles un-
derlying the QRE approach, we assume that the probability that subject i selects
a bid b = 0; :::; v when receiving a private-value v at period t is

Pi;t (b j v) =

n bEi;t [U (b; v)]o1=�
v�1X
eb=0

n bEi;t hU �eb; v�io1=� where bEi;t [U (b; v)] = (v � b)1�r

1� r
bPi;b;t ,

where bPi;b;t is subject i�s stated probability of winning with a bid b in period
32Recall that the P -values are estimated by Bootstrap, and therefore they di¤er slightly from

the asymptotic P -values.
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t. Recall that we observe bPi;b;t for each agent and each period. Therefore, the
only parameters to estimate in this model are (�; r). Table 9 indicates that the
Quantal Best-Response model generates signi�cantly lower log-likelihoods than
the QRE models in Tables 6 and 8. In fact, pairwise comparisons on the basis
of the Vuong speci�cation test systematically lead to reject the models in Tables
6 and 8 in favor of the corresponding models in Table 9 (the P-values range
from 1:06E � 3 to 8:39E � 128). These tests therefore con�rm that subjects�
behavior may be best explained by the fact that they tend to best-respond to
their beliefs. The likelihoods reported in Table 9 also shows that the risk neutrality
hypothesis is still strongly rejected in favor of risk aversion. Moreover, note that,
unlike the models estimated in Tables 6 and 8, the parameters (b�; br) estimated
in treatment 1, and in the last �ve periods of treatment 2, are now quite similar.
This result further con�rms the ability of the Quantal Best-Response approach
to capture behavior equally well in the two di¤erent treatments. The di¤erence
observed when estimating the risk aversion parameter with the entire sample of
data collected in treatment 2 may again be attributed to the fact that subjects in
treatment 2 learned to adjust their strategies and predictions at a slightly di¤erent
rate. Finally, observe that the risk aversion parameter is signi�cantly lower than
previously estimated. Indeed, we now �nd that r lays between 0.24 and 0.27,
instead of the 0.5 to 0.6 range suggested by Table 6, as well as GHP and other
studies.

5.2. Quantal Response Models with Heterogenous Agents

To explain overbidding, the leading risk aversion model, the so-called CRRAM (see
e.g. Cox et al. 1988), assumes that agents may have heterogenous preferences.
To give the risk aversion hypothesis its best chance to organize the data collected
in the experiment, we explore in this section the possibility that agents may be
heterogenous with respect to risk preference and/or probability misperception.
This approach is also consistent with Section 4 where we detected signi�cant
heterogeneity across subjects in the way they bid and predict probabilities.
Following Cox et al. (1988), we assume that heterogenous risk preferences may

be represented by a utility function of the form:

Ui (b; v) =
(v � b)1�ri
1� ri

:

In addition, to model heterogenous probability perception, we generalize the PWF
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proposed by Prelec (1998):

�i (P ) = exp (��i (� ln (P ))
�i) : (5.4)

Following Cox et al. (1988), we assume that an agent faces uncertainty about
the risk preferences and probability perceptions of others. In other words, agent
i observes �i = (ri; �i; �i), but he only knows the distribution from which the
speci�c risk aversion and the probability perception parameters of his opponents
are generated. Since (�i; �i) must be strictly positive, we assume that the vectors
(ri; ln(�i); ln(�i)) are identically and independently distributed across agents from

a multi-normal distribution with mean
�
r; e�; e��, and variance-covariance matrix

�.33

The analysis of the model is somewhat similar to the homogenous case, except
that we must now distinguish the choice probability of agent i conditional on �i,

Pi (b j v; �i) =
fE [Ui (b; v) j Pj; �i]g1=�

v�1X
eb
n
E
h
Ui

�eb; v� j Pj; �iio1=� ; (5.5)

from the unconditional (or average) choice probability of agent i, P�;i (b j v) =
E� [Pi (b j v; �i)].
Agent i�s probability of winning and expected utility may now be written

PWi (b) =
1

6

X
v2f0;2;4;6;8;11g

X
eb<b

P�;j

�eb j v�+ 1

12

X
v2f0;2;4;6;8;11g

P�;j (b j v) ;

and E [Ui (b; v) j Pj; �i] = Ui (b; v) �i
�
PWi (b)

�
:

Although agents are endowed with di¤erent �i, the model is ex-ante symmet-
ric, and therefore, the QRE choice probabilities P � (b j v; �) are also symmetric
across agents. Note however, that unlike the homogenous case, the QRE choice
probabilities are now a function of a multi-dimensional continuous variable �.
Consequently, unless one imposes arbitrary parametric restrictions on the shape

33Although the distribution of the parameters has been speci�ed in terms of (ln(�i); ln(�i)),
we will report in the remainder the descriptive statistics for (�i; �i). In particular, (�; �) will
denote the expectation of (�i; �i), �

2
� and �

2
� will denote the variance of �i and �i, and ��;�

will denote the coe¢ cient of correlation between �i and �i.
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of the choice probabilities as a function of �, the heterogenous QRE model can-
not be solved even numerically. In contrast, the set of unconditional QRE choice
probabilities P �� (b j v) is discrete and �nite, and it may be determined with the
same �xed-point approach as in the homogenous case. Indeed, observe that

P�;i (b j v) = E�

2666664
fE [Ui (b; v) j Pj; �i]g1=�

v�1X
eb
n
E
h
Ui

�eb; v� j Pj; �iio1=�
3777775 ; (5.6)

only involves the unconditional choice probabilities P�;i and P�;j, which in equilib-
rium are both equal to P �� (b j v).34 The Likelihood associated with the heteroge-
nous model may then be written:

L (�; r; �; �;�) =
Y
i;v;t;b

[P �� (b j v)]
I
[Bi;v;t=b] :

The heterogenous analogs to the various homogenous models estimated in Tables
6 to 9, are reported in table 10. Four points are particularly worth noting.
First, the average values of the noise, risk aversion and probability misper-

ception parameters (�; r; �; �), change slightly compared to the homogenous case
(Tables 6 to 9), but they remain of comparable magnitude. Observe however, that
the risk aversion parameter is in general lower in Table 10. In particular, the coef-
�cient of relative risk aversion is found to be slightly below 0:2 when the Quantal
Best-Response model accounting for the subjects�stated beliefs is estimated with
the data collected during the last �ve periods of treatments 1 and 2.
Second, most of the standard deviation parameters (�r; ��; ��) are signi�cantly

larger than zero, and relatively substantial compared to their respective means. In
other words, our estimates suggest signi�cant heterogeneity across subjects both
in terms of risk aversion and probability perception. The �rst part of this result
is consistent with a number of experimental analyses of �rst-price auctions, in
which heterogeneity in risk preference is often identi�ed (see e.g. Cox et al. 1988,
Cox and Oaxaca 1996, or Chen and Plott 1998). To the best of our knowledge,

34The expectation in (5.6) does not have a closed form, and it must be evaluated numeri-
cally. To speed-up the numerical integration we rely on a quasi Monte Carlo sampling method
consisting in generating extensible lattice points modi�ed by the �baker�s transformation�(see
Hikernell et al. 2000).

25



however, the presence of heterogeneity in probability perception has never been
previously detected in experimental economics.
Third, there appears to be a strong correlation between risk preference and

probability misperception. Indeed, �r;�, the coe¢ cient of correlation between an
individual risk aversion parameter ri and his probability perception parameter �i,
is signi�cantly greater than zero. Therefore, although observationally equivalent,
probability distortion and risk aversion do not appear to act as substitutes for
an individual. Instead, our estimation results suggest that they complement each
other, as highly risk averse subjects also appear to be more pessimistic and/or
less accurate when predicting probabilities.35 This result is somewhat consistent
with Bellemare et al. (2005) who also identify a correlation between preferences
and beliefs.36

Four, a series of statistical tests indicate that i) models accounting for hetero-
geneity systematically dominate their homogenous analogs in Tables 6 to 9; ii)
within the class of heterogenous models, the risk neutrality hypothesis is rejected
in favor of risk aversion; iii) the experimental data are best described by the het-
erogenous Quantal Best-Response model in which agents play with a probability
close to one their best-response conditional on their stated beliefs.
To summarize, the structural estimations suggest that subjects in our exper-

iment may be best characterized as utility maximizers with heterogenous levels
of risk aversion and probability misperception. Moreover, the risk aversion pa-
rameters estimated, although non-negligible, are far too low to explain alone the
subjects�tendency to bid above the RNBNE. Instead, the structural estimations
con�rm that probability misperception is one of the main determinant of overbid-
ding in our experiment.

6. Probability Misperceptions in a Private Values Auction
Model

Our experimental results suggest that probability misperception may complement
risk aversion to explain overbidding in an independent private values auction. The
theoretical e¤ect of risk-aversion on the bayesian Nash equilibrium bid function

35Given the estimated values of (�; �), �i essentially controls the degree of convexity of the
PWF. Therefore, an individual with a high level of risk aversion ri is more likely to have a large
�i which corresponds to a more severely convex PWF.
36In an analysis of the ultimatum game, Bellemare et al. (2005) �nd that proposers who are

optimistic about the acceptance rates of responders also tend to have signi�cantly higher levels
of inequity aversion.
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is well-known. Milgrom and Weber (1982) showed that the bid function is higher
when bidders are risk-averse compared to risk-neutral. To the best of our knowl-
edge, no equivalent result exists on the e¤ect of probability misperception. The
objective of this section is to examine whether the class of PWF identi�ed in
our experiment may lead to overbidding in a standard private values auction. To
simplify, we only consider a continuous auction model with homogenous agents.
Let us consider the standard �rst-price independent private-values auction

model. There are N agents with identical Von Neuman-Morgenstern utility func-
tion u(:). They participate in an auction where they each submit a sealed bid for
an indivisible object. Agent i = 1; :::; N has a private-value vi for the object. This
private-value is drawn independently from a distribution with cumulative F (:),
density f(:) and support [v; v]. The highest bidder gets the object. His payo¤s is
equal to his own valuation of the object minus his bid, vi � bi: The other bidders
receive no payo¤s.
Let us denote B(:) the symmetric bayesian Nash equilibrium of this game.

This strategy is a solution to the following optimization and �xed point problems,

B (vi) = ArgMax
bi

�
G[bi > B(vj);8j 6= i]u(w + vi � bi)+
(1�G[bi > B(vj);8j 6= i])u(w)

�
8vi 2 [v; v] and
8i = 1; :::; N ;

(6.1)
where G[:] is the subjective probability of winning the auction and w is initial
wealth. In other words, B (vi) is bidder i�s best-reply when the other bidders�select
the equilibrium strategy B(:), given that all bidders have the same preferences and
beliefs.
Although G[:] is assumed to be common knowledge, we do not require bidders

to perceive accurately winning probabilities. Instead, we assume that they all
distort their probability of winning according to a continuous and increasing PWF
�(:) verifying �(0) = 0 and �(1) = 1 such that

G[:] = �(P [:]);

and where P [:] is the objective probability of winning.
Let us introduce the indirect utility function U as

U(x) = u(w + x)� u(w): (6.2)

Suppose then that the equilibrium strategy B(:) is a monotonically increasing
function (see Maskin and Riley, 2000). Therefore, if B�1(:) stands for the inverse
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of B(:), and maximizing (6.1) is equivalent to maximizing over bi

�(F (B�1(bi))
N�1)U(vi � bi):

Di¤erentiating with respect to bi yields

�0(F (B�1(bi))
N�1)(N � 1)F (B�1(bi))N�2

f(B�1(bi))

B0(B�1(bi))
U(vi � bi)

��(F (B�1(bi))N�1)U 0(vi � bi):

Setting this expression equal to zero gives the �rst order condition

B0(vi) = (N � 1)f(vi)
�0(F (vi)

N�1)F (vi)
N�2

�(F (vi)N�1)

U(vi �B(vi))
U 0(vi �B(vi))

8vi 2 [v; v] . (6.3)

Together with the boundary condition B(v) = v, this di¤erential equation charac-
terizes the bayesian symmetric Nash equilibrium bidding behavior in an auction
where bidders have a PWF �(:).
Let us now introduce a class of PWF that includes as a special case the function

identi�ed in GHP�s and in our experiment. This is the class of �star-shaped�PWF.

De�nition 6.1. Let a PWF �(p) with �(0) = 0 and �(1) = 1; then �(p) is said
to be star-shaped if �(p)=p is increasing in p.

The term star-shaped is taken from Landsberger and Meilijson (1990), and
relates to their de�nition of a star-shaped utility function.37 We have plotted on
Figure 7 a typical star-shaped PWF. Observe that the class of star-shaped PWF
provides a formal generalization of the PWF identi�ed in our experiment (see
Figure 1 and 2). A star-shaped PWF means that the chord to the PWF drawn
from 0 to p must lay above �(p) for any p. This is equivalent to assuming that
the slope of the chord is lower than the slope of the tangent to �(p) at p, namely
�(p)=p � �0(p). It is also immediate that any convex PWF is star-shaped. This
is of interest since the convexity of � has been shown to be equivalent to �risk-
aversion� in Rank Dependent models in the sense that a risk-averse agent must
decline any mean-preserving spread (Yaari 1986, Chew, Karni and Safra 1987).

37The exact term, as it is de�ned in Landsberger and Meilijson (1990), and more generally in
Mathematics, would be that � is star-shaped at zero.
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Furthermore, observe that � star-shaped implies underestimation everywhere, i.e.
�(p) � p.38
We now show that a star-shaped PWF leads to an unambiguous comparative

statics analysis. Let us compare B(x); the symmetric equilibrium bidding strat-
egy under probability distortion as given by the general condition (6.3), to the
corresponding equilibrium condition under perfect perception denoted B0(x). As-
sume that � is star-shaped, or equivalently that �0(p) � �(p)=p for any p. Then,
we get

B0(v)�B00(v)

= (N � 1)f(v)F (v)N�2[�
0(F (v)N�1)

�(F (v)N�1)

U(v �B(v))
U 0(v �B(v)) �

1

F (v)N�1
U(v �B0(v))
U 0(v �B0(v))

]

� (N � 1)f(v)F (v)N�2[ U(v �B(v))
U 0(v �B(v)) �

U(v �B0(v))
U 0(v �B0(v))

];

by assumption and since U; U 0; � and �0 are positive. From the last inequality,
we have that, for any v;

B(v) = B0(v) implies B0(v) � B00(v).

We thus have a single crossing property. This property means that B can only
cross B0 from below. Since B(v) = B0(v) = v, the function B(v) will always be
larger than B0(v) for any v such that v � v: Therefore, agents increase their bids
when the PWF � is star-shaped.

Proposition 6.2. Suppose that � is star-shaped. Then the PWF � leads agents
to overbid compared to the case of perfect perception.

Proposition (6.2) implies that a star-shaped PWF could explain by itself the
overbidding commonly observed in private-values auctions. An alternative inter-
pretation of Proposition (6.2), is that explaining overbidding in the presence of
a star-shaped PWF may required a lower level of risk aversion than previously
believed. The latter interpretation is relevant for two reasons: �rst, it is consis-
tent with the conclusions of our experimental analysis; second, it has been argued
that the levels of risk aversion estimated to explain overbidding in experimental

38Suppose it is not the case. Then there exists p0 such that �(p0) > p0. As a result,
�(p0)=p0 > 1 = �(1)=1, which contradicts � star-shaped.
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auctions may be considered unreasonably high (see e.g. Harrison 1990, or Rabin
2000).39

To illustrate Proposition (6.2), consider the special case of power functions
both for the utility and PWF, namely u(w) = w1�r=(1�r) with a positive constant
relative risk aversion parameter r, and �(p) = p� with � � 1. Observe that �
is star-shaped since it is convex, and that it basically corresponds to the type of
PWF identi�ed both in GHP�s and our experiments. As it is usual in auction
models, assume a zero initial wealth so that U(x) = x1�r=(1 � r) together with
r 2 [0; 1[. Assume also a uniform distribution F (v) = v over the support [0; 1].
With these functional forms, we can get a closed-form solution to the di¤erential
equation (6.3), which simply reduces to the linear strategy

B(v) =
�v

1 + � � r ,

for the two-bidder case. Consistent with Proposition (6.2), the equilibrium bid
can increase indi¤erently with either � the curvature of the PWF, or r the risk-
aversion coe¢ cient.40 Even this simple auction model makes it clear that there is
an identi�cation problem and that the source of overbidding may be either risk
aversion or probability distortion.
Finally, we conclude this section by providing some intuition as to why a star-

shaped PWF leads to overbidding. In fact, two underlying e¤ects are at play. To
see that, consider a simpler individual decision-making problem that parallels the
one faced by participants in an auction.41 Consider an agent who maximizes over
b an objective function

�(p(b))U(v � b); (6.4)

where p(b) is the probability of getting a prize of value v, and �(:) is a PWF. To
simplify, we will assume that this program is concave in b.
39This point actually needs to be explained in the context of �rst-price auctions. Indeed

subjects are not found to be extremely risk-averse in standard experiments on �rst-price auctions
(usually r si estimated around 0.6). But recall that participants�wealth is usually assumed
to be zero. Risk aversion estimates may arguably increase rapidly with wealth, up to reach
unreasonable values. Risk-aversion estimates then have to be very close to zero (as we found)
in order to be consistent with the introduction of sensible levels of wealth.
40It is easy to generalize Milgrom and Weber (1982)�s result to show that more risk-aversion

(in the sense of Arrow-Pratt) always leads to increase the equilibrium bid function, even in the
presence of probability distortion.
41Further intuitions on why the comparative statics analysis is often similar in individual

decision-making problems and in corresponding strategic contexts are given in Gradstein, Nitzan
and Slutsky (1992). See also Milgrom and Roberts (1994).
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First, if �(p) = p the solution is simply given by b� solving

p0(b�)U(v � b�)� p(b�)U 0(v � b�) = 0: (6.5)

It is optimal to equate the marginal bene�t of increasing the probability of winning
p0(b�)U(v�b�) to the marginal cost of reducing the value of the winning p(b�)U 0(v�
b�). Our objective is to compare the maximizer of (6.4) to b�. It is easy to see that
introducing a PWF leads to overbidding compared to the case of no misperceptions
if and only if the slope of the tangent of �(p(b))U(v � b) at b� is positive. This is
equivalent to

�0(p(b�))p0(b�)U(v � b�)� �(p(b�))U 0(v � b�) � 0: (6.6)

Using the �rst-order condition (6.5) we have p0(b�) = p(b�)U 0(v�b�)
U(v�b�) so that this latter

inequality is also equivalent to �0(p(b�))p(b�) � �(p(b�)); that is for any p 2 [0; 1]

�0(p) � �(p)=p. (6.7)

Hence, a star-shaped PWF leads to increase the value of b.
Let us now interpret this result. Observe that the result derives from the

comparison of (6.5) to (6.6). These conditions represent the trade-o¤ mentioned
above between an increase in the probability of winning versus a decrease of the
payo¤ contingent on winning. How does the probability distortion a¤ect each of
these two e¤ects? First, there is the e¤ect of the change in the probability of win-
ning. Directly comparing the �rst terms of (6.5) and (6.6) shows that this e¤ect
is controlled by �0 compared to 1. This means that when �0(p) is larger than 1,
increasing b by one unit is perceived as relatively more pro�table at the margin,
so that the misperception in the probability leads to increase b. Second, there is
the e¤ect related to the decrease of the payo¤. Comparing the second terms of
(6.5) and (6.6) shows that this second e¤ect is controlled by �(p) compared to p.
When the probability is under-estimated �(p) < p, this e¤ect leads to reduce the
perceived cost associated with a reduction of the payo¤, so that this e¤ect leads
to increase b as well. Obviously, there does not exist any continuous probability
distortion function with �(0) = 0 and �(1) = 1 such that �0(p) < 1 together with
�(p) < p for any p 2 [0; 1]. Hence, there is no hope of �nding a probability dis-
tortion for which both e¤ects go in the same direction for any p. Yet, our results
show that the aggregate e¤ect, that simply condenses the two e¤ects mentioned
above, critically depends on condition (6.7), namely on whether the PWF � is
star-shaped.
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7. Conclusion

The objectives of this paper were i) to determine whether bidders in a private-
values auction misperceive their probability of winning, and ii) to verify whether
probability misperception can play a signi�cant role in explaining overbidding. To
identify beliefs separately from preferences, we followed Manski�s (2004) sugges-
tion, and we conducted a two treatments auction experiment in which subjects
are asked, in addition to bidding, to state their beliefs about their probability of
winning the auction. The experimental outcomes in treatment 1 indicate that
subjects overbid, and underestimate their probability of winning. In treatment 2,
we �nd that providing feed-back on the accuracy of their predictions, leads sub-
jects to correct their predictions, and then to learn to curb-down drastically their
tendency to overbid. The estimation of noisy behavioral models suggests that
bidders best-respond to their stated beliefs about their probability of winning.
In addition, the econometric analysis indicates that the risk aversion parameter
drops signi�cantly (from 0.6 to 0.2) when one accounts for probability distortion
and heterogeneity across agents. We also identify an interesting correlation be-
tween beliefs and preferences, as we �nd that highly risk averse bidders are more
likely to underestimate their probability of winning the auction. Finally, we show
theoretically that our experimental �ndings are consistent with the predictions
of a standard independent private-values auction model combining risk aversion
and probability misperception. In summary, we �nd that bidders underestimate
their probability of winning, which appears to be a main source of overbidding. In
contrast, although still necessary to explain fully behavior, risk aversion is found
to play a lesser role than previously believed to explain overbidding.
These results tend to support the views of Kagel and Roth (1992) who argue

that risk aversion may be one of the determinant of overbidding in private-values
auctions, but not necessarily the most important one. The present paper suggests
that probability misperception may complement risk aversion to explain overbid-
ding. Our analysis also appears to be consistent with Isaac and Walker (1985),
Ockenfels and Selten (2004), and Neugebauer and Selten (2003) who �nd that
overbidding is less prominent when subjects observe their opponents�highest bid
at the end of each round. Indeed, subjects may have used this information to
predict more precisely their probability of winning the auction. Finally, our esti-
mations, although not totally immune from Rabin (2000)�s critique, appears more
compatible with the low �nancial incentives provided in the experiment. Indeed,
the econometric analysis yields signi�cantly lower, and arguably more reasonable
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levels of risk aversion than previous studies.
It has to be noted that the conclusions of this paper should be interpreted

with caution, as we need to acknowledge the limitations of our experiment. In-
deed, to infer the subjects�probability distortion, we had to conduct a discrete
auction which does not necessarily possess a bayesian Nash equilibrium in pure
strategy for any risk aversion coe¢ cient. This prevented us from directly com-
paring the probability misperception hypothesis with the leading risk aversion
model, the bayesian Nash equilibrium model with constant relative risk aversion
(see e.g. Cox, Smith, and Walker 1988). Moreover, we have assumed throughout
the paper that probability misperception was the only possible source of prob-
ability distortion. We have ignored in particular the probability weights which
may re�ect agents�preferences over probabilities when facing uncertain decisions
(see e.g. Kahneman and Tversky 1979). It is unclear at this point whether such
probability weights would complement or partially o¤set the e¤ect of risk aversion
in explaining overbidding. We found it non-trivial to modify our experiment to
account for probability weights. The design of such an experiment remains an
open question left for future research.
We also realize that the relevance of the probability misperception hypothesis

will only be fully assessed by its ability to organize behavior beyond the private-
values auction model. To do so, additional experiments with di¤erent auction
formats will need to be conducted. However, we can already conjecture that,
unlike risk aversion, probability misperception may be a valid candidate to explain
the persistence of bidding above the dominant strategy in second-price auction, or
the regular failures of the binary lottery procedure to induce risk neutral bidding.
Note also that, unlike the �joy of winning�hypothesis, probability misperception
is consistent with the absence of overbidding in English auctions. Again, further
experimental analyses are needed to con�rm these conjectures.
One may also question the usefulness of establishing whether overbidding is

generated by probability misperception or risk aversion. Indeed, these two factors
may be considered behaviorally equivalent, since they lead bidders to behave �as
if�risk averse. Our experiment illustrates why it is of importance to distinguish
between the two hypotheses. Indeed, risk aversion is usually assumed to be an
intrinsic individual characteristic that is time and context independent. In con-
trast, our experiment indicates that probability misperception may be corrected,
in which case individual behavior may be signi�cantly a¤ected. Therefore, as
argued by Camerer (1995), the identi�cation of systematic judgment errors may
have important policy implications. For instance, a government seeking to limit
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overbidding in its public auctions could provide feed-back to reduce perception
biases. Alternatively, a government could select a speci�c auction format, such as
the English auction, for which behavior appears to be less dependent on proba-
bility perceptions.
To conclude, one may comment on the general identi�cation problem between

beliefs and preferences. In practice, the usual way to address this problem is
to impose some beliefs (e.g. rational or naive) on all agents, and then focus on
the estimation of preferences. This procedure may be �awed, as an incorrect
speci�cation of the beliefs may lead to a misrepresentation of preferences. As
discussed in Manski (2004), the combination of observed choices with data on be-
liefs should mitigate this identi�cation problem and improve our ability to predict
behavior. Our experiment illustrates how this approach may provide new insights
into preferences. Indeed, our estimates of risk aversion based on elicited beliefs
di¤er notably from previous studies relying solely on choice data. In addition,
the elicitation of probability perception in our experiment allowed us to address
additional questions such as the evolution of beliefs over time, the consequences
of heterogeneity in beliefs, and the correlation that may exist between beliefs and
preferences.
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Table 1 
Evolution of Strategies and Predictions 

Estimates of the Parameters Affecting the Mean 
Treatment 1 Treatment 2  

bλ  5
bδ  10

bδ  bλ  5
bδ  10

bδ  
b=0 4.421*  (0.961) -0.551*  (0.047) -0.247*  (0.067) 8.389*  (0.712) 0.073*  (0.036) -0.005  (0.028) 
b=1 8.758*  (1.516) -0.439*  (0.032) -0.165*  (0.058) 16.281*  (2.670) 0.270*  (0.024) 0.107*  (0.019) 
b=2 13.806*  (2.186) -0.224*  (0.019) -0.071*  (0.030) 24.838*  (2.854) 0.412*  (0.015) 0.122*  (0.019) 
b=3 24.802*  (2.860) -0.136*  (0.024) 0.002  (0.027) 32.973*  (3.008) 0.398*  (0.017) 0.131*  (0.017) 
b=4 35.121*  (3.965) -0.076*  (0.019) -0.002  (0.021) 42.883*  (4.553) 0.353*  (0.013) 0.146*  (0.016) 
b=5 47.431*  (4.934) -0.048  (0.026) -0.005  (0.015) 51.396*  (5.867) 0.320*  (0.016) 0.127*  (0.014) 
b=6 58.412*  (5.920) -0.028  (0.017) 0.002  (0.017) 61.340*  (7.701) 0.287*  (0.013) 0.073*  (0.013) 
b=7 71.667*  (6.806) -0.011  (0.012) 0.001  (0.012) 75.044*  (6.693) 0.195*  (0.010) 0.025*  (0.011) 
b=8 80.128*  (7.327) -0.003  (0.009) 0.001  (0.010) 88.605*  (7.859) 0.102*  (0.008) 0.013  (0.008) 
b=9 91.424*  (8.045) -0.002  (0.004) -0.003  (0.007) 95.585*  (8.459) 0.054*  (0.006) 0.001  (0.005) 
b=10 96.700*  (5.600) -0.002  (0.003) -0.002  (0.005) 98.314*  (6.263) 0.018*  (0.003) 0.001  (0.004) 
b=11 98.672*  (3.318) -0.002  (0.002) -0.001  (0.002) 99.132*  (2.836) 0.008*  (0.002) 0.001  (0.001) 

 vλ  5
vδ  10

vδ  vλ  5
vδ  10

vδ  
v=0 0.018  (0.015) -0.001  (0.005) 0.000  (0.005) 0.021  (0.013) -0.001  (0.004) 0.000  (0.004) 
v=2 1.016*  (0.123) -0.018  (0.011) 0.001  (0.008) 1.034*  (0.081) -0.025*  (0.006) 0.001  (0.006) 
v=4 2.214*  (0.326) 0.169*  (0.026) 0.050  (0.028) 2.406*  (0.342) -0.112*  (0.020) -0.098*  (0.021) 
v=6 3.634*  (0.584) 0.111*  (0.016) 0.013  (0.015) 3.740*  (0.329) -0.131*  (0.020) -0.095*  (0.017) 
v=8 4.912*  (0.800) 0.033  (0.021) -0.005  (0.014) 5.178*  (0.664) -0.146*  (0.018) -0.080*  (0.019) 

v=11 6.542*  (0.734) 0.024  (0.017) -0.010  (0.012) 6.765*  (0.692) -0.098*  (0.014) -0.137*  (0.017) 
* denotes a parameter larger than zero at a 5% significance level. 

Numbers in parenthesis refer to the standard deviations of the estimates 
 
 
 
 
 

Table 2 
Evolution of Strategies and Predictions 

Estimates of the Parameters Affecting the Variance 
 Treatment 1 Treatment 2 
 

Model σ  1γ  2γ  3γ  ησ  σ  
1γ  2γ  3γ  ησ  

 

Predictions  7.845* 
(0.539) 

6.386* 
(0.749) 

-0.673* 
(0.156) 

0.024 
(0.038) 

0.122* 
(0.045) 

8.247* 
(0.781) 

5.435* 
(0.928) 

-0.507* 
(0.180) 

-0.098* 
(0.033) 

0.084* 
(0.036) 

 

Bids 0.232* 
(0.042) 

0.786 
(1.752) 

0.895* 
(0.205) 

-0.008 
(0.024) 

0.148* 
(0.053) 

0.192* 
(0.036) 

0.420 
(0.977) 

0.977* 
(0.248) 

-0.054* 
(0.019) 

0.111* 
(0.043) 

* denotes a parameter larger than zero at a 5% significance level. 
Numbers in parenthesis refer to the standard deviations of the estimates 

 
 
 

 



 
 
 

Table 3 
Frequency with which the Correct RNBNE Bid or Strategy is Played 

Treatment 1 
Frequency of RNBNE Bid played for Value Equals to  
v=0 v=2 V=4 v=6 v=8 v=11 

Frequency of 
RNBNE Strategy 

All Periods 98.67% 94.67% 38.33% 15.33% 12.17% 5.67% 1.00% 
First Three Periods 93.33% 87.50% 46.67% 26.67% 18.33% 6.67% 0.83% 
Last Three Periods 100.00% 98.33% 24.17% 13.33% 10.00% 5.83% 4.17% 

Treatment 2 
Frequency of RNBNE Bid played for Value Equals to  
v=0 v=2 v=4 v=6 v=8 v=11 

Frequency of 
RNBNE Strategy 

All Periods 99.17% 95.67% 67.83% 51.33% 39.17% 24.17% 12.50% 
First Three Periods 95.83% 87.50% 34.17% 14.17% 17.50% 6.67% 0.00% 
Last Three Periods 100.00% 99.17% 95.83% 88.33% 70.00% 50.00% 41.67% 

 
 
 
 

Table 4 
Estimates of the Parameters Affecting the Mean 

 bλ  bλ
~  5

bδ  5~
bδ  10

bδ  10~
bδ  

b=0 5.212*  (0.792) 2.871  (1.838) -0.488*  (0.051) 0.513*  (0.023) -0.277*  (0.062) 0.286*  (0.039) 
b=1 10.849*  (1.707) 4.304*  (2.037) -0.377*  (0.037) 0.647*  (0.017) -0.154*  (0.054) 0.269*  (0.029) 
b=2 17.431*  (2.391) 6.622*  (2.157) -0.161*  (0.021) 0.564*  (0.012) -0.083*  (0.031) 0.203*  (0.017) 
b=3 28.922*  (2.878) 2.089  (2.103) -0.096*  (0.027) 0.366*  (0.017) 0.002  (0.021) 0.146*  (0.015) 
b=4 37.505*  (4.382) 3.733  (1.926) -0.056*  (0.016) 0.373*  (0.013) 0.008  (0.016) 0.133*  (0.019) 
b=5 48.136*  (5.064) 1.059  (1.619) -0.032*  (0.013) 0.295*  (0.015) -0.021  (0.023) 0.148*  (0.012) 
b=6 61.861*  (5.935) -0.645  (1.904) -0.042*  (0.014) 0.263*  (0.021) -0.005  (0.014) 0.083*  (0.010) 
b=7 72.225*  (7.369) 2.041  (1.546) -0.026*  (0.012) 0.241*  (0.023) 0.007  (0.018) 0.016*  (0.007) 
b=8 83.986*  (7.483) 3.623  (1.916) -0.011  (0.010) 0.086*  (0.018) -0.003  (0.008) 0.013  (0.009) 
b=9 92.056*  (8.108) 2.212  (2.313) 0.004  (0.007) 0.056*  (0.017) -0.008  (0.010) -0.017  (0.010) 
b=10 97.758*  (5.835) -0.385  (1.431) -0.003  (0.004) 0.024*  (0.0011) 0.000  (0.004) 0.001  (0.005) 
b=11 98.811*  (3.535) -0.446  (1.308) -0.002  (0.003) 0.014  (0.012) -0.001  (0.003) 0.002  (0.001) 

 vλ  vλ
~  5

vδ  5~
vδ  10

vδ  10~
vδ  

v=0 0.023  (0.022) -0.005  (0.054) -0.001  (0.005) 0.000  (0.003) 0.000  (0.004) 0.000  (0.002) 
v=2 1.024*  (0.166) -0.009  (0.061) -0.020*  (0.004) -0.007  (0.005) 0.001  (0.007) 0.000  (0.003) 
v=4 2.186*  (0.344) 0.210  (0.113) 0.155*  (0.026) -0.282*  (0.013) 0.046*  (0.020) -0.120*  (0.016) 
v=6 3.588*  (0.626) 0.087  (0.094) 0.070*  (0.022) -0.204*  (0.024) 0.007  (0.014) -0.099*  (0.015) 
v=8 5.117*  (0.852) -0.020  (0.124) 0.035*  (0.013) -0.169*  (0.018) -0.015  (0.014) -0.076*  (0.018) 

v=11 6.508*  (0.741) 0.229*  (0.105) 0.025  (0.014) -0.108*  (0.017) -0.024  (0.016) -0.100*  (0.014) 
* denotes a parameter larger than zero at a 5% significance level. 

Numbers in parenthesis refer to the standard deviations of the estimates 
 

 
 



 
 
 

Table 5 
Estimates of the Parameters Affecting the Variance 

Prediction Model Bid Model 
σ  1γ  2γ  3γ  ησ  σ  

1γ  2γ  3γ  ησ  
7.974* 
(0.586) 

5.744* 
(0.815) 

-0.569* 
(0.179) 

-0.037 
(0.042) 

0.109* 
(0.042) 

0.206* 
(0.047) 

0.548 
(1.221) 

0.928* 
(0.279) 

-0.029 
(0.021) 

0.130* 
(0.049) 

* denotes a parameter larger than zero at a 5% significance level. 
Numbers in parenthesis refer to the standard deviations of the estimates 

 
 
 
 
 

Table 6 
Maximum Likelihood Estimates of the QRE Models in GHP 

 Treatment 1 Treatment 2 
 

Model 
 
µ  

 

r 
 

α  
 

β  
 

Ln(L) 
 
µ  

 

r 
 

α  
 

β  
 

Ln(L) 
QRE 
RA 

0.067* 
(0.002) 

0.611* 
(0.004) 

___ ___  

-2,856 0.117* 
(0.003) 

0.497* 
(0.004) 

___ ___  

-3,304 

QRE 
RN 

0.554* 
(0.002) 

___ ___ ___  

-5,017 0.298* 
(0.007) 

___ ___ ___  

-4,435 

QRE 
PWF 

0.148* 
(0.002) 

___ 1.018* 
(0.009) 

2.455* 
(0.031) 

 

-2,860 0.197* 
(0.004) 

___ 0.778* 
(0.015) 

2.111* 
(0.026) 

 

-3,261 

QRE RA stands for Quantal Response Equilibrium with Risk Aversion. 
QRE RN stands for Quantal Response Equilibrium with Risk Neutrality. 

QRE PWF stands for Quantal Response Equilibrium with Probability Weighting Function. 
* denotes a parameter larger than zero at a 5% significance level. 

Numbers in parenthesis refer to the standard deviations of the estimates 
 
 
 
 

Table 7 
Probability Weighting Function Estimation from Subjects’ Predictions 

 # of 
Periods 

 

α  
 

β  
 

σ  
 

Ln(L) 
 

All 0.635* 
(0.004) 

1.849* 
(0.009) 

0.082 
(0.004) 

 

-7,796  
Treatment 1 

 

Last 5 0.639* 
(0.005) 

1.891* 
(0.013) 

0.080 
(0.003) 

 

-2,645 
 

All 0.717* 
(0.006) 

1.221* 
(0.006) 

0.078 
(0.005) 

 

-8,117  
Treatment 2 

 

Last 5 0.730* 
(0.005) 

1.103* 
(0.006) 

0.060 
(0.005) 

 

-3,328 

* denotes a parameter larger than zero at a 5% significance level. 
Numbers in parenthesis refer to the standard deviations of the estimates 

 
 
 



 
 
 
 
 

 

Table 8 
Maximum Likelihood Estimates of the QRE Model with Misperceptions 

  Treatment 1 Treatment 2 
 

Model 
# of 

Periods 
 
µ  

 

r 
 

Ln(L) 
 
µ  

 

r 
 

Ln(L) 
 

All 
0.112* 
(0.003) 

0.375* 
(0.005) 

 

-2,732 0.107* 
(0.002) 

0.447* 
(0.005) 

 

-3,145  
QRE 
RA  

Last 5 
0.105* 
(0.003) 

0.387* 
(0.005) 

 

-856 0.047* 
(0.002) 

0.234* 
(0.004) 

 

-662 
 

All 
0.181* 
(0.003) 

__  

-3,666 0.276* 
(0.003) 

__  

-4,100  
QRE 
RN  

Last 5 
0.179* 
(0.004) 

__  

-1,135 0.043* 
(0.001) 

__  

-798 

QRE RA stands for Quantal Response Equilibrium with Risk Aversion. 
QRE RN stands for Quantal Response Equilibrium with Risk Neutrality. 

* denotes a parameter larger than zero at a 5% significance level. 
Numbers in parenthesis refer to the standard deviations of the estimates 

 
 
 
 
 

Table 9 
Maximum Likelihood Estimates of the Quantal Best-Response Model 
  Treatment 1 Treatment 2 
 

Model 
# of 

Periods 
 
µ  

 

r 
 

Ln(L) 
 
µ  

 

r 
 

Ln(L) 
 

All 
0.064* 
(0.003) 

0.270* 
(0.004) 

 

-2,229 0.104* 
(0.003) 

0.438* 
(0.005) 

 

-2,914  
QBR 
RA  

Last 5 
0.055* 
(0.004) 

0.244* 
(0.007) 

 

-634 0.053* 
(0.003) 

0.254* 
(0.009) 

 

-628 

 
All 

0.121* 
(0.007) 

___  

-3,021 0.278* 
(0.009) 

___  

-3,918  
QBR  
RN  

Last 5 
0.100* 
(0.011) 

___  

-859 0.089* 
(0.005) 

___  

-755 

QBR RA stands for Quantal Best-Response under Risk Aversion. 
QBR RN stands for Quantal Best-Response under Risk Neutrality. 
* denotes a parameter larger than zero at a 5% significance level. 

Numbers in parenthesis refer to the standard deviations of the estimates 
 

 
 
 
 
 
 
 



Table 10 
Maximum Likelihood Estimates of the QRE Models with Heterogeneity 

 Treatment 1 
Model Periods µ  r α  β  rσ  ασ  βσ  αρ ,r  βρ ,r  βαρ ,  Ln(L) 

QRE 
RA 

 

All 0.059* 
(0.004) 

0.691* 
(0.004) 

___ ___ 0.103* 
(0.013) 

___ ___ ___ ___ ___  

-2,616 

QRE 
PWF 

 

All 0.145* 
(0.005) 

___ 0.993* 
(0.012) 

2.224* 
(0.025) 

___ 0.054* 
(0.023) 

0.181* 
(0.038) 

___ ___ -0.127 
(0.106) 

 

-2,597 

 

All 0.102* 
(0.005) 

0.338* 
(0.007) 

0.708* 
(0.010) 

1.789* 
(0.029) 

0.063* 
(0.010) 

0.041* 
(0.018) 

0.160* 
(0.029) 

0.201 
(0.256) 

0.735* 
(0.176) 

0.054 
(0.139) 

 

-2,582 QRE 
RA 

With 
PWF 

 

Last 5 0.101* 
(0.004) 

0.351* 
(0.009) 

0.721* 
(0.009) 

1.801* 
(0.022) 

0.056* 
(0.012) 

0.044 
(0.026) 

0.172* 
(0.025) 

0.321 
(0.198) 

0.525* 
(0.206) 

-0.112 
(0.242) 

 

-692 

 

All 0.173* 
(0.005) 

___ 0.746* 
(0.016) 

1.866* 
(0.031) 

___ 0.050* 
(0.022) 

0.179* 
(0.043) 

___ ___ -0.192 
(0.132) 

 

-3,192 QRE 
RN 

With 
PWF 

 

Last 5 0.169* 
(0.008) 

___ 0.761* 
(0.014) 

1.834* 
(0.026) 

___ 0.059* 
(0.019) 

0.196* 
(0.058) 

___ ___ -0.025 
(0.183) 

 

-902 

 

All 0.060* 
(0.004) 

0.237* 
(0.007) 

0.785* 
(0.018) 

1.838* 
(0.019) 

0.065* 
(0.009) 

0.038 
(0.016) 

0.192* 
(0.035) 

0.098 
(0.145) 

0.498* 
(0.152) 

-0.128 
(0.176) 

 

-2,076 QBR 
RA 

With 
PWF 

 

Last 5 0.053* 
(0.004) 

0.211* 
(0.010) 

0.782* 
(0.015) 

1.843* 
(0.024) 

0.071* 
(0.013) 

0.042 
(0.023) 

0.207* 
(0.044) 

0.276 
(0.210) 

0.637* 
(0.183) 

0.022 
(0.149) 

 

-542 

 

All 0.124* 
(0.010) 

___ 0.748* 
(0.020) 

1.876* 
(0.030) 

___ 0.035* 
(0.014) 

0.197* 
(0.029) 

___ ___ -0.084 
(0.166) 

 

-2,816 QBR 
RN 

With 
PWF 

 

Last 5 0.096* 
(0.014) 

___ 0.762* 
(0.017) 

1.790* 
(0.031) 

___ 0.044* 
(0.020) 

0.186* 
(0.040) 

___ ___ -0.050 
(0.175) 

 

-796 

 Treatment 2 
Model Periods µ  r α  β  rσ  ασ  βσ  αρ ,r  βρ ,r  βαρ ,  Ln(L) 

QRE 
RA 

 

All 0.098* 
(0.006) 

0.527* 
(0.007) 

___ ___ 0.092* 
(0.019) 

___ ___ ___ ___ ___  

-3,135 

QRE 
PWF 

 

All 0.178* 
(0.012) 

___ 0.804* 
(0.016) 

2.217* 
(0.021) 

___ 0.093* 
(0.038) 

0.227* 
(0.043) 

___ ___ 0.077 
(0.139) 

 

-3,088 

 

All 0.090* 
(0.006) 

0.392* 
(0.008) 

0.764* 
(0.017) 

1.156* 
(0.024) 

0.064* 
(0.014) 

0.068 
(0.038) 

0.172* 
(0.033) 

0.165 
(0.200) 

0.602* 
(0.166) 

-0.017 
(0.154) 

 

-2,945 QRE 
RA 

With 
PWF 

 

Last 5 0.041* 
(0.004) 

0.196* 
(0.007) 

0.780* 
(0.012) 

1.069* 
(0.020) 

0.054* 
(0.014) 

0.040 
(0.030) 

0.138* 
(0.024) 

0.230 
(0.184) 

0.563* 
(0.195) 

-0.086 
(0.180) 

 

-588 

 

All 0.237* 
(0.008) 

___ 0.778* 
(0.020) 

1.269* 
(0.023) 

___ 0.071* 
(0.028) 

0.163* 
(0.044) 

___ ___ -0.184 
(0.177) 

 

-3,812 QRE 
RN 

With 
PWF 

 

Last 5 0.050* 
(0.004) 

___ 0.815* 
(0.022) 

1.191* 
(0.026) 

___ 0.053 
(0.038) 

0.145* 
(0.035) 

___ ___ -0.108 
(0.190) 

 

-701 

 

All 0.084* 
(0.008) 

0.322* 
(0.010) 

0.817* 
(0.016) 

1.148* 
(0.025) 

0.058* 
(0.012) 

0.047 
(0.026) 

0.166* 
(0.040) 

0.127 
(0.225) 

0.688* 
(0.142) 

-0.057 
(0.223) 

 

-2,777 QBR 
RA 

With 
PWF 

 

Last 5 0.049* 
(0.006) 

0.204* 
(0.008) 

0.807* 
(0.016) 

1.109* 
(0.028) 

0.049* 
(0.013) 

0.045 
(0.024) 

0.129* 
(0.035) 

0.258 
(0.193) 

0.716* 
(0.168) 

-0.008 
(0.173) 

 

-543 

 

All 0.235* 
(0.014) 

___ 0.770* 
(0.022) 

1.204* 
(0.025) 

___ 0.050 
(0.032) 

0.194* 
(0.037) 

___ ___ -0.055 
(0.148) 

 

-3,593 QBR 
RN 

With 
PWF 

 

Last 5 0.077* 
(0.013) 

___ 0.791* 
(0.018) 

1.172* 
(0.023) 

___ 0.052* 
(0.025) 

0.162* 
(0.046) 

___ ___ -0.086 
(0.181) 

 

-656 

QRE RA stands for Quantal Response Equilibrium with Risk Aversion. 
QRE PWF stands for Quantal Response Equilibrium with Probability Weighting Function. 

QRE RA with PWF stands for Quantal Response Equilibrium with Risk Aversion and Probability Weighting Function. 
QRE RN with PWF stands for Quantal Response Equilibrium with Risk Neutrality and Probability Weighting Function. 

QBR RA with PWF stands for Quantal Best-Response with Risk Aversion and Probability Weighting Function. 
QBR RN with PWF stands for Quantal Best-Response with Risk Neutrality and Probability Weighting Function. 

* denotes a parameter larger than zero at a 5% significance level. Numbers in parenthesis refer to the standard deviations of the estimates 



Figure 1
Subjects' Predictions of their 

Probability of Winning for Each Possible Bid
Treatment 1

0

20

40

60

80

100

0 20 40 60 80
Objective Probability

Pr
ed

ic
te

d 
Pr

ob
ab

ili
ty

100

All Periods First Three Periods Last Three Periods

Figure 2
Subjects' Predictions of their 

Probability of Winning for Each Possible Bid
Treatment 2

0

20

40

60

80

100

0 20 40 60 80
Objective Probability

Pr
ed

ic
te

d 
Pr

ob
ab

ili
ty

100

All Periods First Three periods Last Three periods



Figure 3
Comparison of Bid Functions
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Figure 4
Comparison of Bid Functions
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Figure 5
Evolution of Bids Submitted

Treatment 1

0
1
2
3
4
5
6
7

0 2 4 6 8 10
Private Values

B
id

 F
un

ct
io

n

Risk Neutral Bayesian Equilibrium Bids Submitted Averaged Across all Periods
Bids Submitted Averaged Across the First Three Periods Bids Submitted Averaged Across the Last Three Periods

Figure 6
Evolution of Bids Submitted
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APPENDIX A 
 

INSTRUCTIONS FOR THE EXPERIMENT 
 
 
 
 
 
 
 

You are about to participate in an experimental study on decision-making. You can earn real money, which will be 
paid to you in cash privately at the end of the experiment. If you read and follow the instructions carefully, and if 
you make thoughtful decisions, you might earn a substantial amount of money. Please, do not hesitate to ask any 
question while we read the instructions. 
 
 
Structure  
The experiment consists of 15 rounds, and, as announced, it should last less than 1 hour and 30 minutes. 
Each round is decomposed in three phases. Each phase is explained below. 
 
 
Matching 
In each round, you will be identified by a new ID number determined randomly by the computer. Your ID number 
is shown at the top left corner of your screen. 
You will be paired in each round with another participant, using draws of numbered ping pong balls. Each ping 
pong ball is marked with one of the ID numbers of the 10 persons in the room. At the beginning of phase 3, we 
will draw two ping pong balls at a time from this bucket to determine who is matched with whom for this round.  
 
 
The decision problem 
In each round, you and the person you are matched with will participate in an auction. Before we explain in details 
what you will be asked to do, let us briefly describe how the auction works. 
 
At each auction, you and the person you are matched with will bid for a prize. The value of the prize to you will be 
randomly determined, and equally likely to be $0, $2, $4, $6, $8, or $11. You will not know the value of the prize 
to the person you are matched with. All you know is that the value to him or her is equally likely to be $0, $2, $4, 
$6, $8, or $11. As explained below, you and the person you are matched with will be asked to make a monetary 
bid. The prize goes to the higher bidder. If you are the high bidder your payoff from the auction is equal to the 
difference between your own prize value and your bid. Otherwise, your payoff from the auction is $0. 
 
Let us now explain in details what you will be asked to do. The decision problem consists in three phases. 
 
 
 
 
 
 
 

 
 



• Phase 1 : Auction Conditional Choices 
 
At this point, you do not know yet the value of the prize to you. It is only in phase 3 that we will determine 
randomly the value of the prize for each person in the room.  
In phase 1, you will be asked to make a bid in an integer dollar amount for each of the possible prize value you 
might receive later on. More precisely, you will have to fill each cell of the following table: 

 

Table 1: Bid for Each of the Possible Prize Value 
Your Possible Prize Value $0 $2 $4 $6 $8 $11 

Your Bid for that Prize Value ? ? ? ? ? ? 
Note: your bids should be integer dollar amounts 

 

When you fill each cell of this table you must considerer each time what you would do in this situation. For 
instance, when you fill the third cell, corresponding to a value of $4, you must ask yourself: “What bid should I 
make if the value of the prize to me is $4?”. 
After your prize value is randomly assigned to you in phase 3, we will look for the corresponding cell in Table 1 to 
determine your “effective bid”. As further explained below, it is this “effective bid” that will be used to decide 
whether or not you win the auction. It is therefore very important that you fill each cell in Table 1 very carefully. 
 

• Phase 2: Predictions 
 
In phase 2, you will be given an opportunity to earn additional money by making some predictions about your 
chances of winning the auction for a given list of bids. First, we will flip a coin to decide for which bids you will 
make your predictions. Heads, and you must make a prediction for each of the following even bids: $0, $2, $4, $6, 
$8, and $10. Tails, and you must make a prediction for each of the following uneven bids: $1, $3, $5, $7, $9, and 
$11. For instance, if the coin toss selects “Heads”, then, for each even bid in the following table, you must predict 
how many chances out of 100 does that bid has to be higher than the “effective bid” of a random person in this 
room. 

 

Table 2: Chances of Winning the Auction for Each of the Following Bids 
Bid $0 $2 $4 $6 $8 $10 

Chances (out of 100) of Winning 
the Auction With this Bid 

 
? 

 
? 

 
? 

 
? 

 
? 

 
? 

Note: in each cell you must enter a number between 0 and 100 
 
If instead the coin toss selects “Tails”, then you will have to fill the same table for the uneven bids.  
When you fill each cell of table 2, remember that you must evaluate each time the chances this bid has to win the 
auction against the “effective bid” of a randomly selected person in this room. For instance, when you fill the 
second cell, corresponding to a bid of $2, we want you to answer the following question: “If I was to play this 
auction 100 times with someone different each time, how many times would I win the auction if I always bid $2?”. 
 
Note that the higher the bid, the higher the chances to win the auction. For instance, the chances to win the auction 
with a bid of $8 have to be at least as large as the chances to win with a bid of $6. Therefore, the numbers in two 
consecutive cells should not decrease.  
 
It is important for you to understand that the experiment has been designed so that your choices and payoff in 
phase 2 are completely independent of your choices and payoff in phase 1, and vice versa. As we will see, your 
choices and your payoff in phase 2 are also completely independent of the prize value that will be revealed to you 
in phase 3. In fact, when filling Table 2, you should only concentrate on predicting the chances of winning the 
auction with each bid on the list, given what you think the other participants in this room will choose on average in 
phase 1. 
 

Just like with table 1, you are advised to fill each cell of Table 2 very carefully, as one of them will determine your 
payoffs in phase 2. 



 
• Phase 3: Auction and Predictions Payoffs 

 
Auction Payoff 
 
In phase 3, we will first draw ping pong balls to determine who is matched with whom. Then, we will come to 
your desk to roll a 6-sided die that will determine the value of the prize to you. A throw of 1 will determine a value 
of $0, a throw of 2 will determine a value of $2, a throw of 3 will determine a value of $4, a throw of 4 will 
determine a value of $6, a throw of 5 will determine a value of $8, and a throw of 6 will determine a value of $11. 
As you can see, your prize value is completely independent of the choices you made in phase 1 and phase 2. 
 

Once your value is established, we will enter it in the computer. The computer will then look in Table 1 for the cell 
corresponding to your prize value in order to determine your “effective bid”. The same procedure will be 
independently repeated with the person you are matched with in order to determine his or her prize value and 
“effective bid”.  
The prize will be awarded to you if your “effective bid” is higher than the “effective bid” of the person with whom 
you are matched. In the event of a tie, we will decide who wins with the flip of a coin (Heads and the person with 
the higher ID number wins, Tails and the person with the lower ID number wins). If you have the highest 
“effective bid” (or win the coin flip in the event of a tie), your payoff from the auction is equal to the difference 
between your own prize value and your “effective bid”. If you are the low bidder, you earn nothing in this auction. 
To summarize, 
 
 

Auction payoff = your own prize value - your “effective bid” 
(If you have the highest “effective bid” or win the coin flip in case of a tie) 

 
 

Auction payoff = 0 
(If you have the lowest “effective bid” or lose the coin flip in case of a tie) 

 
 

As you can see, it is very important that you fill each cell of Table 1 very carefully, as one of them will determine 
your “effective bid”, which will directly influence your auction payoff. 
 
Predictions Payoff 
 
In addition to your auction payoff, we will also determine your payoff from your predictions in phase 2. To do so, 
we will first roll a 6-sided die. The outcome of this roll will determine which of the six bids in Table 2 will be used 
to measure the precision of the predictions for all the participants in this room. 
 

Your prediction, and the prediction of the person with whom you are matched, will be compared with your true 
average probability of winning the auction for the bid randomly selected. This true probability is calculated 
precisely by the computer by looking at the decisions made in that round by all the participants in this room, other 
than you and the person with whom you are matched. The true probability is therefore the same for you and the 
person you are matched with, and it does not depend on your decisions in phase 1. 
 

Your prediction payoff will be $4 if your prediction for the bid randomly selected is closer to the true average 
probability than the prediction of the person with whom you are matched. In the event of a tie, we will decide who 
wins the $4 with the flip of a coin (Heads and the person with the higher ID number wins, Tails and the person 
with the lower ID number wins). Otherwise, your prediction payoff is $0.  
If you make thoughtful decisions in phases 1 and 2, your prediction payoff should be roughly the same as your 
auction payoff. It is therefore very important that you fill Table 1 and Table 2 with equal attention.  
 

Note that you will not be immediately informed of your prediction payoff in each round. They will all be revealed 
to you at once, at the end of the experiment, that is after the 15 rounds.  
 
 



Paragraph added in treatment 2. 
 

Once the precision of your predictions has been evaluated, we will print on your screen (both in a table and on a 
graph) your predictions, as well as your true probabilities of winning the auction for each of the bids in Table 2. 
Note that these true probabilities are likely to change in the next round, since people in this room may take 
different decisions. However, we advise you to analyze this information carefully, as it may help you improve your 
predictions in future rounds. 
 
 
Payment 
You will receive $5 simply for showing up today.  
In addition, we will add the auction payoffs and the predictions payoffs you accumulated during the 15 rounds, and 
we will pay you in cash half of this total.  
We remind you to make your choices in each phase of each round very carefully as they will influence how much 
money you will receive today. In particular, note that if during a particular round, you win the auction with an 
“effective bid” higher than your prize value, then your auction payoff for that round will be negative and will be 
subtracted from your total earnings. 
 
 
Questions 
If you have any question, or if any part of these instructions was unclear, please raise your hand.  
At anytime during the experiment, do not hesitate to raise your hand if you have a question. One of the instructors 
will come to you and answer your question privately. At no point should you ask a question aloud, or talk with 
another participant. 
 
 
 
 
 
Before we actually start the experiment let’s make sure you know how to operate the computer program. From 
now on you should follow the instructions on the screen, which will lead into the actual experiment. 
 
 




