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1 Introduction

One of Clive Granger’s very first papers was on the prediction of extreme
events, namely floods of tidal rivers (see Granger (1959)). Since Granger’s
early work there has been an enormous growth in the area of modelling ex-
treme events in economics and finance (see e.g. Embrechts et al. (1997)).
Despite the significant progress we made, there are still many outstanding
issues. This paper is about monitoring for instabilities or disruptions in fi-
nancial markets and the use of sequential testing procedures.1 Structural
breaks and extreme tail observations are two types of rare events. The latter
has been the main focus of risk management whereas the former represents
a fundamental shift in the distribution of risky outcomes. Testing for breaks
has obviously also close connections with model specification analysis as well
as forecasting. Out-of-sample prediction is typically based on the main-
tained assumption of model (parameter) stability (see e.g. Hendry (1997)).
Sequential analysis is therefore a desirable tool when out-of-sample analysis
is performed since it allows for real-time monitoring of prediction models.
Moreover, monitoring financial risk can be considered as a useful statistical
tool for financial crises.
So far, most statistical and econometric methods of sequential change-

point analysis have focused on linear regression models or linear dynamic
models with weak dependence. Examples include Lai (1995, 2001), Chu et
al. (1996), Leisch et al. (2000), Zeileis et al. (2004), among others. Notable
exceptions are Altissimo and Corradi (2003) and Berkes et al. (2004) that will
be discussed shortly. In this paper we are interested in monitoring stability
of nonlinear strongly dependent processes. The interest stems from the fact
that a large area of important sequential analysis applications is financial
risk management. The daily reporting of some risk exposure measure has
been adopted by many financial regulators. Embedded in most measures
is a prediction rule based on a model for portfolio returns. For example,
Value-at-Risk (VaR) attempts to forecast likely future losses using quantiles
of the (conditional) portfolio return distribution and Expected Shortfall (ES)
measures the expected loss given it exceeds some threshold. Andreou and
Ghysels (2003) showed that ignoring structural change will lead to financial
losses beyond those that can be anticipated by the routine application of

1We will use the terms change-point and disruptions interchangeably. Hence, disrup-
tions in financial markets are structural breaks, or change-points in the asset returns
process.
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risk management estimation or simulation methods. The idea to monitor
sequentially asset return related processes for change-points is still relatively
unexplored and raises many issues. We focus exclusively on CUSUM-type
tests and provide a number of contributions towards a better understanding
of sequential testing for structural breaks in financial asset return processes
or more generally nonlinear dynamic strongly dependent processes. In this
respect our paper fits in a broader research program addressing the challenges
of quality control for dependent monitoring processes (see e.g. Lai (2001, p.
317-8) and Stoumbos et al. (2000, p.994-5, sections 6 and 8)).
The first issue we emphasize is the use of data-drivenmonitoring processes.

Most of the literature so far has emphasized sequential testing via monitoring
(individual) coefficients of parametric models. One of the main innovations
in Andreou and Ghysels (2003) is the use of empirical monitoring processes
that are purely data-driven and based on high frequency financial time series
processes. Indeed, one virtue of financial market applications is the availabil-
ity of high frequency price data for actively traded assets that bear neither
sampling costs nor measurement error. These easy to collect and compute
processes are practically appealing as even for the simplest representative
parametric model for asset returns, e.g. a GARCH process, the likelihood
function may be extremely complicated (for cases other than the Normal or
Student’s t distribution) and therefore make parametric sequential analysis
computational intensive and cumbersome. We do not necessarily advocate
the exclusive use of data-driven tests, as parametric model-based tests can
provide complementary information. For instance, Berkes et al. (2004) de-
rive a sequential test for the parameters of a GARCH sequence. Their test
could be used alongside the procedures presented here since they can provide
information regarding the type of the change-point (e.g. constant versus dy-
namics of volatility). On the other hand Altissimo and Corradi (2003) deal
with sequential tests for multiple breaks in the mean instead of the volatility
of α-mixing processes.2

The second issue we explore is the effect of sampling frequency on the lo-
cal power of CUSUM tests. Since we treat dependent processes, the choice of
sampling frequency can be critical, an issue that has not been addressed in the
literature since most of the emphasis has been on monitoring i.i.d. processes.
Sampling frequency is indeed often one of the choice variables in the context
of financial time series applications. We tackle the local asymptotic power

2Andreou and Ghysels (2002) also consider multiple change-point tests in volatility.
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analytically in the context of a historical or off-line CUSUM statistic. More
specifically, we find that the local power of the CUSUM-type ARCH tests
for stability are inextricably linked with the sampling frequency choice and
temporal aggregation involved in volatility models. This yields some inter-
esting power trade-offs between the persistence and kurtosis properties of
the process for different sampling frequencies. We focus exclusively on the
ARCH(1) process where persistence and kurtosis are described each by a sin-
gle parameter and quantify the trade-off between tail behavior, persistence,
local power and sampling frequency. However, the analytical complexity of
sequential CUSUM testing precludes us from deriving closed form solutions
for the local power of tests with varying sampling frequency. Hence we re-
sort to a comprehensive simulation study in order to examine the properties
of on-line change-point tests and show that the same trade-offs appear in
sequential analysis.
The third and final contribution pertains to a new prediction-based for-

mula that has at least two appealing features. It uses a local Brownian bridge
approximation argument and is shown to (1) substantially reduce the delay
in detection time of structural breaks and (2) provide a probability statement
about the likelihood of the occurrence of a structural break.
The remainder of the paper is organized as follows. In section 2 we present

the test statistics and empirical processes to which they apply. Section 3
covers asymptotic local power with varying sampling frequencies and the
next section 4 deals with sequential CUSUM tests. Section 5 reports an
extensive simulation experiment on the various aspects of sequential CUSUM
test applications in monitoring financial asset returns. Section 6 introduces
the prediction-based formula for monitoring processes. Section 7 concludes
the paper.

2 Data, Models and Test Statistics

We start from standard conditions in asset pricing theory. In particular,
absence of arbitrage conditions and some mild regularity conditions imply
that the log price of an asset must be a semi-martingale process (see e.g.
Back (1991) for further details). Applying standard martingale theory, asset
returns can then be uniquely decomposed into a predictable finite variation
component, an infinite local martingale component and finally a compen-
sated jump martingale component. This decomposition applies to both dis-
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crete and continuous time settings and is based on the usual filtration of
past returns. The predictable component is the expected return, i.e. is the
conditional mean of the process given past returns. Most efforts in financial
modelling have focused on two aspects: (1) the conditional volatility dynam-
ics given that returns exhibit non-linear dependence and (2) the conditional
tail behavior that pertains to the process of returns normalized by a condi-
tional volatility measure, i.e. rt/σt. For ease of presentation let us consider
a discrete time setting and the general location-scale nonlinear time series
model for the returns process {rt} :

rt = µ(r0t−1, β1) + σ(r0t−1, β2)ut, t ≥ 1 (2.1)

where the errors {ut, t ≥ 1} are independent of r0t−1 := (rt−1, rt−2, ...)0 and
i.i.d. with distribution function f(u, β3). The known functions µ → R and
σ → R+ have unknown parameters β1 and β2, respectively. A parametric
approach involves explicit parameterizations of µt ≡ µ(., β1), σt ≡ σ(., β2)
and usually also the distribution function f(u, β3) in (2.1). Parametric mod-
els within the class of ARCH and SV models can be nested into equation
(2.1). The former class of models assumes that σt is a measurable func-
tion of past returns, whereas the latter assumes that volatility is latent (see
Bollerslev et al. (1994) and Ghysels et al. (1996) for further discussions). It
should be noted that the specification in (2.1) amounts to working with the
location scale family of distributions for the conditional distributions once
the conditional mean and variance are determined.
Equation (2.1) represents a class of nonlinear time series models where

the structure of the conditional mean and variance needs to be a priori speci-
fied. In a standard parametric or a semi-parametric setting, misspecification
of the conditional mean and/or variance may invalidate consistent estima-
tion. The parametric approach has certain advantages as to identifying the
sources of structural breaks, yet is quite restrictive for financial asset returns
due to the plethora of alternative stylized facts and models suggested for the
conditional variance specification (e.g. the large family of ARCH- and SV-
type models) and for the distribution function. Moreover, the computational
burden of repeated semi-parametric estimation may be prohibitively expen-
sive on a daily basis. The nonlinear optimization involved in sequentially
estimating the GARCH parameters requires large samples (1000 or more
daily observations). Additional estimation costs involved in the Berkes et al.
(2004) approach involve the matrix of the product of the conditional pseudo-
likelihood and its partial derivative which does not possess a closed-form
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formula and for which the exact GARCH parameters are used. In addition,
the high frequency (intradaily) data exploited in our empirical monitoring
processes yield more accurate estimates of volatility than parametric models
do based on lower frequency (daily) data. Similarly the data-driven mon-
itoring processes involving high frequency data can be computed at virtu-
ally any sampling frequency, that is daily, half-daily, hourly, etc. This is
almost impossible for parametric and semi-parametric settings as finer sam-
pling greatly increases the complexity of the models involved. This feature
will be extremely useful as we will be able to address the issue of sampling
frequency and the properties of sequential analysis in a feasible practical con-
text. We describe in a first subsection on the monitoring processes. A second
subsection covers CUSUM statistics.

2.1 Empirical monitoring processes

For monitoring financial risk one is interested typically in daily and monthly
horizons. At such sampling frequencies returns have negligible drift terms, i.e.
predictable component, as argued by Merton (1980), so that we will proceed
with µt equal to zero. We present various empirical processes that can be
used for monitoring purpose in a sequential analysis setting. In the context
of Risk Management Quality Control (RMQC) Andreou and Ghysels (2003)
distinguish three classes of empirical monitoring processes. The first class
they consider involves observed (possibly high frequency) return processes
and transformations of raw returns.3

Returns sampled at a daily frequency will be denoted rt. For the purpose
of estimating volatility we will also consider r(m),t−j/m, the jth discretely
observed time series of continuously compounded returns withm observations
per day (with the index “t-j/m” referring to intra-daily observations). Hence,
the unit interval for r(1),t is assumed to yield the daily return (with the
subscript “(1)” typically omitted so that rt will refer to daily returns).
The first monitoring process is daily squared returns. They are a measure

of volatility, albeit a very noisy one, as discussed in detail by Andersen et al.
(2003). A second functional transformation of returns is |rt|, a process exam-
ined in detail by Ding et al. (1993) and shown to have much higher persistence
and evidence of long memory than squared returns. It is often argued that

3The second and third class of monitoring processes not considered here involve respec-
tively returns standardized by some conditional variance filter and estimated parameter
monitoring processes. See Andreou and Ghysels (2003) for further details.
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in the presence of deviations from normality absolute values could be more
robust than squared values for conditional variance estimation (see e.g. Da-
vidian and Caroll (1987)). The idea that volatility can be precisely estimated
using high frequency data goes back at least to Merton (1980) and has been
the subject of recent research given the availability of high frequency finan-
cial data. The context is typically one of stochastic volatility diffusions with
a jump component: dru = µu + σudWu + Judλu, which discretize to equa-
tions such as (2.1). High frequency data volatility estimators computed asPm−1

j=0 [r(m),t−j/m]
2, are denoted Q̃(m)

[t−1,t] as it involves a discretization based on
m intradaily returns and pertains to the increments in the quadratic variation
of day t,

R t
t−1 r

2
udu. These processes have been studied extensively by Ander-

sen et al. (2003), Barndorff-Nielsen and Shephard (2002), among others. To
simplify notation we will refer to this third class of monitoring processes as
QVt since they refer to the daily increments in quadratic variation. It was
noted that absolute returns are more robust to outliers, therefore we also
consider as fourth monitoring process

Pm−1
j=0 |r(m),t−j/m|p, pertaining to the

increments in the pth power variation of day t. In empirical work one often
uses the so called realized power variation P̃

(m)
[t−1,t] where p = 1, i.e. the cu-

mulative sum of absolute intradaily returns is computed. We will henceforth
denote this process as PVt. A final monitoring process we will consider is
the industry standard Riskmetrics volatility estimator since financial market
practitioners make use of this measure. This daily volatility estimate will be
denoted RMt, and is an industry benchmark filter for volatility defined and
an exponentially weighted moving average of squared daily returns, r2t , given
by RMt = λRMt−1 + (1− λ)r2t where λ = 0.94 for daily data.
In the rest of the paper we will focus exclusively on the above monitoring

processes, but our coverage will at times be selective since the results often
show similarities across the different volatility filters.

2.2 Historical CUSUM tests for volatility models

First we consider the historical CUSUM tests as it allows us to derive the
local asymptotic behavior under the alternative of a break with various sam-
pling frequencies. Subsequently we address sequential CUSUM tests. The
interest in applying historical CUSUM tests to volatility has been motivated
by the observation of various authors, including Granger (1998), Lobato and
Savin (1998), Granger and Hyung (1999), Mikosch and Starica (2004), among
others, that the presence of breaks may explain the findings of long memory
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in volatility. Andreou and Ghysels (2002) use historical CUSUM-type pro-
cedures to test for structural breaks in volatility. The object of interest is
the volatility process σt, and we use the various data-driven volatility-related
processes described in the previous subsection to monitor for breaks. To do so
we first turn our attention to parametric model-based CUSUM tests, as they
provide the background for our data-driven analysis. We provide first a brief
discussion of the Kokoszka and Leipus (2000) where the process monitored
for homogeneity is |rt|δ, δ = 1, 2.
In order to test for breaks in an ARCH(∞) Kokoszka and Leipus (2000)

consider the following process:

UT (k) =

1/√T kX
j=1

Xj − k/(T
√
T )

TX
j=1

Xj

 (2.2)

where 0 < k < T , Xt = r2t . The returns process {rt} follows an ARCH(∞)
process, rt = ut

√
ht, ht = b0 +

P∞
j=1 bjr

2
t−j, a ≥ 0, bj ≥ 0, j = 1, 2, ... with

finite fourth moment and errors that can be non-Gaussian. The CUSUM
type estimator k̂ of a change point k∗ is defined as:

k̂ = min{k : |UT (k)| = max
1≤j≤T

|UT (j)|} (2.3)

The estimate k̂ is the point at which there is maximal sample evidence for a
break in the squared returns process. In the presence of a break it is proved
that k̂ is a consistent estimator of the unknown change-point k∗. It is more
interesting to state the results in terms of the estimator of τ ∗, bτ = k̂/T with
P{|τ ∗ − bτ | > ε} ≤ C/(δε2

√
T ), where C is some positive constant and δ

depends on the ARCH parameters and |τ ∗ − bτ | = Op(1/T ) (Kokoszka and
Leipus, 2000). Under the null hypothesis of no break:

UT (k)→D[0,1] σB(k) (2.4)

where B(k) is a Brownian bridge and σ2 =
P∞

j=−∞Cov(Xj ,X0). Conse-
quently, using an estimator σ̂, one can establish that under the null:

sup{|UT (k)|}/σ̂ →D[0,1] sup{B(k) : k�[0, 1]} (2.5)

which establishes a Kolmogorov-Smirnov type asymptotic distribution.
The computation of the Kokoszka and Leipus (2000) test is relatively

straightforward, with the exception of σ̂ appearing in (2.5). The authors

7



suggest to use a Heteroskedasticity and Autocorrelation Consistent (HAC)
estimator applied to the Xj process. Andreou and Ghysels (2002) experi-
mented with a number of estimators in addition to the procedure of Den
Haan and Levin (1997) who propose a HAC estimator without any kernel
estimation, which is called the Autoregression Heteroskedasticity and Auto-
correlation Consistent (ARHAC) estimator. This estimator has an advan-
tage over any estimator which involves kernel estimation in that the circular
problem associated with estimating the optimal bandwidth parameter can
be avoided. Related is the evidence that CUSUM tests for mean shifts when
implemented using HAC estimators may exhibit non-monotonic power (Vo-
gelsang, 1999) especially when the bandwidth parameter has been selected
by data-driven methods. A new estimator for the long-run variance that is
asymptotically not affected by the bandwidth parameter choice is presented
in Altissimo and Corradi (2003). Although the study of the non-monotonic
power for variance shifts is not considered in the present analysis it would be
interesting to compare the power of volatility CUSUM tests for the den Haan
and Levin (that does not involve kernel bandwidth data-driven selection) and
Altissimo and Corradi long-run variance estimators.
Since the process of interest Xt = |rt|δ for δ = 1, 2 represents an observed

measure of the variability of returns we may use high frequency volatility
filters e.g. Xt = QVt and PVt, as discussed in the previous section. Recall
that in the context of the SV and GARCH models {rt} represents a β -
mixing process and that the measurable functions of mixing processes are
mixing and of the same size (White, 1984, Theorem 3.49). Similarly the
high frequency returns process {r(m),t} generated by (2.1) is β-mixing and
the high frequency filters are Xt = G(r(m),t, .., r(m),t−τ ), for finite τ , are also
β -mixing. Hence QVt and PVt can also represent control processes for the
CUSUM test. Andreou and Ghysels (2002, 2004) present a comprehensive
analysis of the historical CUSUM process for alternative control processes
and change-points and show via simulations and empirical illustrations the
properties of this test.

8



3 Asymptotic Local Power with Varying Sam-
pling Frequencies

The usual local asymptotic analysis consists of constructing a sequence of lo-
cal alternatives which converge to the null hypothesis at a rate T−1/2. In this
section we study local asymptotic power under various sampling frequency
schemes. Such an analysis is to the best of our knowledge novel. Two is-
sues are important when studying asymptotic local power and the effect of
sampling frequency. First, changing sampling frequencies has an immediate
impact on the sample size, and therefore also on the distance of the local
alternative with respect to the null. If this would be the only effect the
predictions would be rather straightforward, since more data means local
alternatives closer to the null. The complicating factor is that the change
in sampling frequency alters the distance between alternatives and the null
due to the change in the data generating process under both the null and
alternative as one changes the sampling frequency. Take for instance the case
of conditional volatility models. Drost and Nijman (1993), Drost and Werker
(1996) and Meddahi and Renault (2004) studied the temporal aggregation
properties for weak GARCH and SV models. From their analysis we know
how the volatility dynamics and the tail behavior of innovations change as
the sampling frequency is changed.
Kokoszka and Leipus (2000) consider an ARCH(∞) process and their test

involves using squared or absolute returns. Following their setup and to facil-
itate the presentation of our results we start with high frequency returns, i. e.
the process of interest is Xt = |r(m),t|δ for δ = 1, 2. Furthermore, suppose the
parameter vector consists of b ≡ (b(m)j , j = 0, . . . ,∞) and corresponds to the
high frequency sampling ARCH representation. Allowing for change-points
in the parameters implies that the vector b(m),t ≡ (b(m),j,t, j = 0, . . . ,∞)
exhibits time variation. Recall that the return process

n
r(m),t

o
follows an

ARCH(∞) process, r(m),t = u(m),t
q
h(m),t, h(m),t = b(m),0+

P∞
j=1 b(m),jr

2
(m),t−j,

b(m),0 ≥ 0, b(m),j ≥ 0, j = 1, 2, with finite fourth moment and errors that can
be non-Gaussian. The generic null can be written as follows:

H0 : b(m),j,t = b(m),j ∀t = 1, . . . , T ∀j ≥ 1. (3.1)

The sequence of local alternatives assumes a single structural break at some
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point in the sample, namely:

b(m),j,t =

 b(m),j + β
(1,t)
(m),j/

√
mT t = 1, ..., k∗

b(m),j + β
(2,t)
(m),j/

√
mT t = k∗ + 1, ..., T

Note that the sampling frequency enters explicitly the sequence of local al-
ternatives. With m = 1 we obtain the usual case of local drift. With values
m > 1 we sample high frequency data resulting in a sample size mT and
local alternatives that move with the change of frequency. We first need to
list a number of regularity conditions, they are:

Assumption 3.1 The sequence of local alternatives satisfies for each m:

• β
(i,t)
(m),j → β

(i)
(m),j for i = 1, 2, ∀ j as T → ∞.

• β∗(m),j := maxi=1,2 supT>1 |β(i,t)(m),j| <∞
• Let κ(m) be the kurtosis of the ARCH(∞) process innovations, then:

(κ(m))
1/4

∞X
j=1

(b(m),j + β∗(m),j) < 1

For the purpose of presentation we compare sampling frequency m = 1
with a finer sampling frequencies m > 1 and study the local power at sample
points common to both frequencies (i.e. sample points determined bym = 1).
Recall that in order to test for breaks in an ARCH(∞) Kokoszka and Leipus
(2000) consider the following process:

UT (k) =

1/√T kX
j=1

Xj − k/(T
√
T )

TX
j=1

Xj

 (3.2)

where 0 < k < T. We are interested in evaluating the local asymptotic
power for various sampling frequencies m. The following result is shown in
the Appendix:

Proposition 3.1 Under the sequence of local alternatives (3) satisfying as-
sumption 3.1:

UmT (k)→D[0,1] σB(k) +G(m)(k) (3.3)
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for k = 1, 2, . . . , T, B(k) is a Brownian bridge and σ2 =
P∞

j=−∞Cov(Xj, X0)
and G(m)(k) is as follows:

G(m)(k) := (k ∧ k∗ − kk∗)∆(m) (3.4)

Moreover the relative local asymptotic power is:

∆(m)/∆(1) = κ(m)[(β
(1)
(m),0 − β

(2)
(m),0)(1− κ(m)B(m)) + κ(m)b(m),0 ×

∞X
j=1

(β
(1)
(m),j − β

(2)
(m),j)](1− κ(1)B(1))

2/κ(1)[(β
(1)
(1),0 − β

(2)
(1),0)(1− κ(1)B(1))

+κ(1)b(1),0
∞X
j=1

(β
(1)
(1),j − β

(2)
(1),j)](1− κ(m)B(m))

2 (3.5)

where B(m) =
P∞

j=1 b(m),j .

It will be helpful to simplify the expression by looking at a special case of
a ARCH(1) model with a break in the slope parameter and a fixed intercept
across the two regimes. In particular, the following result holds:

Corollary 3.1 Assume the ARCH(1) model

h(m),t = b(m),0 + b(m),1r
2
(m),t−j/m

and no break in the intercept, then

∆(m)/∆(1) =
κ2(m)(1− κ(1)b

m
(m),1)

2

(1− κ(m)b((m),1))2
√
mbm−1(m),1κ

2
(1)

(3.6)

where

κ(1) = 3 +
κ(m) − 3

m
+ 6(κ(m) − 1)

[m(1− b(m),1) + bm(m),1]b(m),1

m2(1− b(m),1)2
(3.7)

and

b
(T )
(1),j,t =

 bm(m),j + [
√
mbm−1(m),1]β

(1,t)
(m),j/

√
T + op(

√
T ) t = 1, ..., k∗

bm(m),j + [
√
mbm−1(m),1]β

(2,t)
(m),j/

√
T + op(

√
T ) t = k∗ + 1, ..., T
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The proof appears in the Appendix. Note that the ratio in (3.6) only de-
pends on two parameters, namely the ARCH persistence parameter b(m),1 and
the tail behavior of the ARCH process expressed by κ(m). The latter two para-
meters determine the relative local power trade-off.. When ∆(m)/∆(1) equals
one then the test exhibits equal local asymptotic power at both sampling
frequencies. In such a case the sample size reduction is exactly compensated
by persistence/tail behavior trade-off.. In all other circumstances the aggre-
gation implies a decrease in local asymptotic power, when ∆(m)/∆(1) > 1 or
an increase when the reverse is true.
Solutions to the system of equations (3.6) and (3.7) are presented in Ta-

ble 1. The different choices of m represent the situations when sampling
frequency is doubled m = 2 (e. g. sampling returns mid and end of day),
or sampling involves weekly or monthly aggregation, m = 5 and 22, respec-
tively. Two alternative approaches are adopted for solving the system. First
we assume that the local asymptotic power is the same irrespective of the
sampling frequency ∆(m) = ∆(1) which yields solutions for κ(1) and κ(m) re-
ported in the first two columns (for each m) in Table 1. The results show
a clear trade-off between the kurtosis coefficients κ(m) and the persistence
coefficient b1 for the m = 2, 5, 22. It is worth noting that the relationship
between κ(m) and κ(1) is not monotone. Second we assume a daily kurtosis
coefficient κ(1) derived from the empirical evidence of Normality κ(1) = 3 and
Student’s t(7) (Bollerslev, 1990) κ(1) = 5 (given that the unconditional t kur-
tosis is κ = 3+ 6/(ν − 4)) and first solve for κ(m) in (3.7) and then for (3.6).
Most solutions yield that ∆(m)/∆(1) > 1 which suggest that asymptotically
the local power of the test will be higher for high frequency processes. This
is result appears stronger for the ratio at m = 22 as opposed to m = 2.

4 Sequential CUSUMTest for VolatilityMod-
els

Real time monitoring with CUSUM type statistics based on parameter esti-
mates or residuals of static and dynamic linear regression models for economic
time series is addressed, for instance, in Chu et al. (1996) and Leisch et al.
(2000) and Zeileis et al. (2004). We consider nonlinear time series models
proposed for financial asset returns, namely ARCH type processes and our
analysis is not strictly parametric in that it can be applied to other strongly
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dependent processes that satisfy the general conditions outlined below. More-
over, we do not consider sequential change-point tests for parameter estimates
or residuals of such time series models. Instead our monitoring procedures
focus on the observed process and its transformations that are driven by a
dynamic volatility model, as well as high frequency volatility estimators that
exhibit optimal properties for a general class of GARCH and SV processes.
It is important to note at the outset that unlike the residuals of dynamic
linear regression models, the residuals of GARCH models do not satisfy the
Functional Central Limit Theorem (FCLT) with a Wiener process limit and
therefore their boundary crossing probabilities cannot be used.
For the location-scale nonlinear time series model in (2.1) we focus on

the following general conditional dynamic scale model. A random sequence
{Xt, t ∈ T} satisfies the following equations if there exists a sequence of i.i.d.
non-negative random variables {ξt, t ∈ T} such that:

Xt = σ(X0
t−1, bj)ξt, t ≥ 1 (4.1)

σ(X0
t−1, bj) = b0 +

X∞
j=1

bjXt−j (4.2)

where b0 ≥ 0, bj ≥ 0, j = 1, 2, ... The model (4.1)-(4.2) in Robinson (1991) is
general enough to include the following ARCH type models: The ARCH(∞)
(Engle (1982)) where

r2t = σ2tu
2
t , σ

2
t = b0 +

X∞
j=1

bjr
2
t−j (4.3)

and the Power-ARCH(∞) (Taylor (1986))

|rt|δ = σδt |ut|δ, σδt = b0 +
X∞

j=1
bj|rt−j|δ (4.4)

where δ > 0 and ut are i.i.d. random variables with zero mean. Moreover
the GARCH(p, q) model

r2t = σ2tu
2
t , σ

2
t = α0 +

Xp

j=1
ajσ

2
t−j +

Xq

j=1
djr

2
t−j (4.5)

can be rewritten in the form of the ARCH(∞) with positive exponentially
decaying bj under some additional constraints on the coefficients aj, dj (Nel-
son and Cao (1992)). For instance, the GARCH(1,1) model can be rewritten
in the form of (4.1)-(4.2) with σ(X0

t−1, bj) = σ2t , ξt = u2t , Xt = r2t and the
coefficients b0 = α0(1 + α1 + α21 + ...) = α0/(1− α1), bj = aj−11 d1.
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The following parameter and moment condition:

E(ξ20) <∞ and E(ξ20)
X∞

j=1
bj < 1 (4.6)

for the general specification in (4.1)-(4.2) implies that:
(a) {Xt} is strictly and weakly stationary.
(b) {Xt} exhibits short memory in the sense that covariance function

is absolutely summable,
P∞

t=−∞ cov(Xt,X0) < ∞ (Kokoszka and Leipus
(2000)).
(c) {Xt} satisfies the Functional Central Limit Theorem (FCLT). Giraitis

et al. (2000) prove that as N →∞
SN(t) := N−1/2X[Nt]

j=1
(Xj −E(Xj))→ σW (t), 0 ≤ t ≤ 1 (4.7)

where σ2 =
P∞

t=−∞ cov(Xt, X0) < ∞ and {W (t), 0 ≤ t ≤ 1} is a standard
Wiener process with zero mean and covariance E(W (t)W (s)) = min(t, s).
It is interesting to note that the CLT holds without having to impose any
other memory restrictions onXt such as mixing conditions. The reason being
that the condition in (4.6) implies not only (a) weak stationarity but also
(b) short memory. Kokoszka and Leipus (2000) show that if, in addition, bj
decay exponentially then so does the covariance function. Finally, the FCLT
for Xt holds without the Gaussianity assumption.
The ARCH type models (4.3)-(4.5) can be considered in the context of the

general specification (4.1)-(4.2) for which ξt = f(ut) for some non-negative
function f . Therefore condition (4.6) can lead to corresponding conditions
for the above ARCH models. For instance, for the ARCH(∞) model ξt = u2t
and condition (4.6) becomes E(u40) <∞ and E(u40)

P∞
j=1 bj < 1.

4

The FCLT result for Xt in (4.1)-(4.2) or equivalently |rt|δ, δ = 1, 2 in
(4.3)-(4.5) provides the conditions for deriving the sequential CUSUM tests
for dynamic scale models. In contrast to linear dynamic regression models,
the residuals of GARCH models do not satisfy the FCLT. Horvath et al.
(2001) show that the partial sum of the ARCH(∞) residuals are asymptot-
ically Gaussian, yet involve a covariance structure that is a function of the
conditional variance parameters. Therefore the CUSUM test can be applied
sequentially to the observed strongly dependent returns and their transfor-
mations i.e. Xt = |rt|δ, δ = 1, 2 given that the FCLT conditions (4.6) are

4Davidson (2000) shows that the FCLT holds for GARCH(p, q) processes based on
the sufficient assumptions that ut is i.i.d. with finite fourth moment in the near-epoch
dependence framework.
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satisfied. Consequently, boundary crossing probabilities can be computed
for the CUSUM test based on Xt as opposed to the ARCH type residuals.
Monitoring Xt is equivalent to sequentially testing the stability of dynamic
risk measures. Such on-line tests can be considered useful for providing an
early warning for a disruption in financial risk which can be considered useful
for financial crises.
Let us now turn to the derivation of the sequential CUSUM test. Consider

a special case of the process Xt in (4.1)-(4.2) as a simple way of specifying
the sequential monitoring scheme. The returns process r(m),t sampled at
frequency 1/m follows a GARCH(1,1) model:

r(m),i,t = σ(m),i,t · u(m),t
σ2(m),i,t = b0,i,(m) + b1,i,(m)r

2
(m),t−1/m + γi,(m)σ

2
(m),i,t−1/m, t = 1, ...n, n+ 1, ...

(4.8)
where b0,i,(m) ≥ 0, b1,i,(m), γi,(m) > 0 and u(m),t is an i.i.d. zero mean process.
Condition (4.6) is applied to u(m),t and the FCLT holds for r2(m),t. The sub-
script i allows for the possibility of a structural change in the volatility
process, σ2(m),i,t. Consider the historical sample t = 1, ..., n where the model
is homogeneous such that there are no structural changes i.e. b0,i,(m) = b0,(m),
b1,i,(m) = b1,(m), γi,(m) = γ(m). The objective is to use this historical homo-
geneous sample to estimate the daily volatility given by σ2(1),i,t where the
subscript (1) refers to the volatility for 1 day. As mentioned above and for
uniform notation we will drop the subscript “one” that refers to the sampling
frequency when we refer to the daily frequency such that the daily volatility
is given by σ2i,t. It is important to emphasize that we neither estimate the
GARCH parameters nor use temporal aggregation of (4.8) and therefore we
do not entertain in weak GARCH specifications. Instead we may deal with a
strong GARCH and temporally aggregate the high frequency returns process
r(m),i,t via intraday sums to obtain data-driven estimators for daily volatility.
High frequency volatility estimators are employed in order to filter σ2i,t

and we choose to focus on the Power and Quadratic Variations, PVt and
QVt. Other data-driven estimators can also be used. The historical sample
t = 1, ..., n is assumed to be homogeneous such that σ2t is estimated by {PVt}n1
and {QVt}n1 . The objective is to monitor sequentially new data from time
n + 1 onwards to test whether any change-point occurs in σ2i,t and thereby
ri,t during the monitoring period. Hence the sequential test has the following
null hypothesis σ(m),i,t = σ(m),t for i > n + 1 against the alternative that at
some point in the future the volatility process will change to σ(m),i,t at some
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point τ > n.5 Since a break in the unobserved σ(m),i,t implies a change in the
observed returns process, r(m),i,t, the following two classes of control processes
are considered for sequential testing: (i) The high frequency daily volatility
filters {PVt}n+1, {QVt}n+1 and (ii) the observed daily returns transforma-
tions of {|rt|}n+1 and {r2t }n+1. It is worth emphasizing that monitoring with
these processes is valid for more general dynamic conditional variance speci-
fications. The alternative approach of estimated parameter-based sequential
tests for a strict semiparametric GARCH model is pursued in Berkes et al.
(2004) based on Generalized Likelihood Ratio (GLR) tests.
The sequential CUSUM test that involves the volatility control processes

Xt. The sequential CUSUM test that involves the above control processes
can be derived for instance for the daily squared returns process of (4.8). It
follows from the FCLT that the partial sum:

(T − n)−1/2σ−1
XτT

j=n+1
(r2j − µ)→W (τ) (4.9)

converges to the Wiener process W . Note that µ = E(r2j ) and refers to
the mean over the respective partial sum. The derivation of the sequential
CUSUM test can be found, for instance, in Chu et al. (1996). Take T = λn,
then (4.9) is

n−1/2(λ− 1)−1/2σ−1XτT

j=n+1
(r2j − ν)→W (τ). (4.10)

The CUSUM process for monitoring is defined by:

Qn
T = n−1/2σ−1

(λ− 1)−1/2 τTX
j=n+1

(r2j − ν)−
nX

j=1

(r2j − ν)

→ B(τ) (4.11)

if n→∞ and λ→ 2 or t/n→ 1, where B(τ) is a Brownian bridge:

Qn
T = n−1/2σ−1

 τTX
j=n+1

(r2j − ν)−
nX

j=1

(r2j − ν)

→ B(τ) (4.12)

The variance σ2 =
P∞

j=−∞ cov(r2j , r
2
0) and a consistent estimator for the long-

run variance, e.g. a Heteroskedastic Autocorrelation Consistent (HAC) esti-
mator for r2j . As mentioned in section 2.2 the ARHAC estimator is used for
σ.

5We assume that the error process u(m),t is homogeneous and does not represent an-
other possible source of change in σ(m),i,t. Such change-point alternatives are considered
elsewhere, see for instance Andreou and Ghysels (2003).
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For the sequential CUSUM statistic the theory of the drifted Wiener
process provides a way to find the appropriate boundaries. Linear and par-
abolic boundary functions can be considered that grow with the sample size
at approximately rates

√
t and

√
log t.

Certain boundary functions for the Brownian bridge are derived using
the Law of Iterated Logarithm (LIL). For instance, Khintchine’s LIL shows
that the boundary b1(t) =

√
2t log log t standardizes the supremum of the

Brownian motion. This LIL extends to partial sums of dependent processes
(Altissimo and Corradi, 2003, Segen and Sanderson, 1980) and is motivated
by the fastest detection of change. However, Altissimo and Corradi (2003)
and Chu et al. (1996) show via simulations that in finite samples the prob-
ability of type one error is erratic and high for b1(t). Chu et al. (1996) also
extend the i.i.d. results of Robbins and Seigmund (1970) to monitoring pro-
cedures where the partial sum of the residuals and recursive estimates in
linear time series obey the FCLT, under milder restrictions on general class
of boundary functions (see Theorem 3.4, p. 1051 and Theorem A, Appendix
A, p. 1062). The following boundary is derived analytically for the sequential
CUSUM-type and Fluctuation tests:

b2(t) =

s
t(t− 1)

·
α2 + ln

µ
t

t− 1
¶¸

(4.13)

where α2 = 7.78 and 6.25 gives the 5% and 10% monitoring boundaries,
respectively.
Revesz (1982) shows that the asymptotic growth rate of the supremum

of the increments of the Wiener process is
√
ln t almost surely. Leisch et al.

(2000) specify the boundary b3(t) = λ
q
2 log+ t where log+ t = 1 if t ≤ e and

log+ t = log t if t > e, for which the critical values λ for the increments of a
Brownian bridge are obtained via simulations in the context of Generalized
Fluctuation tests (see for instance, Table 1, p. 846, Leisch et al., 2000). Sim-
ilarly, Altissimo and Corradi (2003) suggest λ

q
2 ln(ln t) based on the exact

distribution of the supremum of a Brownian bridge, where λ is derived via
simulation to yield the adjusted bounds (reported in Table 2, Altissimo and
Corradi, 2003). Leisch et al. (2000) show that b3(t) leads to tests that are
sensitive to change-points that occur early or late in the monitoring period
as opposed to b2(t). Zeileis et al. (2004) argue that simulation evidence for
λ
q
log+ t suggests most of the size of the test is used at the point where the

boundary changes from being constant to growing and this makes it inap-
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propriate for a process with growing variance such as the Brownian bridge.
Hence they suggest a simple boundary that has the advantage of not using up
the size of the corresponding test at the beginning of the monitoring period
while at the same time growing in a linear manner given by

b4(t) = λt (4.14)

where λ is the simulated critical value for alternative monitoring horizons
(shown in Table III in Zeileis et al., 2004). In the remainder of the analysis
we consider b2(t) and b4(t) and note that these linear boundaries cross at
some point during the monitoring period. For instance, if the historical
sample is n then b2(t) and b4(t) cross at 2n for a 10% significance level. After
the crossing point the slope of b4(t) is lower than that of b2(t) which implies
that it is more likely to capture small breaks late in the sample. In contrast,
before the crossing point b4(t) rests higher then b2(t) which means that the
probability to detect an early break is lower for b4(t) relative to b2(t).
The choice of the boundary in sequential testing is traditionally followed

based on the minimization of the average detection delay of the Average
Run Length (ARL). Other criteria or the combination of boundaries or the
derivation of optimal tests given a boundary are still open questions in the
literature.

5 Simulation evidence for sequential CUSUM

In this section we examine the properties of the sequential CUSUM change-
point test for GARCH processes. The analysis has the following objectives:
(i) The finite sample properties of the monitoring procedure are examined
for alternative boundaries and volatility filters and daily returns processes.
(ii) The effects of heavy tails and persistence in a GARCH on the CUSUM
test are examined in conjunction with the local power results in a sequential
framework. The results in this section extend existing simulation evidence
in the following respects: First, results are presented for the finite sample
behavior of the on-line CUSUM test for strongly dependent processes as op-
posed to the independent models presented in Chu et al. (1996) and Leisch et
al. (2000) and linear time series models in Zeileis et al. (2004). Second, sup-
portive evidence is provided for the CUSUM test for monitoring directly the
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observed returns process and its transformations as well as high frequency
volatility filters instead of adopting a more traditional approach of monitor-
ing the parameter estimates of a volatility model or its residuals. Third, it
introduces another important variable in sequential testing namely the sam-
pling frequency and shows how high frequency volatility filters can improve
the detection delay of the CUSUM test for GARCH models to rates that are
comparable to NIID setups (of Chu et al., 1996 and Leisch et al., 2000).

5.1 The Monte Carlo design

The simulated returns process r(m),t sampled at frequency 1/m is generated
by a GARCH(1,1) model:

r(m),t = µ(m),t + σ(m),t · u(m),t
σ2(m),t = b(m),0 + b(m),1r

2
(m),t−1/m + γ(m)σ

2
(m),t−1/m, t = 1, ..., T.

(5.1)

where u(m),t is i.i.d. N(0, 1) and σ2(m),t is the volatility process. The Data
Generating Processes (DGP) at the 30-minute frequency are: (i) a low per-
sistent GARCH where b(m),0 = 0.038, b(m),1 = 0.056, γ(m) = 0.933 and (ii)
a high persistent GARCH b(m),0 = 0.034, b(m),1 = 0.035, γ(m) = 0.96, both
of which can be considered representative processes for financial asset re-
turns. Note that at the 30-minute frequency m = 48 for the 24-hour traded
markets. Using the 30-minutes returns process in (5.1) we temporally aggre-
gate them to the daily frequency without imposing the assumption that at
those frequencies the data are driven by a GARCH process with i.i.d. errors.
The reason being that we do not wish to impose the strong GARCH process
assumption (Drost and Nijman, 1993) at all frequencies since these do not
temporally aggregate.
The control processes refer to two classes: (i) the observed daily returns

process and its square and absolute transformations, r2t and |rt| and (ii) high
frequency volatility estimators, namely QVt and PVt. Barndorff-Nielsen and
Shephard (2004) show that the asymptotic properties of QV (m)

t and PV
(m)
t

are valid even if m = 48.
Under the null, the process in (5.1) is driven by a homogeneous process

without breaks in the conditional variance.6 We compute the empirical cross-
ing probabilities under the null for historical sample sizes n = 75, 125, 250, 500

6It is assumed that µ(m),t = 0 for simplicity. Consequently, we focus on scale change
point alternatives that are more challenging to detect as opposed to mean shifts.
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days. The choice of the historical sample takes into account various financial
applications e.g. one or two years of daily data are recommended by regu-
lators for estimating risk management measures. Smaller samples can also
be considered when there is an end or beginning of sample instability. Such
small historical samples are feasible for the control processes considered in
the analysis (i.e. daily returns transformations and high frequency volatility
filters) but for the estimation of GARCH type models and for monitoring its
parameters larger samples are preferred. The monitoring horizon q is set to
q = 2n, 4n, 6n, 8n, 10n days. According to the theory if n is large enough
and q is extended to infinity the crossing probabilities should approach the
nominal size for the given boundaries b2(t) and b4(t). Although it is not
possible to set q equal to infinity in simulations, the objective is to examine
whether there are any size distortions for the above test with various finite
values of q.
Under the alternative hypothesis the returns process is assumed to ex-

hibit a change-point in the conditional variance, σ(m),t, which can be thought
as permanent regime shifts in volatility at an out-of- sample point τ = πn
(where π = 1.1 and 3 represent respectively beginning- and end-of-sample
instabilities) and q = 10n. Such breaks may be due to an increase in
the intercept, b(m),0, or a shift in the volatility persistence, b(m),1 + γ(m)
or both. For both low and high persistent GARCH processes under the
change-point regime the constant shifts from b(m),0 to 3b(m),0 and the dynam-
ics from b(m),1 = 0.94 to b(m),1 = 0.91 in the high persistence GARCH and
b(m),1 = 0.933 to b(m),1 = 0.91 in the low persistence GARCH. Under the
alternative hypothesis it is useful to examine whether the test is consistent
i.e. it eventually signals the break, yet it is even more informative to show
that the on-line CUSUM, given a boundary, minimizes the detection delay
which is defined at the Average Run Length (ARL). Similarly, the empirical
distribution of the first hitting time gives a more complete picture of the
power properties of the test. All simulation results are based on 1000 trials.

5.2 Simulation results

The simulation results relating to the size of the sequential CUSUM in (4.12)
can be found in Tables 2 and 3 for the two classes of control processes, the
daily returns transformations, r2t and |rt| and the high frequency volatility
estimators, QVt and PVt. The size properties are examined for both low
and high persistent GARCH models and for various historical samples, n,
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and monitoring horizons, q, as defined above. We examine the two linear
boundaries: The Chu et al. b2(t) boundary in equation (4.13) and the Zeileis
et al. boundary b4(t) in equation (4.14), at the 10% significance level.
Table 2 shows that for both low and high persistence GARCH processes

and for the two boundaries considered and for the historical sample, n, the
size of the on-line test for r2t and |rt| behaves as follows:

• Across boundaries the size of the test improves with large n = 250, 500
and q > 6n. Size distortions are higher for b4(t) than for b2(t). The
Chu et al. boundary has empirical size close to the nominal even for
small n ≥ 125 and q > 2n for |rt| in the context of a low persistence
GARCH. For high-persistence GARCH models the CUSUM test yields
size distortions almost twice the nominal size and is not recommended
for small historical samples of n = 75.

• Across control processes the on-line CUSUM has relatively more size
distortions for the r2t than for the |rt| process (with its size being around
5% larger for n = 250, 500).

• For the low persistence GARCH process and b2(t) the |rt| yield empir-
ical size very close to the nominal for different choices of n and q.

Table 3 also presents the size of the sequential CUSUM test for the second
class of monitoring processes, the high-frequency volatility filters, QVt and
PVt, that behaves as follows:

• For the PVt the size of the sequential CUSUM improves for n ≥ 250
and q ≥ 4n and either boundary. For n = 500 and b2(t) the size is close
to the nominal one.

• Across control processes the test has relatively more size distortions for
the QVt as opposed to the PVt process.

Comparing the simulated size of the sequential CUSUM for the two classes
of monitoring processes we find that the test has less size distortions for the
high-frequency volatility filters as opposed to the daily returns transforma-
tions. This can be explained by the fact that high-frequency volatility filters
are more accurate and smooth estimates of volatility as opposed to the ab-
solute and squared returns. For alternative boundaries, GARCH persistence
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effects, n and q, the monitoring process with size close to the nominal one is
|rt| followed by PVt. For the same parameters the size of r2t and QVt is on
average 1.5 times larger than the nominal one.
We now turn to assess the power of the sequential CUSUM test by eval-

uating the empirical distribution of the first hitting time. These simulation
results are also compared across different boundaries, change-point locations
and control processes as follows:

Properties of ARLs

The detection timing or delay is measured by the Average Run Length
(ARL). The size and type of break affects the ARL in the following way.
Although in the simulation setup both breaks in b0,(m) and b1,(m) lead to the
same magnitude of change of the unconditional variance (b0,(m)/(1− b1,(m))),
the size of change in the constant is of course larger than that of the dynamics
of the GARCH. More importantly the break in the constant leads to a level
shift whereas a break in the dynamics leads to a trend or slope change which
may be relatively more difficult to detect. Hence the ARL is lower when
there is a break in the constant as opposed to the dynamics of a GARCH.
The simulation results also provide evidence that this result is valid for both
linear boundaries, classes of control processes, locations of break and GARCH
level of persistence. More specifically we find that when there is a shift in the
constant the ARL is half the size of the ARL obtained when there is break
in the dynamics of a GARCH. Within the same setup (of control processes,
linear boundaries and change-points) the ARLs are small and comparable to
the ARLs for the NIID case reported in Chu et al. (Table II). For instance,
Table 4 shows that monitoring the PVt andQVt with the Chu et al. boundary
when there is a break at τ = 1.1n in the constant of the GARCH leads to an
average ARL of 24 days across n. In the same setup when there is a break in
the dynamics of the GARCH the choice of monitoring the PVt yields a lower
average ARL of 44 days as opposed to 90 days when monitoring the QVt.

Dispersion of hitting times

The standard deviation of the first hitting time decreases significantly
for n ≥ 75 for an early change point at τ = 1.1n in the constant of a low
persistence GARCH for the QVt and PVt and for both linear boundaries, as
shown in Tables 4 and 7, respectively. The same result holds for the r2t and |rt|
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when n ≥ 250 as shown in Tables 8 and 9. A lower standard deviation implies
a lower probability of false alarm. The larger historical sample n ≥ 250
is required to reduce the standard deviation when the underlying GARCH
exhibits higher persistence, as shown in Table 5. However, when there is
a break in the dynamics of the GARCH the standard deviation of the first
hitting time increases dramatically (as opposed to when there is break in the
constant) for all processes except for the PVt and |rt| when τ = 1.1n. Their
standard deviation appears stable when n = 500 for an early change-point
and for alternative boundaries, persistence effects and types of change-point.
This result suggests that the precision of the on-line CUSUM depends on
how accurately we estimate the conditional variance in a historical sample.
The efficiency of high-frequency volatility filters PVt andQVt is due to the

fact that they exploit the intraday information of returns and have a lower
measurement error as opposed to the daily returns processes |rt| and r2t .
On the other hand, the standard deviation appears to be high and does not
improve with n when τ = 3n for both control processes and linear boundaries
and GARCH models.

Choice of volatility filter

The above points also imply that one important factor for the power
properties of the sequential CUSUM is the choice of monitoring or control
process. The historical CUSUM test in Kokoskza and Leipus (2000) is derived
for the daily returns transformations r2t and |rt| from the GARCH model.
The simulation results for the sequential CUSUM test for the daily returns
processes are shown in Tables 8 and 9 for the Chu et al. and Zeileis et al.
boundaries, respectively. The overall results suggest that across n the average
ALR is very similar for r2t and |rt| for the Chu et al. boundary equal to 50
and 53 days, respectively, when there is a break in the constant at τ = 1.1n.
For the same setup if we were to consider the industry benchmark for

volatility i.e. the RiskMetrics (RMt) in Table 6 we find that the average
ARL increases to 70 days. Even for n = 500 the RMt yields a detection
delay of 59 days as opposed to 50 and 43 days for |rt| and r2t , respectively,
when there is a break in the constant at τ = 1.1n.
The monitoring processes of high frequency volatility filters lead to the

relatively lowest ARLs. For the PVt and QVt the average ARL is 24 days as
shown in Table 4. Similarly they yield the lowest standard deviation of the
empirical distribution of the first hitting time among all the control processes
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considered. The average standard deviation for b2(t) and a constant change-
point at τ = 1.1n is 23, 32, 74, 115, 139 days the for PVt, QVt, |rt|, r2t , RMt,
respectively.

Choice of Boundaries

One of the most important factors of optimality in sequential testing is
the choice of boundaries. In this context we consider the traditional measure
of optimality which is the earliest detection timing among two boundaries,
b2(t) and b4(t). For the early change point at τ = 1.1n and all n the average
ALR is very similar for r2t and |rt| for the two linear boundaries: The ARL
is equal to 50 and 53 days, respectively, for b2(t) and equal to 56 and 51
days, respectively, for b4(t) when there is a break in the constant. For the
same change-point the average ARL for PVt and QVt is 24 days for b2(t) and
32 and 27 days, respectively, for b4(t). These boundaries are also evaluated
with respect to the location of the break. The reported simulation results
in Chu et al. their sequential test is less effective when τ = 1.2n. This is
further evaluated by Leisch et al. for τ = 3n who propose the log boundary
b3(t) that has better properties for end-of-sample instability. Our simulation
analysis verifies that when τ = 3n the Chu et al. boundary yields a much
higher ARL than the Zeileis et al. boundary which has a lower slope as the
monitoring sample increases. For instance, when there is a break in the
constant at τ = 3n the average ARL across n is for the PVt and QVt are 103
and 77 days, respectively, for b2(t) and 64 and 52 days, respectively, for b4(t).
Similar results extend to the case of monitoring |rt| and r2t for which the
average ARL is at τ = 3n equal to 202 and 156 days, respectively, for b2(t)
and 129 and 119, respectively, for b4(t). Hence, the Zeileis et al. boundary
yields the lowest ARL when used to monitor PVt and QVt for breaks that
occur late in the sample. The symmetry of the empirical distribution of the
stopping time is also evaluated for the alternative boundaries. For an early
change-point the Chu et al. boundary has a symmetric distribution for the
PVt and QVt for n ≥ 125 and for the r2t and |rt| for n ≥ 250. The simulated
distribution of the first hitting time appears to be relatively less symmetric
for the Zeileis et al. boundary.

5.3 The effects of sampling frequency

The local power analysis for the historical CUSUM test in section 3 shows
that the sampling frequency yields some interesting power considerations for
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the change-point analysis. Although it is less obvious how to extend these
analytical results in a sequential framework given the existence of a non-
constant boundary, we resort to the following simulation analysis in order
to obtain some indication of the effects of sampling frequency on the on-line
CUSUM. Assuming that locally the boundary is approximately constant we
expect from the local power results in section 3 that if we double the sampling
frequency of squared returns i.e. sample and thereby monitor twice as often
then the power of the test will improve under the assumption of a low per-
sistence ARCH with Normal tails. On the other hand, if the low persistence
ARCH exhibits heavy tails then there is a trade-off between sampling fre-
quency and power such that in the presence of a heavy tailed error GARCH
the power deteriorates with sampling and monitoring twice more frequently.
In order to examine these effects we generate the low persistence GARCH
process with Normal and Student’s t(6) errors and examine the ARL for daily
and half-daily control processes. If the historical local power results trans-
fer to the sequential framework then we would expect that the ARL would
improve when monitoring half-daily squared returns of a Normal GARCH
and when monitoring daily squared returns of a Student’s t GARCH. Note
that the historical local power analysis in section 3 is derived for the squared
returns process but may also extend the simulation analysis to the absolute
returns transformation.
The simulation results in Tables 10 and 11 present significant evidence

that support the historical local power analytical results in the sequential
framework. Table 10 presents the simulated size of the absolute and squared
returns processes for half-daily monitoring when the 30-minute GARCH
process is driven either by Normal or t(6) errors. Compared with the daily
monitoring empirical size results in Table 2 we conclude that there are no
size distortions from doubling the frequency. Table 11 panel (A) presents
the ARLs in days for daily and half-daily monitoring when there is a change
point in the constant of a low persistence GARCH process. There is sup-
portive simulation evidence for the following propositions: (i) In the context
of a low persistence Normal GARCH sampling and monitoring half-daily
improves the ARLs of the CUSUM test for both control processes, r2t and
|rt| and both types of linear boundaries, b2(t) and b4(t). Under the Normal
GARCH process, the average ARL for the daily monitoring is 51 and 52
days for the daily r2t , for the Chu et al. and Zeileis et al. boundaries. These
ARLs improve when the sampling frequency doubles: The average ARL for
the half-daily monitoring is 35 and 40 days for the half-day r2t , for b2(t) and
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b4(t), respectively. Similar results are obtained for the |rt| process. How-
ever under the Student’s t GARCH process, we obtain the opposite picture,
namely the average ARL is 52 and 106 days for daily and half-daily r2t mon-
itoring, respectively, under b2(t). Similar results obtain for |rt| and the other
boundary. Moreover, these results extend to the high-frequency volatility fil-
ters for which we find that there is a strong trade-off between heavy tails and
sampling frequency: For a t(6) GARCH process the CUSUM test with either
linear boundary, the daily ARLs for both daily PVt and QVt are approxi-
mately half the size of the ARLs for the half-daily high-frequency volatility
control processes. Refer, for instance, to the second panel in Table 11.

6 Prediction-based formulas for earlier de-
tection

The purpose of this section is to present a prediction-based formula that
enhances the detection of change points. One of the main challenges of
change-point analysis is the reduction of the delay time in detecting breaks.
In the previous section we showed that in a sequential framework the CUSUM
test signals the instability of the constant in a GARCH process with an ARL
that is comparable to the ARLs of independent processes. However, the
detection of a small break in the dynamics of a GARCH is more difficult
partly due to the nonlinear time series structure of the process. The challenge
remains in finding a method or a test that minimizes the detection delay and
can be used in the context of prediction analysis. Here we present what is
to the best to our knowledge a novel approach in reducing the ARL via a
new formula which provides an estimate of the probability that a CUSUM
statistic will cross a given boundary over a particular horizon. The formula
yielding the probability forecast is based on the extrapolation of the current
level of the CUSUM statistic over a particular horizon and exploits the local
behavior of a Brownian bridge process. We find that for certain processes
this sequential prediction-based method signals the change point earlier than
the traditional sequential monitoring statistic. Moreover it also seems to
avoid false alarms as under the null the statistic behaves well. We present
the formula in a first subsection, followed by simulation evidence reported in
a second subsection.
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6.1 Prediction-based formula

This section presents a simple simulation design for the sequential prediction-
based of say qs days ahead which yields the probability that a statistic will ex-
ceed a given boundary. The statistic relies on a scaled version of the CUSUM
vis-á-vis a future boundary threshold. The approach is different from conven-
tional sequential analysis which relies on the fact that CUSUM statistics have
asymptotic distributions that are described by Brownian bridge processes. It
is the properties of the Brownian bridge that determine the boundaries in
sequential analysis, as discussed in detail in the previous sections. We could
view this conventional approach as a global one, in contrast to a local analysis
which is pursued here.
A Brownian bridge process is determined by the end-points of the path.

In conventional sequential analysis the end-point is computed under the null
using a pre-monitoring sample consistent estimator. Here, we do not use a
long run consistent end-point, but rather a local extrapolation of the process
as the end-point of a Brownian bridge process that should approximate the
immediate horizon of the CUSUM statistic. The immediate horizon is typi-
cally 1, 5 or 10 days, namely the period relevant for most risk management
purposes. The idea of the local approximation is to take the current level of
the CUSUM statistic and extrapolate its behavior over the short horizon. In
particular, suppose that the CUSUM statistic is Qn

q0
at a given time point q0

greater than the historical sample n < q0 < τ. Next, consider a prediction
horizon defined by q1, which as noted earlier typically is for instance 5- and
10-days. Then consider:

bQn
q1
=

Ãq1 − n

q0 − n

! q0X
j=n+1

xj −
nX

j=1

xj

 (6.2)

which represents the extrapolation of where Qn
t will be at horizon q1. This

prediction is based on the scaling of Qn
q0
by a factor (q1 − n)/(q0 − n). The

re-scaled CUSUM statistic appearing in (6.2) is viewed as the end-point of a
Brownian bridge process which describes the behavior of the original CUSUM
statistic between q0 and q1. Given this end-point we take the boundary for
the CUSUM statistic, where the boundary is taken from the conventional
sequential analysis using the (global) Brownian bridge asymptotics. Given
this boundary, we can compute the probability that the CUSUM statistic
tied down between Qn

q0
and bQn

q1
will cross the boundary level at the end-

point q1, denoted Bq1 . This probability can readily be computed (see e.g.
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Karatzas and Shreve (1991) or Revuz and Yor (1994)):

P ( sup
q0<t<τ

|Qn
t | > Bq1) = exp

−2[Bq1 − bQn
q1
][Bq1 −Qn

q0
]

q1 − q0

 (6.3)

which represents the probability that the CUSUM statistic will exceed the
boundary at q1, i.e. the prediction horizon, given that it is a tied down
Brownian motion between its current level and its extrapolated level (6.2).
Note that the statistics bQn

q1
and Qn

q0
are standardized by the HAC estimator

that involves the respective qi sample.
It is worth noting that the formula appearing in (6.3) provides certain

advantages when compared to the traditional sequential analysis. In partic-
ular, it yields a ‘probability statement’ about the likelihood of change-point
occurrences. As long as a CUSUM statistic has not crossed a boundary
there is no obvious mechanism to make a statement about the likelihood of a
break. The formula presented in this section remedies this. It is clear, how-
ever, that more work is required on this topic and the purpose of the next
subsection is to show that the suggestion to inflate the CUSUM statistic as
in (6.2) appears to work. One drawback, however, is that the horizon chosen
may be perceived as ad hoc and so does the choice of inflation method for
the CUSUM statistic. In addition, we do not have a clear idea yet of the as-
ymptotic distribution of the crossing probabilities under various alternatives.
Bootstrapping the probability appearing in (6.3) is one possibility. We leave
this subject for future research.

6.2 Simulation results

We examine the properties of the above sequential predictive statistic using
a small simulation design. As in the previous section we first examine the
sequential CUSUM test and the ARL for the low persistence GARCH process
in 5.1). The results in Table 12 show the ARLs for the two alternative change-
point sources (a break in the constant and the dynamics of a GARCH), the
linear boundaries in Chu et al., b2(t), and Zeileis et al., b4(t), and the two
classes of control processes based on daily returns transformations and high
frequency volatility filters. The historical sample involves around one year
of daily observations, n = 250, for a total sample of q = 10n observations
and the break occurs at τ = 1.5n. It is evident from the results in Table 12
that in all cases the ARLs of the sequential CUSUM statistic as analyzed
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in section 5, are relatively high especially for break in the dynamics of a
GARCH. Therefore we investigate whether the simple sequential prediction-
based formulae in (6.2)-(6.3) result in probability predictions that yield early
warning signals of disruptions such that the detection delay is less than that
of sequential tests. In the context of the same simulation setup as in Table 12
we set the following parameters: The starting date of the prediction-based
analysis is set before the change-point, q0 = 1.3n, the prediction horizons
are 5- and 10-days ahead q1 = q0 + pf where pf = 5 or 10 days and the
prediction sample is equal to 100 observations. Alternative choices of these
parameters are considered in order to robustify the results discussed below.
The sequential prediction-based test is simulated under the null and under the
two alternative hypotheses of a change-point in the constant and dynamics
of a GARCH process. The time series plots of the forecast probabilities
are presented. Under the change-point hypothesis the sequential prediction
probabilities start trending upwards shortly after the break.
For all the above choice parameters of the sequential prediction-based

design we find that the daily |rt| instead of r2t yields the most robust and
relatively better prediction-based results as compared with high frequency
volatility filters and squared returns. Figures 1 and 2 present the simulated
100 sequential probabilities of |rt| for the 10-days ahead forecasts of the Chu
et al. and Zeileis et al. boundaries, respectively. Under the null the sequen-
tial probabilities for |rt| fluctuate around a constant mean of 0.007 and 0.005
for b2(t) and b4(t), respectively. The maximum simulated probability under
the null hypothesis defined by max p0 is presented in Table 13. The maxi-
mum of the forecast probabilities under the null for: (i) r2t does not exceed
0.015 and 0.016 and for (ii) |rt| does not exceed 0.013 and 0.01, for b2(t) and
b4(t), respectively. Under the alternative hypotheses of a change-point in the
constant or the dynamics of a low persistent GARCH process the forecast
probabilities, p1, present dominant trends that deviate from the probabili-
ties under the null as shown in Figures 1 and 2. The interesting feature is
that the change in the trend of these forecasts occurs close of the simulated
change-point which is observation τ = 50 on the graphs. Although bootstrap
confidence intervals are expected to give sharper inferences we may also con-
sider the graphical analysis of these forecasts in relation to their summary in
Table 13. For |rt| we find that the forecast probabilities for a change in the
constant of a GARCH begin to trend around observation 60 for both types of
boundaries and forecast horizons. The top panel of Table 13 shows the exact
predicted time, τ p, for which the forecast probabilities of absolute returns,
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p1, exceed the maximum of the simulated sequential probabilities under the
null, max p0. It is worth noting that the sequential prediction-based analysis
for |rt| when there is a break in the constant warns that the probabilities will
exceed the given boundary with an average detection delay of 9 to 12 days
for b2(t) and b4(t), respectively. Compared with the sequential tests we find
that for |rt| the prediction-based formula improves the ARL by an average
of 70 to 64 days for b2(t) and b4(t), respectively. Similar results are valid for
squared returns when there is a change point in the constant of a GARCH.
When there is a break in the dynamics of a GARCH the predicted probabil-
ities for absolute returns exceed the maximum simulated probability under
the null at points 78 and 80 for b2(t) and b4(t), respectively, shown in Figures
1 and 2. It is striking that the prediction-based method yields a detection
delay that is around half of the ARL in sequential testing, as shown in Table
12, for daily returns processes. However, the prediction-based analysis for a
change in the dynamics of a GARCH are less robust and we find that the
absolute daily returns yield relatively better results than the squared daily
returns.
The prediction-based analysis using high frequency volatility filters not

only provides significant improvement for the detection delay when there is a
change-point in the constant of a GARCH but also when there is a break in
the dynamics. Moreover, robust prediction-based probabilities are provided
for both PVt and QVt. Figures 3 and 4 present the simulated 100 forecasts
for PVt and QVt, respectively, for a 10-day ahead forecasting horizon and the
Zeileis et al. boundary. The sequential prediction-based probabilities under
the change-point alternatives show a dominant trend that differs significantly
from that under the null hypothesis. Moreover, under the null the simulated
probabilities for PVt and QVt have the same range and similar max p0 as that
of |rt| and r2t . The detection delay is significantly improved with sequential
prediction-based CUSUM. When there is a change-point in the constant the
average ARL is 8 days for the PVt and QVt for b2(t) and b4(t). This improves
the ALR of the sequential CUSUM test by 35 and 29 days for the PVt and
QVt, respectively, and either boundary. Impressive reduction of the detection
delay occurs when forecasting a change-point in the dynamics of a GARCH.
For the Zeileis et al. control limit the average ARLs from the prediction-
based analysis are 25 and 37 days for the PVt and QVt, respectively, and that
improves the sequential test ARLs by 52 and 181 days, respectively. Last
but not least, we note that the prediction-based results under the alternative
yield a change in the trend of the probabilities. Hence another possibility
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to establish the structural change using the prediction-based CUSUM is to
test the null of a break in the trend of probabilities. We leave this topic for
future research.

7 Conclusions

Most statistical and econometric methods of sequential change-point analysis
have focused on linear regression models or linear dynamic models with weak
dependence. This paper addresses historical and sequential change-point
tests for strongly dependent processes and in particular processes describ-
ing volatility dynamics. The interest in monitoring on-line such processes
has been emphasized in recent work on quality control for risk management
(Andreou and Ghysels (2003)). The present analysis focuses exclusively on
CUSUM-type tests and explores the effect of sampling frequency on the local
power of CUSUM tests. Analytical asymptotic local power results are de-
rived for historical CUSUM tests showing the non-trivial trade-off between
local power, sampling frequency, persistence and tail behavior. Simulation
evidence supports these results for sequential tests. In addition we show
that data-driven and high frequency monitoring processes for volatility have
several the advantages in sequential change-point analysis. In particular,
the realized power variation appears to perform relatively better among the
class of high frequency data-based processes for monitoring breaks in volatil-
ity. This is not surprising given their robustness with regards to jumps, as
emphasized in Barndorff-Nielsen and Shephard (2003), Ghysels et al. (2003)
and Woerner (2004). The choice of boundary depends of course on the lo-
cation and size of the break. We find that the power of the CUSUM test is
very similar even for small change-points in the conditional variance for the
linear boundaries proposed by Chu et al. (1996) and Zeileis et al. (2004).
Regarding the location of the change-points, the simulation results hint to-
wards an optimal combination of these two linear boundaries such that power
is improved for both early and late breaks in the sample. The third and final
contribution pertains to a new prediction-based formula that uses a local
Brownian bridge approximation argument and is shown to (1) substantially
reduce the delay in detection time of structural breaks and (2) provide a
probability statement about the likelihood of the occurrence of a structural
break.
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A Proof of local asymptotic power results

The proof of Proposition 3.1 follows directly fromKokoszka and Leipus (2000)
who show that under the sequence of local alternatives that satisfy the reg-
ularity conditions 3.1:

∆(a) =
κ(a)[(β

(1)
(a),0 − β

(2)
(a),0)(1− κ(a)B(a)) + κ(a)b(a),0

P∞
j=1(β

(1)
(a),j − β

(2)
(a),j)]

(1− κ(a)B(a))2

(A.1)
who show the result holds for a = 1. It is relatively straightforward to also
show this holds for a = m > 1 which yields the desired result when the ratio
of ∆(m)/∆(1) is computed. In the remainder of this appendix we focus on
showing the results in Corollary 3.1. First, in the case of an ARCH(1) process
without break in the intercept the ratio of relative local power simplifies to:

∆(m)/∆(1) =
κ2(m)[b(m),0(β

(1)
(m),1 − β

(2)
(m),1)](1− κ(1)b1(1))

2

κ2(1)[b(1),0(β
(1)
1(1) − β

(2)
1(1))](1− κ(m)b(m),1)2

(A.2)

Next, we need to establish the relation between local drifts for the two sam-
pling frequencies. The aggregation results for ARCH(1) processes are rela-
tively straightforward (see e. g. Drost and Nijman, 1993) implying that:

b
(T )
1(1),t =

 (b(m),1 + β
(1,t)
(m),1/

√
mT )m t = 1, ..., k∗

(b(m),1 + β
(2,t)
(m),1/

√
mT )m t = k∗ + 1, ..., T

The local alternatives can be rewritten under both regimes as:

bm(m),1 + [
√
mbm−1(m),1]β

(i,t)
(m),1/

√
T + op(

√
T ) i = 1, 2 (A.3)

yielding the result in (3.1). The result in (3.6) follows after some algebraic
computations. Finally, to show that

κ(1) = 3 +
κ(m) − 3

m
+ 6(κ(m) − 1)

[m(1− b(m),1) + bm(m),1]b(m),1

m2(1− b(m),1)2
(A.4)

we use the results in Drost and Werker (1996) who compute the kurtosis of
both the ARCH innovations and the kurtosis in the return process. In the
ARCH(1) case, however, both coincide and are equal to the above expression.
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Table 1: Numerical Solutions for the Local Power of the historical CUSUM
test for an ARCH(1) process

m b1 κ(m) κ(1) ∆(m)/∆(1) for
for ∆(m) = ∆(1) κ(1) = 3 κ(1) = 5

m = 2 0.1 32.0 27.891 5.863 18.405
0.2 8.683 11.748 2.357 9.576
0.3 4.126 7.841 1.130 4.064
0.4 2.514 6.187 0.475 0.445
0.5 3.288 11.724 0.103 0.476
0.6 1.343 4.409 0.011 2.972
0.7 1.109 3.449 0.470 6.423
0.8 1.009 2.289 2.896 13.273
0.9 0.995 1.444 20.753 47.383

m = 5 0.1 1996.1 667.62 3952.8 3.7×105
0.2 163.62 83.912 245.17 14652.
0.3 33.444 25.786 51.948 432.94
0.4 10.424 12.050 18.397 56.715
0.5 4.4387 7.4657 8.351 12.226
0.6 2.4340 5.5684 3.977 2.751
0.7 1.588 4.5506 1.376 0.132
0.8 1.1647 3.6822 1.7×10−3 3.910
0.9 0.9084 2.223 6.474 1531.6

m = 22 0.1 - - - -
0.2 2.4×108 2.9×107 8.9×1013 1.8×1014
0.3 2.9×106 4.8×105 1.9×1010 1.6×1010
0.4 76576 17406 5.5×107 2.1×107
0.5 4195.6 1337.5 6.4×105 1.3×105
0.6 356.98 164.72 19833.0 2188.6
0.7 38.757 28.654 1272.4 73.758
0.8 5.0647 7.5355 154.6 4.2823
0.9 1.4414 4.0612 24.42 0.6892

Notes: The local power for an ARCH(1) over different sampling frequencies
m is obtained by numerically solving the following system of equations (3.6)
and (3.7).
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Table 2: Empirical sizes of CUSUM monitoring for the absolute and squared returns of a GARCH process
and alternative boundaries

n  75 n  125 n  250 n  500
LP HP LP HP LP HP LP HP

rt2 |rt| rt2 |rt| rt2 |rt| rt2 |rt| rt2 |rt| rt2 |rt| rt2 |rt| rt2 |rt|
q

Linear Boundary in Chu et al. b2t
2n 0.185 0.124 0.221 0.170 0.176 0.108 0.186 0.124 0.156 0.107 0.171 0.132 0.146 0.095 0.167 0.136
4n 0.216 0.135 0.220 0.288 0.224 0.138 0.233 0.151 0.141 0.104 0.183 0.131 0.152 0.097 0.207 0.130
6n 0.219 0.119 0.258 0.164 0.191 0.119 0.234 0.151 0.158 0.103 0.224 0.158 0.163 0.094 0.176 0.141
8n 0.207 0.126 0.248 0.162 0.186 0.135 0.135 0.172 0.157 0.104 0.207 0.138 0.139 0.077 0.189 0.125
10n 0.229 0.133 0.263 0.186 0.178 0.125 0.125 0.161 0.179 0.096 0.206 0.129 0.151 0.103 0.182 0.126

Linear Boundary in Zeileis et al. b4t
2n 0.269 0.276 0.362 0.346 0.280 0.223 0.323 0.288 0.229 0.217 0.305 0.285 0.244 0.214 0.274 0.274
4n 0.245 0.196 0.288 0.231 0.275 0.207 0.301 9.257 0.249 0.247 0.265 0.241 0.167 0.145 0.199 0.180
6n 0.243 0.190 0.302 0.254 0.227 0.188 0.288 0.219 0.205 0.169 0.253 0.213 0.191 0.147 0.206 0.197
8n 0.264 0.194 0.308 0.248 0.225 0.178 0.289 0.231 0.200 0.184 0.236 0.191 0.176 0.137 0.220 0.191
10n 0.267 0.197 0.307 0.264 0.230 0.190 0.278 0.230 0.229 0.174 0.246 0.213 0.160 0.133 0.234 0.218

Notes: The appreviation LP and HP refer to the Low Persistence and High Persistence GARCH specifications, respectively.
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Table 3: Empirical sizes of CUSUM monitoring for the Power and Quadratic Variations based on a GARCH process
and alternative boundaries

n  75 n  125 n  250 n  500
LP HP LP HP LP HP LP HP

PVt QVt PVt QVt PVt QVt PVt QVt PVt QVt PVt QVt PVt QVt PVt QVt
q

Linear Boundary in Chu et al. b2t
2n 0.133 0.178 0.150 0.190 0.118 0.138 0.146 0.183 0.092 0.134 0.112 0.146 0.049 0.088 0.059 0.094
4n 0.153 0.193 0.183 0.230 0.110 0.162 0.154 0.216 0.092 0.130 0.126 0.163 0.085 0.118 0.090 0.131
6n 0.158 0.208 0.199 0.121 0.188 0.160 0.202 0.092 0.151 0.112 0.160 0.101 0.125 0.096 0.141
8n 0.137 0.197 0.214 0.261 0.124 0.177 0.165 0.249 0.128 0.188 0.134 0.192 0.105 0.157 0.113 0.165
10n 0.159 0.202 0.201 0.256 0.175 0.244 0.135 0.186 0.109 0.171 0.111 0.167 0.119 0.159 0.130 0.181

Linear Boundary in Zeileis et al. b4t
2n 0.283 0.310 0.338 0.351 0.247 0.271 0.293 0.326 0.247 0.271 0.277 0.285 0.194 0.220 0.195 0.226
4n 0.228 0.264 0.283 0.321 0.224 0.265 0.241 0.287 0.152 0.199 0.249 0.272 0.183 0.214 0.145 0.184
6n 0.229 0.290 0.277 0.310 0.193 0.240 0.200 0.248 0.162 0.210 0.201 0.256 0.152 0.187 0.139 0.179
8n 0.197 0.264 0.276 0.333 0.185 0.224 0.262 0.303 0.134 0.194 0.183 0.218 0.134 0.170 0.150 0.193
10n 0.210 0.270 0.261 0.316 0.210 0.247 0.237 0.280 0.158 0.193 0.176 0.233 0.143 0.179 0.145 0.189

Notes: The appreviation LP and HP refer to the Low Persistence and High Persistence GARCH specifications, respectively.
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Table 4: Empirical first hitting time of the CUSUM test for a change-point in a low-persistent
GARCH process monitored by the Chu et al. (1996) linear boundary, b2t and high-frequency

volatility filters
Change in the constant of a GARCH Change in the dynamics of a GARCH

PVt
n   1.1n 1st Q Med 3rd Q Mean Std ARL 1st Q Med 3rd Q Mean Std ARL
75 83 91 97 106 106 46 23 100 110 124 129 87 46
125 138 150 156 166 160 15 22 160 169 181 176 50 38
250 275 289 295 304 298 14 23 305 314 325 317 30 43
500 550 569 577 586 578 15 28 587 598 610 600 18 50
n   3n
75 225 252 276 318 297 98 72 307 355 422 385 122 160
125 375 417 450 492 465 100 90 484 530 588 549 117 174
250 750 811 850 900 858 97 108 901 953 1014 961 91 211
500 1500 1590 1644 1702 1641 127 141 1706 1775 1844 1774 111 274

QVt
n   1.1n
75 83 89 94 103 105 62 22 114 127 147 148 92 102
125 138 147 153 162 159 62 21 172 187 215 225 162 82
250 275 286 292 300 295 21 20 321 338 359 354 107 80
500 550 565 573 584 576 18 26 607 624 648 638 162 88
n   3n
75 225 241 263 296 276 97 51 350 436 574 485 177 260
125 375 403 431 468 445 114 70 545 623 725 674 208 299
250 750 791 828 875 831 135 81 983 1063 1162 1101 225 351
500 1500 1595 1614 1671 1606 206 106 1809 1917 2024 1924 208 424
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Table 5: Empirical first hitting time of the CUSUM test for a change-point in a high-persistent
GARCH process monitored by the Chu et al. (1996) linear boundary, b2t and high-frequency

volatility filters
Change in the constant of a GARCH Change in the dynamics of a GARCH

n   1.1n 1st Q Med 3rd Q Mean Std ARL 1st Q Med 3rd Q Mean Std ARL
PVt

75 83 94 101 118 135 128 52 97 105 119 133 119 50
125 138 152 161 178 187 133 49 157 166 178 178 89 40
250 275 293 304 318 312 85 38 302 311 324 317 28 42
500 550 574 588 603 592 31 42 586 597 609 600 20 50

QVt
75 83 91 98 111 124 111 41 105 122 161 196 199 113
125 138 149 157 172 184 144 46 169 187 219 245 213 107
250 275 289 299 313 312 116 37 318 337 368 370 176 95
500 550 569 581 598 591 78 41 609 628 658 644 83 94

Table 6: Empirical first hitting time of the CUSUM test for a change-point in a low-persistent
GARCH process monitored by the Chu et al. (1996) linear boundary, b2t and the RiskMetrics
RM Change in the constant of a GARCH Change in the dynamics of a GARCH
n   1.1n 1st Q Med 3rd Q Mean Std ARL 1st Q Med 3rd Q Mean Std ARL
75 83 100 113 139 166 166 83 115 143 224 244 230 161
125 138 159 173 198 208 152 70 179 205 250 279 249 141
250 275 303 318 343 343 164 68 332 359 399 409 259 134
500 550 303 317 342 334 75 59 627 651 683 666 99 116

Notes: For q  10n the size of the CUSUM test for the Chu et al. boundary when the control
process is the RiskMetrics (RM) is: 0.355,0.304,0.217,0.125 for n  75,125,250,500,
respectively.
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Table 7: Empirical first hitting time of the CUSUM test for a change-point in a low-persistent
GARCH process monitored by the Zeileis et al. (2003) linear boundary, b4t and high-frequency

volatility filters
PVt Change in the constant of a GARCH Change in the dynamics of a GARCH

n   1.1n 1st Q Med 3rd Q Mean Std ARL 1st Q Med 3rd Q Mean Std ARL
75 95 100 104 107 44 24 105 114 125 121 42 38
125 154 160 169 164 17 26 169 177 188 181 20 43
250 298 306 316 309 16 34 321 330 341 333 20 58
500 584 593 609 596 18 46 614 625 637 626 19 77
n   3n
75 241 264 295 274 77 50 275 309 346 316 68 91
125 393 415 445 418 92 43 443 477 520 485 83 110
250 788 825 870 820 106 70 852 893 938 893 77 144
500 1563 1609 1657 1592 150 92 1683 1699 1761 1690 119 190

QVt
n   1.1n
75 92 97 105 105 48 22 299 348 414 374 118 149
125 150 156 166 163 47 25 114 127 147 148 93 65
250 293 301 313 305 20 30 339 355 374 365 85 90
500 577 587 600 591 24 41 639 656 680 668 158 118
n   3n
75 236 255 280 263 85 38 475 528 593 550 133 174
125 403 428 460 433 79 58 477 526 587 546 130 171
250 775 810 851 798 145 48 899 1031 958 967 122 218
500 1546 1587 1633 1565 223 65 1696 1785 1880 1779 166 279
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Table 8: Empirical first hitting time of the CUSUM test for a change-point in a low persistence
GARCH process monitored by the Chu et al. (1996) linear boundary, b2t and daily returns

transformations
Change in the constant of a GARCH Change in the dynamics of a GARCH

n   1.1n 1st Q Med 3rd Q Mean Std ARL 1st Q Med 3rd Q Mean Std ARL
|rt|

75 98 111 137 147 129 64 135 175 310 283 232 200
125 154 168 192 191 106 53 187 216 271 264 175 126
250 297 310 330 318 34 43 333 358 390 371 83 96
500 579 595 617 599 28 50 618 641 670 647 42 98

rt2

75 93 104 124 139 130 57 187 319 826 446 284 363
125 150 161 182 190 138 52 229 291 436 451 378 313
250 290 304 324 323 150 49 373 415 472 482 306 207
500 571 586 607 593 34 43 657 696 746 724 236 174

Table 9: Empirical first hitting time of the CUSUM test for a change-point in a low persistence
GARCH process monitored by the Zeileis et al. (2003) linear boundary, b2t and daily returns

transformations
Change in the constant of a GARCH Change in the dynamics of a GARCH

n   1.1n 1st Q Med 3rd Q Mean Std ARL 1st Q Med 3rd Q Mean Std ARL
|rt|

75 103 115 134 131 70 48 155 188 255 256 182 173
125 155 168 186 187 109 49 194 213 245 228 69 89
250 310 325 346 331 28 56 352 371 398 379 39 104
500 601 618 638 621 31 72 654 675 700 679 37 129

rt2

75 97 108 127 128 81 45 130 151 188 187 122 104
125 162 176 195 188 67 50 220 252 30 296 169 158
250 299 315 337 323 35 48 386 416 454 437 131 162
500 586 604 626 612 40 62 695 728 769 746 171 196
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Table 10: Empirical sizes of CUSUM monitoring for half-daily processes
of a GARCH model for alternative boundaries
n  75 n  125 n  250 n  500

GARCH |rt| rt2 |rt| rt2 |rt| rt2 |rt| rt2

Chu et al. boundary, b2t
Normal 0.154 0.220 0.145 0.180 0.097 0.160 0.085 0.117
t(6) 0.212 0.283 0.157 0.221 0.140 0.189 0.130 0.153

Zeileis et al. boundary, b4t
Normal 0.215 0.265 0.194 0.228 0.148 0.184 0.118 0.145
t(6) 0.318 0.386 0.282 0.323 0.252 0.284 0.240 0.254

Table 11: Empirical first hitting time of the CUSUM test for a change-point
in the constant of a low persistent GARCH process monitored by:

(i) ARLs (in days) of squared and absolute returns
Chu et al. boundary b2t Zeileis et al. boundary b4t

Normality Student’s t(6) Normality Student’s t(6)
Daily Half-daily Daily Half-daily Daily Half-daily Daily Half-daily

n |rt| rt2 |rt| rt2 |rt| rt2 |rt| rt2 |rt| rt2 |rt| rt2 |rt| rt2 |rt| rt2

75 64 57 33 38 69 64 77 87 48 44 35 36 52 50 61 69
125 51 55 30 34 47 45 73 104 47 49 33 34 48 44 60 82
250 47 49 30 34 44 52 49 94 56 52 42 38 57 55 57 87
500 50 43 37 34 51 47 61 140 72 62 57 51 74 65 75 132

(ii) ARLs (in days) of high-frequency volatility filters
Chu et al. boundary b2t Zeileis et al. boundary b4t

Student’s t(6) Student’s t(6)
Daily Half-daily Daily Half-daily

n PVt QVt PVt QVt PVt QVt PVt QVt
75 26 26 57 67 24 24 42 51
125 21 21 44 81 25 25 47 70
250 22 20 36 76 34 30 46 71
500 27 24 42 91 44 39 62 97

Notes: We consider the low persistent GARCH process generated at the 30-minute frequency.
The change point is at   1.1n and the constant of the GARCH increases by three. Two
alternative monitoring frequencies are considered: the daily and half-daily frequencies for the
following categories of processes: (i) Squared and absolute returns, rt2 and |rt|, respectively, and
(ii) High frequency volatility filters, the Power and Quadratic Variation, PVt and QVt,
respectively.
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Table 12: ARL for the empirical first hitting time of the CUSUM test for a change-point in a
GARCH

n  250 ARL: Chu et al. Zeileis et al.
|rt| rt2 |rt| rt2

Constant change-point 79 76 74 67
Dynamic change-point 175 351 141 219

PVt QVt PVt QVt
Constant change-point 44 37 44 38
Dynamic change-point 82 145 77 118

Table 13: Prediction probability value and detection delay of the sequential predictive test
for a change-point in a GARCH process

Boundaries Monitoring 5-days ahead 10-days ahead
Process maxp0 p1 p ARL maxp0 p1 p ARL

Constant change-point
Chu et al. |rt| 0.0087 0.0102 58 8 0.0121 0.0290 60 10

rt2 0.0145 0.0164 62 12 0.0145 0.0173 53 3
Zeileis et al. |rt| 0.0087 0.0113 63 13 0.0091 0.0127 61 11

rt2 0.0085 0.0191 64 14 0.0155 0.0177 56 6
Dynamic change-point

Chu et al. |rt| 0.0087 0.0090 84 34 0.0121 0.0129 78 28
rt2 0.0145 - - 0.0145 - -

Zeileis et al. |rt| 0.0087 0.092 84 34 0.0091 0.0099 76 26
rt2 0.0085 0.0086 94 44 0.0155 - -

Constant change-point
Chu et al. PVt 0.0085 0.0111 58 8 0.0138 0.0173 59 9

QVt 0.0115 0.0122 58 8 0.0155 0.0167 56 6
Zeileis et al. PVt 0.0077 0.0101 60 10 0.0157 0.0183 57 7

QVt 0.0088 0.0108 58 8 0.0155 0.0162 60 10
Dynamic change-point

Chu et al. PVt 0.0085 0.0103 70 20 0.0138 0.0145 77 27
QVt 0.0115 0.0125 93 43 0.0155 0.0158 82 32

Zeileis et al. PVt 0.0077 0.0089 71 21 0.0157 0.0162 78 28
QVt 0.0088 0.0104 91 41 0.0155 0.0162 82 32

Notes: Under H1 of a change point in the constant of the low persistent GARCH the historical
sample size is n  250, the time of the break is   1.5n, and the starting point for the predictive
exercise is q0  1.3n. p is the first signal of change, maxp0 is the maximum prediction
probability value under H0, p1 is the first sequential prediction probability value under H1.
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Figure 1: Probabilities of the prediction-based CUSUM for the absolute returns
and the Chu et al. boundary.
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Notes: The three time series of the prediction probabilities refer to a change in the constant (CHUARC), a
change in the dynamics (CHUARD) and no break (CHUARS). The Chu et al. (1996) boundary is used. The
results are valid for a 10-day forecasting horizon and the true change point occurs at observation 50.

Figure 2: Probabilities of the prediction-based CUSUM for the absolute returns
and the Zeileis et al. boundary.
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Notes: The three time series of the prediction probabilities refer to a change in the constant (ZEIARC), a
change in the dynamics (ZEIARD) and no break (ZEIARS). The Zeileis et al. (2004) boundary is used. The
results are valid for a 10-day forecasting horizon and the true change point occurs at observation 50.
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Figure 3: Probabilities of the prediction-based CUSUM for the Power Variation (PV)
and the Zeileis et al. boundary.
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Notes: The three time series of the prediction probabilities refer to a change in the constant (ZPVC), a
change in the dynamics (ZPVD) and no break (ZPVS). The Zeileis et al. (2004) boundary is used. The results
are valid for a 10-day forecasting horizon and the true change point occurs at observation 50.

Figure 4: Probabilities of the prediction-based CUSUM for the Quadratic Variation (QV)
and the Zeileis et al. boundary.
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Notes: The three time series of the prediction probabilities refer to a change in the constant (ZQVC), a
change in the dynamics (ZQVD) and no break (ZQVS). The Zeileis et al. (2004) boundary is used. The results
are valid for a 10-day forecasting horizon and the true change point occurs at observation 50.
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