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Résumé / Abstract 
 
La valeur-à-risque (VaR) et la mesure ES (Expected Shortfall) sont de plus en plus utilisées 
pour la mesure du risque d’un portefeuille, l'allocation de capital de risque et la détermination 
des performances. Les gestionnaires de risques financiers sont donc légitimement intéressés 
par la précision des techniques classiques de la valeur-à-risque et de la mesure ES. Le but de 
cet article est précisément d’évaluer la précision des modèles classiques et de mesurer 
l'importance de l'erreur d'estimation en construisant des intervalles de confiance autour des 
prévisions de la valeur-à-risque et de la mesure ES. Un des problèmes clés dans la 
construction d’intervalles de confiance appropriés provient de la dynamique de la variance 
conditionnelle typiquement observée pour les rendements spéculatifs. Notre article propose 
donc une technique de ré-échantillonnage qui tient compte de l'erreur d'estimation des 
paramètres des modèles dynamiques de la variance d’un portefeuille. Une analyse Monte 
Carlo nous montre que les méthodes généralement utilisées par les praticiens, telles que la 
simulation historique qui calcule le quantile empirique à l’aide d’une fenêtre mobile des 
rendements, génèrent des intervalles de confiance pour la valeur-à-risque à 90% qui sont trop 
étroits et qui contiennent seulement 20% des vraies valeurs-à-risque. D'autres méthodes qui 
tiennent compte correctement de la dynamique conditionnelle de la variance, telles que la 
simulation historique filtrée, génèrent quant à elles des intervalles de confiance de la valeur-à-
risque à 90% qui contiennent près de 90% des vraies valeurs-à-risque. Les mesures ES sont 
généralement moins précises que les mesures de valeur-à-risque et les intervalles de confiance 
autour de la mesure ES sont également moins fiables. 
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Value-at-Risk (VaR) and Expected Shortfall (ES) are increasingly used in portfolio risk 
measurement, risk capital allocation and performance attribution. Financial risk managers 
are therefore rightfully concerned with the precision of typical VaR and ES techniques. The 
purpose of this paper is exactly to assess the precision of common models and to quantify the 
magnitude of the estimation error by constructing confidence bands around the point VaR and 
ES forecasts. A key challenge in constructing proper confidence bands arises from the 
conditional variance dynamics typically found in speculative returns. Our paper suggests a 
resampling technique which accounts for parameter estimation error in dynamic models of 
portfolio variance. In a Monte Carlo study we find that commonly used practitioner methods 
such as Historical Simulation, which calculates the empirical quantile on a moving window of 
returns, implies 90% VaR confidence intervals that are too narrow and that contain as few as 
20% of the true VaRs. Other methods which properly account for conditional variance 
dynamics, such as Filtered Historical Simulation instead imply 90% VaR confidence intervals 
that contain close to 90% of the true VaRs. ES measures are generally less accurate than VaR 
measures and the confidence bands around ES are also less reliable. 

 
Keywords: Risk management, boostrapping, GARCH 
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1 Motivation

Value-at-Risk (VaR) and Expected Shortfall (ES) are increasingly used in portfolio risk
measurement, risk capital allocation and performance attribution, and financial risk man-
agers are rightfully concerned with the precision of typical VaR and ES techniques. VaR
is defined as the conditional quantile of the portfolio loss distribution for a given horizon
(typically a day or a week) and for a given coverage rate (typically 1% or 5%), and the
ES is defined as the expected loss beyond the VaR. The VaR and ES measures are thus
statements about the left tail of the return distribution and in realistic sample sizes (500 or
1000 daily observations) such statements are likely to be made with considerable error.
The purpose of this paper is twofold: First, we want to assess the loss of accuracy from

estimation error when calculating VaR and ES. Second, we want to assess our ability to
quantify ex-ante the magnitude of this error via the construction of confidence bands around
the VaR and ES measures. This issue of estimation risk for VaR has been considered
previously in the i.i.d. return case by for example Jorion (1995), Pritsker (1997), Chapell
and Dowd (1999) and Dowd (2000). But a key challenge in constructing proper VaR
and ES confidence bands arises from the conditional variance dynamics typically found
in speculative returns. We quantify these dynamics using the celebrated GARCH models
of Engle (1982) and Bollerslev (1986). Due to its ability to capture salient features of
the return dynamics in very parsimonious and easily estimated specifications, GARCH has
become the workhorse model in financial risk management. Nevertheless, and surprisingly,
very little is known about the uncertainty in the GARCH VaR and ES forecasts arising
from parameter estimation error.1

Our paper extends the resampling technique of Pascual, Romo and Ruiz (2001), which
accounts for parameter estimation error in dynamic models of portfolio variance, to the case
of VaR and ES forecasts. To our knowledge no asymptotic theory has been established for
calculating confidence bands for risk measures in this context. In a Monte Carlo study we
find that commonly used practitioner VaR methods such as Historical Simulation, which
calculates the empirical quantile on a moving window of returns, imply nominal 90% con-
fidence intervals for the one-day, 1% VaR that are too narrow and that contain as few as
20% of the true VaRs. Other methods which properly account for conditional variance dy-
namics, such as Filtered Historical Simulation (FHS) suggested by Hull and White (1998)
and Barone-Adesi et al (1999), instead imply 90% VaR confidence intervals that contain
close to 90% of the true VaRs. Similarly, and importantly, we find that it is in general more
difficult to construct accurate confidence bands for the ES measure. All the confidences
bands from risk models we consider tend to contain the true ES less frequently than the
90% they should. The 90% confidence bands for ES are thus too narrow in general. The
resampling technique we propose can be relatively easily extended to longer horizons, to
multivariate risk models, and to allowing for model specification error.
In related work Figlewski (2002) computes effective coverages of VaRs with nominal

coverages equal to .5, 1 and 5%. He finds that ignoring estimation error causes the effective

1Baillie and Bollerslev (1992) construct approximate prediction intervals for GARCH variance forecasts
at multiple horizons but ignore estimation error. Furthermore, risk management suveys and textbooks such
as for example Christoffersen (2003), Dowd (1998) Duffie and Pan (1997), and Jorion (2000) give little or
no attention to the estimation error issue.
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coverage to be below the nominal coverage, particularly for the smallest nominal coverage.
Whereas Figlewski (2002) focuses on the average coverage of the point forecast VaR allowing
for estimation risk, our focus here is to construct confidence bands around the point forecast
VaR and ES.
Accurate confidence bands reported along with the VaR point estimate will facilitate the

use of VaR in active portfolio management as the following example illustrates: Consider
a portfolio manager who is allowed to take on portfolios with a VaR of up to 15% of the
current capital. If the risk manager calculates the actual point estimate VaR to be 13%
with a confidence band of 10-16% then the cautious portfolio manager should rebalance the
portfolio to reduce risk. Relying instead only on the point estimate of 13% would not signal
any need to rebalance.
The remainder of the paper is organized as follows. Section 2 presents our conditionally

nonnormal GARCH portfolio return generating process and defines five risk models which
we will consider in the subsequent analysis. Section 3 presents the resampling methods used
to generate the VaR and ES confidence bands. Section 4 presents the Monte Carlo setup
and discusses the results we obtained. Finally, Section 5 concludes and suggests avenues
for future research.

2 Model and Risk Measures

In this paper we model the dynamics of the daily losses (the negative of returns) on a given
financial asset or portfolio according to the model

Lt = σtεt, t = 1, . . . , T, (1)

where εt are i.i.d. with mean zero, variance one, and distribution function G. In particular,
we focus on the case in which G is a standardized Student’s t distribution with d degrees
of freedom,2 i.e. p

d/ (d− 2)εt ∼ t (d) .

To model the volatility dynamics we use a symmetric GARCH(1,1) model for σ2t :

σ2t = ω + αL2t−1 + βσ2t−1,

where α + β < 1. The GARCH(1,1) model with standardized Student’s t distribution
has been very successful in capturing the volatility clustering and nonnormality found in
daily asset return data. See for example Bollerslev (1987) and Baillie and Bollerslev (1989).
Although we focus on this particular model of returns, our approach applies to more complex
models of σ2t and/or to other distributions for εt.
At a given point in time, we are interested in describing the risk in the tails of the

conditional distribution of losses over a given horizon, say one-day, using all the information
available at that time. We consider two popular risk measures. One is the Value-at-Risk
(VaR), which is simply a conditional quantile of the losses distribution. The other is the
Expected Shortfall (ES), which measures the expected losses over the next day given that
losses exceeds VaR.

2The model can be generalized to allow for skewness following Theodossiou (1998).
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The VaR measure for time T + 1 with coverage probability p, based on information at
time T , is defined as the (positive) value V aRp

T+1 such that

Pr
¡
LT+1 > V aRp

T+1|FT
¢
= p, (2)

where FT denotes the information available at time T . Typically p is a small number, e.g.
p = 0.01 or p = 0.05.
Similarly, we define the ES measure for time T + 1 with coverage probability p, given

information at time T , as the (positive) value ESp
T+1 such that

ESp
T+1 = E

¡
LT+1|LT+1 > V aRp

T+1,FT
¢
. (3)

Given model (1), we can obtain simplified expressions for V aRp
T+1 and ESp

T+1. More
specifically, we can show that

V aRp
T+1 = σT+1G

−1
1−p ≡ σT+1c1,p, (4)

where G−11−p denotes the (1− p)-th quantile of G, the distribution of standardized losses
εt = Lt/σt, and σT+1 is the conditional volatility for time T + 1. For instance, if G is the
standard normal distribution Φ and p = 0.05, we have that G−11−p = Φ−10.95 = 1.645, and thus
V aRp

T+1 = 1.645σT+1. In the general case where ε ∼ G, equation (4) shows that we can
express V aRp

T+1 as the product of σT+1 with a constant c1,p ≡ G−11−p, whose value depends
on G and on p.
Similarly, under model (1), we can show that

ESp
T+1 = σT+1E

¡
ε|ε > G−11−p

¢ ≡ σT+1c2,p, (5)

where ε is an i.i.d. random variable with mean zero, variance one, and distribution G. If
ε ∼ N (0, 1), we can show that E (ε|ε > a) = φ(a)

1−Φ(a) , for any constant a, where φ and Φ
denote the density and the distribution functions of a standard normal random variable.

Thus, in this particular case, ESp
T+1 = σT+1

φ(Φ−11−p)
p

. When the innovation distribution is
not the standard normal, this formula does not apply. However, we can still express the ES
as σT+1 times a constant c2,p ≡ E

¡
ε|ε > G−11−p

¢
whose value is a function of G and p. In our

simulations below, where G is a standardized Student’s t (d) distribution, we computed c2,p
by Monte Carlo simulation using 100, 000 simulations from the appropriate distribution G.
In practice, we cannot compute the true values of V aRp

T+1 and ESp
T+1, since they de-

pend on the characteristics of the data generating process (i.e. they depend on G and on
the conditional variance model σ2T+1). Thus, we need to estimate these measures, which
introduces estimation risk. Our ultimate goal in this paper is to quantify the estimation
risk by constructing a confidence — or prediction — interval for the true but unknown risk
measures.
We will consider six different estimation methods, divided into three groups.

2.1 Historical Simulation

The first and most commonly used method is referred to as Historical Simulation (HS). It
calculates VaR and ES using the empirical distribution of past losses. In particular, the HS
estimate of V aRp

T+1 is given by

HS-V aRp
T+1 = Q1−p ({Lt}) ,
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where Q1−p ({Lt}) denotes the (1− p)-th empirical quantile of the losses data {Lt}Tt=1. The
HS estimate of ESp

T+1 is given by

HS-ESp
T+1 =

1

#
¡
Lt > HS-V aRp

T+1

¢
 X

Lt>HS-V aRp
T+1

Lt

 ,

where #
¡
Lt > HS-V aRp

T+1

¢
denotes the number of observations of {Lt}Tt=1 that are above

the HS estimate of VaR.
The HS method is completely nonparametric and does not depend on any distribu-

tional assumption, thus capturing the nonnormality in the data. It nevertheless ignores the
potentially useful information in the volatility dynamics.

The estimation methods that we consider next take into account the volatility dynamics
by explicitly relying on the GARCH(1,1) model for predicting σT+1. In particular, given
(4) and (5), estimates of V aRp

T+1 and ESp
T+1 can be obtained in three steps:

1. Estimate the GARCH(1,1) parameters through Gaussian QMLE, maximizing

lnL ∝ − 1
2

TX
t=1

ln
¡
σ2t
¢
+

µ
Lt

σt

¶2
.

Given the QML estimates
³
ω̂, α̂, β̂

´
, we can compute the variance sequence σ̂2t and

the implied residuals ε̂t = Lt/σ̂t from the past observed squared losses and the past
estimated variance using the recursion

σ̂2t+1 = ω̂ + α̂L2t + β̂σ̂2t ,

where σ̂21 =
ω̂

1−α̂−β̂ , the unconditional variance of Lt. A prediction of σT+1 is given by
σ̂T+1, where

σ̂2T+1 = ω̂ + α̂L2T + β̂σ̂2T .

2. Choose values for the constants c1,p and c2,p. Call these ĉ1,p and ĉ2,p, respectively.

3. Compute the estimates of V aRp
T+1 and ESp

T+1 as

dV aRp

T+1 = σ̂T+1ĉ1,pcESp

T+1 = σ̂T+1ĉ2,p.

We can distinguish between two groups of methods according to rule used to choose the
constants c1,p and c2,p in step 2: fully parametric methods and nonparametric methods.
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2.2 Parametric Methods

These methods postulate a distribution G and use it to compute ĉ1,p and ĉ2,p. We consider
two leading cases: one based on the (erroneous) assumption of conditional normality and
another based on the (true) assumption of Student’s t (d) distribution.

Normal Conditional Distribution

Erroneously imposing the normal distribution on the innovation term εt gives the fol-
lowing estimates of V aRp

T+1 and ESp
T+1:

N-V aRp
T+1 = σ̂T+1ĉ

N
1,p

N-ESp
T+1 = σ̂T+1ĉ

N
2,p,

where

ĉN1,p = Φ−11−p,

ĉN2,p =
φ
¡
Φ−11−p

¢
p

,

with Φ−11−p the (1− p)-th quantile of a standard normal distribution. We will call this the
“Normal” method.

Student Conditional Distribution

Instead, imposing the true Student’s t distribution implies the following estimates of the
risk measures:

t-V aRp
T+1 = σ̂T+1ĉ

t
1,p

t-ESp
T+1 = σ̂T+1ĉ

t
2,p,

where

ĉt1,p =
p
(d− 2) /dt−1d,1−p

ĉt2,p = E
³
ε|ε >

p
(d− 2) /dt−11−p

´
,

with t−1d,1−p the (1− p)-th quantile of the Student’s t distribution with d degrees of freedom
and ĉt2,p the truncated expectation of ε, a random variable following a standardized t (d)
distribution. We compute the truncated expectation by simulation, as explained above.
This will be called the “Student” method.
Given the distributional assumption on G, no estimation is involved in computing c1,p

and c2,p. Thus, obtaining a prediction interval for the risk measures is equivalent to obtain-
ing a prediction interval for σ̂T+1. The main disadvantage of these methods is the parametric
assumption on the standardized losses. The “Normal” method imposes conditional normal-
ity, which does not hold for real data. Instead, the “Student” method imposes the (true)
conditional Student’s t (d) distribution and is therefore unrealistic. Even if standardized
losses follow a Student t distribution, in practice the number of degrees of freedom d needs
to be estimated, thus introducing some estimation error which is not taken into account by
this method. We consider both methods for comparison purposes.
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2.3 Nonparametric Methods

These methods estimate c1,p and c2,p using the implied GARCH(1,1) residuals ε̂t = Lt/σ̂t.
They differ in the way they use the residuals to compute ĉ1,p and ĉ2,p.

Extreme Value Theory

The Extreme Value Theory (EVT) approach estimates c1,p and c2,p under the assumption
that the tail of the conditional distribution of the GARCH innovation is well approximated
by an heavy-tailed distribution. This approach was proposed by McNeil and Frey (2000),
who derived estimates of c1,p and c2,p based on the maximum likelihood estimator of the
parameters of a Generalized Pareto Distribution (GPD).
Here, we suppose that the tail of the conditional distribution of εt is well approximated

by the distribution function

F (z) = 1− L (z) z−1/ξ ≈ 1− cz−1/ξ,

whenever εt > u, where L (z) is a slowly varying function that we approximate with a
constant c, and ξ is a positive parameter. u is a threshold value such that all observations
above u will be used in the estimation of ξ. We let Tu denote the number of observations
that exceed u. The Hill estimator (Hill, 1975) ξ̂ corresponds to the MLE estimator of ξ
under the assumption that the standardized residuals ε̂t are approximately i.i.d. It is defined
as

ξ̂ =
1

Tu

TuX
t=1

ln
¡
ε̂(T−t+1)

¢− ln (u) ,
where ε̂(t) denote the t-th order statistic of ε̂t (i.e ε̂(t) ≥ ε̂(t−1) for t = 2, . . . , T ). The
important choice of Tu will be discussed at the beginning of the Monte Carlo Results section
below.
Given ξ̂, an estimate of the tail distribution F is obtained by choosing c = Tu

T
u1/ξ̂, which

derives from imposing the condition 1−F (u) = Tu
T
. We thus obtain the following estimate

of F :

F̂ (z) = 1− Tu
T

³z
u

´−1/ξ̂
.

The EVT approach relies on F̂ (z) to estimate the constants c1,p and c2,p. In particular, the
estimate of c1,p is equal to F̂−11−p, the (1− p)th-quantile of the tail distribution F̂ . We can
show that

ĉHill
1,p = u

µ
p
T

Tu

¶−ξ̂
.

Similarly, to compute an estimate of c2,p we use F̂ (z) to compute E
³
ε|ε > F̂−11−p

´
, where

ε ∼ i.i.d. F̂ . We can show that the following closed form expression holds true

E
³
ε|ε > F̂−11−p

´
=

F̂−11−p
1− ξ̂

.
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This implies the following Hill’s estimate of c2,p:

ĉHill
2,p =

ĉHill
1,p

1− ξ̂
.

The Hill’s estimates of V aRp
T+1 and ESp

T+1 are given by

Hill-V aRp
T+1 = σ̂T+1ĉ

Hill
1,p

Hill-ESp
T+1 = σ̂T+1ĉ

Hill
2,p ,

respectively.

Gram-Charlier and Cornish-Fisher Expansions

This method relies on the Cornish-Fisher and Gram-Charlier expansions to approximate
the conditional density of the standardized losses εt. For a standardized random variable, a
Gram-Charlier expansion produces an approximate density function that can be viewed as
an expansion of the standard normal density augmented with terms that capture the effects
of skewness and excess kurtosis. Thus, Gram-Charlier expansions are a convenient tool to
account for departures of conditional normality.3

The Cornish-Fisher expansion approximates the inverse cumulative density function
directly. The approximation to c1,p is thus:

CF−11−p = Φ−11−p +
γ1
6

h¡
Φ−11−p

¢2 − 1i+ γ2
24

h¡
Φ−11−p

¢3 − 3Φ−11−pi− γ21
36

h
2
¡
Φ−11−p

¢3 − 5Φ−11−pi ,
where

γ1 = E
¡
ε3
¢

γ2 = E
¡
ε4
¢− 3,

with ε ∼ G (0, 1). We will refer to the expansions methods generically as GC (for Gram-
Charlier). Thus, we have

ĉGC1,p =dCF−11−p,
wheredCF−11−p is the sample analogue of CF−11−p, i.e. it replaces γ1 and γ2 with their sample
analogues evaluated on the standardized residuals ε̂t = Lt/σ̂t:

γ̂1 =
1

T

TX
t=1

ε̂3t

γ̂2 =
1

T

TX
t=1

ε̂4t − 3.

Thus, we obtain the following estimate of V aRp
T+1:

GC-V aRp
T+1 = σ̂T+1ĉ

GC
1,p .

3For an application of Gram-Charlier expansions in finance, see Backus, Foresi, Li and Wu (1997) and
references therein.
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Similarly, we can define an approximation to c2,p that relies on the Gram-Charlier and
Cornish-Fisher expansions. In particular, we can show that

cGC2,p = E
¡
ε|ε > CF−11−p

¢
=

φ
¡
CF−11−p

¢
p

³
1 +

γ1
6

h¡
CF−11−p

¢2 − 1i+ γ2
24

CF−11−p
h¡
CF−11−p

¢2 − 3i´ .
The Gram-Charlier estimate of ESp

T+1 is given by

GC-ESp
T+1 = σ̂T+1ĉ

GC
2,p ,

where ĉGC2,p is obtained from cGC2,p by replacing CF
−1
1−p, γ1 and γ2 with their sample analogues.

When G is the standard normal distribution, the Gram-Charlier estimates of VaR and
ES coincide with those obtained with the “Normal” method.

Filtered Historical Simulation

The Filtered Historical Simulation (FHS) method estimates c1,p and c2,p from the em-
pirical distribution of the (centered) residuals. Thus it combines a model-based variance
with a data-based conditional quantile. Several papers including Hull and White (1998),
Barone-Adesi et al (1999), and Pritsker (2001) have found the FHS method to perform well.
The FHS estimates of c1,p and c2,p are given by

ĉFHS
1,p = Q1−p

³©
ε̂t − ε̂

ªT
t=1

´
and

ĉFHS
2,p =

1

#
¡
ε̂t − ε̂ > ĉFHS

1,p

¢
 X

ε̂t>ĉFHS
1,p

¡
ε̂t − ε̂

¢ ,

where ε̂ = T−1
PT

t=1 ε̂t. Centered residuals are considered because their sample average is
zero by construction, thus better mimicking the true mean zero expectation of the stan-
dardized errors εt. If a constant is included in the losses model,

PT
t=1 ε̂t = 0 and centering

of the residuals becomes irrelevant.
This implies the following FHS estimates of V aRp

T+1 and ESp
T+1:

FHS-V aRp
T+1|T = σ̂T+1ĉ

FHS
1,p

ES-V aRp
T+1 = σ̂T+1ĉ

FHS
2,p .

3 Resampling Methods for Estimation Risk

In this section we describe the bootstrap methods we use to assess the estimation risk in
the risk estimates presented above.
Our first bootstrap method applies to Historical Simulation. This bootstrap method

ignores any volatility dynamics and simply treats losses as being i.i.d. This “naive” boot-
strap method generates pseudo losses by resampling with replacement from the set of orig-
inal losses, according to the following algorithm:
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Bootstrap Algorithm for Historical Simulation Risk Measures

Step 1. Generate a sample of T bootstrapped losses {L∗t : t = 1, . . . , T} by resampling
with replacement from the original data set {Lt}.
Step 2. Compute the HS estimates of VaR and ES on the bootstrap sample:

HS-V aR∗pT+1 = Qp

³
{L∗t}Tt=1

´
.

HS-ES∗pT+1 =
1

#
¡
L∗t > HS-V aR∗pT+1

¢
 X

L∗t>HS-V aR∗pT+1

L∗t

 .

Step 3. Repeat Steps 1 and 2 a large number of times, B say, and obtain a sequence of
bootstrap HS risk measures. For instance,

n
HS-V aR∗p(i)T+1 : i = 1, . . . , B

o
denotes a sequence

of bootstrap VaR measures. We set B = 999 in our Monte Carlo simulations below.

Step 4. The 100 (1− α)% bootstrap prediction interval for V aRp
T+1 is given by·

Qα/2

µn
HS-V aR∗p(i)T+1

oB
i=1

¶
, Q1−α/2

µn
HS-V aR∗p(i)T+1

oB
i=1

¶¸
,

where Qα (·) is the α−quantile of the empirical distribution of
n
HS-V aR∗p(i)T+1

o
. A similar

bootstrap interval can be computed for ESp
T+1.

Following the Historical Simulation approach, this naive bootstrap method is completely
nonparametric, avoiding any distributional assumptions on the data. However, by implicitly
assuming that returns are i.i.d., this method fails to capture the dependence in returns when
it exists. In particular, as our simulations will show, this method of computing confidence
bands for risk measures is not appropriate when returns follow a GARCH model.

The validity of the bootstrap for financial data depends crucially on its ability to cor-
rectly mimic the dependence properties of returns. A natural and often used bootstrap
method for GARCH models consists of resampling with replacement the standardized resid-
uals, the idea being that the standardized errors are i.i.d. in the population. The bootstrap
returns are then recursively generated using the GARCH volatility dynamic equation and
the resampled standardized residuals. The bootstrap methods that we describe next are
based on this general idea.
As described in the previous section, under model (1), the VaR and ES have the following

simplified expressions

V aRp
T+1 = σT+1c1,p, (6)

and
ESp

T+1 = σT+1c2,p, (7)

where c1,p and c2,p are a function of G and p, and σT+1 is given by the square root of

σ2T+1 = ω + αL2T + βσ2T . (8)

10



Given (6) and (7), there are two sources4 of risk associated with predicting V aRp
T+1 and

ESp
T+1 using information available at T . One is the uncertainty in computing c1,p and c2,p.

If the risk model correctly specifies G, then this source of risk is not present. The other
source of risk relates to predicting the volatility σT+1 using day T ’s information. For our
GARCH(1,1) model, it is easy to see that σ2T+1 depends on information available at day T
and on the unknown parameters ω, α and β. In particular, using the GARCH equation (8),
we can write σ2T as a function of past losses as follows:

σ2T =
ω

1− α− β
+ α

∞X
j=0

βj
µ
L2T−j−1 −

ω

1− α− β

¶
.

Replacing ω, α and β with their MLE estimates yields

σ̂2T =
ω̂

1− α̂− β̂
+ α̂

T−2X
j=0

β̂
j
µ
L2T−j−1 −

ω̂

1− α̂− β̂

¶
, (9)

which delivers a point estimate σ̂2T+1 = ω̂+ α̂L2T + β̂σ̂2T . The need to estimate the GARCH
parameters introduces the second source of estimation risk.
The presence of estimation risk in computing V aRp

T+1 and ES
p
T+1 is our main motivation

for using the bootstrap to obtain prediction intervals for these risk measures. The bootstrap
methods we use are based on Pascual, Romo and Ruiz (2001), who proposed a bootstrap
method for building prediction intervals for returns volatility σt based on the GARCH(1,1)
model. In particular, for the nonparametric methods, we extend the Pascual, Romo and
Ruiz (2001) resampling scheme to the case of V aRp

T+1 and ESp
T+1 by using the bootstrap

to account for estimation error not only in σT+1 but also in the constants c1,p and c2,p that
multiply σT+1.

Bootstrap Algorithm for GARCH-Based Measures of Risk

Step 1. Estimate the GARCH model by MLE and compute the centered residuals ε̂t− ε̂,
where ε̂t = Lt

σ̂t
, t = 1, . . . , T. Let ĜT denote the empirical distribution function of ε̂t.

Step 2. Generate a bootstrap pseudo series of portfolio losses {L∗t : t = 1, . . . , T} using
the recursions

σ̂∗2t = ω̂ + α̂L∗2t−1 + β̂σ̂∗2t−1,

L∗t = σ̂∗t ε
∗
t , for t = 1, . . . , T

where ε∗t ∼ i.i.d.ĜT and where σ̂
∗2
1 = σ̂21 =

ω̂

1−α̂−β̂ . With the bootstrap pseudo-data {L∗t},
compute the bootstrap MLE’s ω̂∗, α̂∗ and β̂

∗
.

Step 3. Obtain a bootstrap prediction of volatility σ̂∗T+1 according to

σ̂∗2T+1 = ω̂∗ + α̂∗L∗2T + β̂
∗
σ̂∗2T ,

4In general, model risk is a third source of uncertainty when forecasting V aRp
T+1 and ESpT+1. Here,

we abstract from this source of uncertainty since we take the GARCH model of returns as being correctly
specified.
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given the initial values

L∗T = LT ,

σ̂∗2T =
ω̂∗

1− α̂∗ − β̂
∗ + α̂∗

T−2X
j=0

β̂
∗j
Ã
L2T−j−1 −

ω̂∗

1− α̂∗ − β̂
∗

!
. (10)

Step 4. Compute ĉ∗1,p and ĉ∗2,p, the bootstrap estimates of c1,p and c2,p. These bootstrap
estimates are computed exactly in the same fashion as ĉ1,p and ĉ2,p with the difference that
they are evaluated on the bootstrap data instead of the real data. In particular, for the
parametric methods (Normal and Student), we simply set

ĉ∗1,p = ĉi1,p and ĉ∗2,p = ĉi2,p for i = N or t,

where ĉi1,p and ĉi2,p are as described before. In contrast, for the nonparametric methods, we
first compute the bootstrap residuals

ε̂∗t =
L∗t
σ̂∗t

,

with σ̂∗2t = ω̂∗ + α̂∗R∗2t−1+ β̂
∗
σ̂∗2t−1 and σ̂

∗2
1 = σ̂21. Next, we evaluate the estimates of c1,p and

c2,p on the data set {ε̂∗t}Tt=1. For instance,

ĉ∗FHS
1,p = Q1−p

µn
ε̂∗t − ε̂∗

oT
t=1

¶
.

Step 5. For each estimation method, compute the bootstrap estimates of V aRp
T+1 and

ESp
T+1 using σ̂

∗
T+1 and ĉ∗1,p and ĉ∗2,p.

Step 6. Identical to steps 3 and 4 in the naive bootstrap.

Step 3 accounts for the estimation risk in computing σ̂T+1 by replacing the estimates ω̂, α̂
and β̂ by their bootstrap analogues ω̂∗, α̂∗ and β̂

∗
when computing σ̂∗T+1. In particular, (10)

replicates the way in which σ̂2T is computed in (9). Notice however that σ̂
∗2
T is conditional

on the observed past observations on the losses {Lt : t = 1, . . . , T} , not on the bootstrap
losses generated in step 2, implying that it is small when the (true) losses are small at the
end of the sample and large when they are large.

Depending on the estimation method, step 4 computes a bootstrap estimate of the
risk measure that may or may not take into account the estimation risk in computing the
constants c1,p and c2,p. In particular, contrary to the nonparametric methods, the Normal
and Student methods do not account for this estimation risk as they make a parametric
assumption on G. For the FHS method, bootstrap residuals are centered before computing
the empirical quantile as a way to enforce the mean zero property on the estimated bootstrap
residuals (centering of the residuals is not needed if a constant is included in the returns
model since in that case the residuals have mean zero by construction).
We conclude this section by noting that it may be possible to apply asymptotic approxi-

mations such as the delta-method to calculate prediction intervals for the GARCH variance
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forecast.5 However, it is not at all obvious how to calculate prediction intervals for VaR
and ES using the delta method in the nonparametric risk models we consider. Furthermore,
even in parametric cases, the approximate delta-method is likely to perform worse than the
resampling techniques considered here. In the following we therefore restrict attention to
prediction intervals calculated via our resampling technique.

4 Monte Carlo Results

As indicated in the introduction the purpose of our paper is twofold: First, we want to assess
the loss of accuracy from estimation error when calculating VaR and ES. Second, we want
to assess our ability to quantify ex-ante the magnitude of this error via the construction of
confidence bands around the risk measures. This section provides quantitative evidence on
these two issues through a Monte Carlo study.
We will consider four versions of the GARCH-t(d) data generating process (DGP) below.

In each version we set α = .10 and ω = (202/252)∗(1− α− β) . The unconditional volatility
is thus 20% per year. Our four chosen parameterizations are:
1) Benchmark: β = .80, d = 8
2) High Persistence: β = .89, d = 8
3) Low Persistence: β = .40, d = 8
4) Normal Distribution: β = .80, d = 500
Recall that before applying the Hill estimator for the extreme value distribution we need

to choose a cut-off point, Tu, which defines the sub-sample of extremes from which the tail
index parameter will be estimated. In order to pick this important parameter we perform
an initial Monte Carlo experiment in which we simulate data from the four DGPs above,
estimate the tail index on a grid of cut-off values, and finally compute the resulting bias
and root mean squared error measures (RMSEs) from the one-day VaR and ES forecasts.
Figures 1 and 2 show the results for the case of 500 and 1,000 total estimation sample
points respectively. In each case, we choose a grid of truncation points which correspond
to including the 0.5% to 10% largest losses in the sub-sample of extremes. The horizontal
axis in each figure denotes the number of included extreme observations (out of 500 and
1,000 respectively), and the vertical axis shows the bias and RMSEs. From the viewpoint
of minimizing RMSE subject to achieving a bias that is close to zero, and looking broadly
across the four DGPs, it appears that a percentage cut-off of 3% is reasonable for VaR and
1% is reasonable for ES. Notice that we do not want to choose the truncation point on a case
by case basis as that would potentially bias the overall results in favor of the Hill-based risk
model. In any case the results are quite similar across DGPs and sample sizes but notably
different across VaR and ES models, which in itself is an important and useful finding.
Tables 1-4 contain the Monte Carlo results corresponding to the four DGPs above. The

top half of each table contains the VaR results and the bottom half the ES results. The
left half of each table contains the accuracy properties of the point estimates of the relevant
risk measure and the right half contains the 90% bootstrap interval properties. For both
the VaR and ES forecasts we consider two estimation sample sizes, T = {500, 1000} .

5This approach is taken for example in Duan (1994).
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In all the experiments we calculate the properties of the point estimates from 100,000
Monte Carlo replications. For the properties of the bootstrap prediction intervals, we con-
sider only 5,000 Monte Carlo replications, each with 999 bootstrap replications. Any Monte
Carlo study of the bootstrap is computationally demanding and this is particularly so in
our study due to the nonlinear optimization involved in estimating GARCH.

4.1 Point Predictions of VaR and ES

While the main focus of our paper is on constructing finite sample prediction intervals of
the VaR and ES measures, we first consider the various models’ ability to accurately point
forecast the risk measures. The point prediction results on VaR and ES are reported in
terms of bias and root mean squared error, which are reported in the left half of each table.

4.1.1 The Benchmark Case

The top panel of Table 1 contains the VaR results for our benchmark DGP when the sample
size is T = 500. Considering first the bias of the VaR estimates, the main thing to note is
the upward bias of the HS and the downward bias of the Normal. The latter is of course to
be expected as the Normal imposes a distribution tail which is too thin for the 1% coverage
rate. The other models appear to show only minor biases with the FHS model displaying
the smallest bias overall.
In terms of the root mean squared error (RMSE) of the VaR estimates, we see that the

HS has by far the highest RMSE, followed by the GC model. The Hill model in particular,
but also the FHS model, are quite close to the benchmark Student model, which assumes a
known degree of freedom equal to 8 and is therefore not a feasible alternative. The RMSE
of the Normal is also low but, as mentioned before, displays considerable bias.
Increasing the sample size to 1,000 in the second panel of Table 1 implies smaller biases

in general. The HS is still biased upwards and the Normal downwards. In terms of RMSE,
the Hill and FHS methods perform very well compared with the hypothetical benchmark
Student.
We next examine the quality of the point predictions of ES by the various models. We

now find a very large downward bias for the GC and again for the Normal model. In
comparison with the VaR results, the various estimated ES models have RMSEs which are
considerably larger than the hypothetical Student model. The increase in RMSE is due
partly to increases in the bias. The results for the GC model indicate that it is not useful
for ES calculations the way we have implemented it here. Notice that in the ES case the
GC model is an aggregate of two approximations: First, the Cornish-Fisher approximation
to the VaR and second the Gram-Charlier approximation to the cumulative density. Un-
fortunately, the two approximation errors appear to compound each other for the purpose
of ES calculation.

4.1.2 The High Persistence Case

The top half of Table 2 reports the VaR findings for a DGP of high volatility persistence
and therefore also high kurtosis. We see that the biases and RMSEs are comparable to the
benchmark DGP in Table 1 for the conditional models but not for the HS model. The HS
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model is now even more biased and has a RMSE of more than 50% of the average true VaR,
which is approximately 2.71. The Hill and FHS models again perform very well.
The bottom half of Table 2 reports results for ES using the high volatility persistence

DGP. We find that the results are very close to the bottom half of Table 1 for the conditional
models but not for HS. This finding matches the results for VaR reported in the top halves
of Tables 1 and 2 respectively. As before, the bias and RMSEs of the HS model are very
large, and for the ES the GC model again performs poorly.

4.1.3 The Low Persistence Case

In the top half of Table 3 we consider the VaR case of low volatility persistence which
makes the returns close to independent over time. Not surprisingly the HS model performs
much better now. Interestingly, the Hill and FHS models perform very well here also. The
bottom half of the table shows the results for ES forecasting in the low persistence process.
As in the VaR case, we see that the HS model now performs relatively well.

4.1.4 The Conditional Normal Case

The top half of Table 4 contains VaR results for the conditionally normal GARCH DGP.
Comparing with Table 1 we see that the bias and RMSEs are considerably smaller now. It
is still the case that the HS model is much worse than the conditional models. The Normal
model of course performs very well now as it is the true model. Interestingly, the Hill
and FHS models which do not directly nest the Normal model still perform decently. This
is important as the risk manager of course never knows exactly the degree of conditional
non-normality in the return distribution.
The bottom half of Table 4 considers the ES risk measure. Comparing the bottom of

Table 4 with the bottom of Table 1 we see that the biases and RMSEs are generally much
smaller under conditional normality. The biases and RMSEs for ES are very much in line
with the ones from VaR in the top half of Table 4. This is sensible from the perspective
that under conditional normality the ES does not contribute information over and beyond
the VaR.

4.2 Bootstrap Prediction Intervals for VaR and ES

The above discussion was concerned with the precision of the VaR and ES point forecasts.
We now turn our attention to the results for the bootstrap prediction intervals from the
different VaR and ES models. That is, we want to assess the ability of the bootstrap to
reliably predict ex ante the accuracy of each method in predicting the 1-day-ahead 1% VaR
and ES. The prediction interval results are reported in the right hand side of each table.
We show the true coverage rate of nominal 90% intervals as well as the average limits of
the confidence bands and the average width of the confidence band as a percentage of the
true VaR point forecast.
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4.2.1 The Benchmark Case

Turning back to Table 1 and looking at the top panel, we remark that the historical simu-
lation VaR (HS) bands (calculated from the i.i.d. bootstrap) have a terribly low effective
coverage for a promised nominal coverage of 90%. Furthermore, the confidence bands are
on average very wide. The HS method ignores the dynamics in the DGP which is costly
both in terms of coverage and width.6

The VaR imposing the conditional normal distribution (Normal) has a coverage which
is as bad as the HS model but which has a much smaller average width. The small width
does of course not offer much comfort here as the nominal coverage is much too small. The
benchmark Student model suffers from slight under-coverage but is very narrow. Notice thus
that the Student model is not perfect in finite samples. This is because the bootstrap is not
able to perfectly capture the GARCH estimation parameter uncertainty for this sample size.
Not surprisingly though the Student model with known degree of freedom performs very
well overall. The Hill model has lower coverage than the Student and has wider intervals.
The GC models has even lower coverage than the Hill and has wider intervals. Finally, the
FHS model has slight over-coverage, which is arguably to be preferred to under-coverage,
but it also has a fairly wide average coverage interval.
In the second panel of Table 1 we increase the risk manager’s sample size to 1,000

past return observations in each simulation. Comparing with the top panel in Table 1 the
result are as follows: The HS model coverage actually gets worse with sample size. In the
short (500 observations) sample the HS model is able to pick up some of the dynamics in
the return process, but it is less able to do so as the sample size increases. The average
width is smaller as the sample size increases due to the higher precision in estimating the
(unconditional) VaR. The Normal model also has worse coverage and better width. This
may seem puzzling, but note that there is no reason to believe that a larger sample size
will improve the coverage of a misspecified model. The Student model has around the same
coverage and better width compared with the 500 observation case. The estimation error
in the GARCH parameters is less of an issue now, which brings the Student model closer
to the truth. The Hill and GC models both have better coverages and widths now. Finally,
notice that the FHS model also benefits from the larger estimation samples and show better
coverages and lower widths.
The bottom half of Table 1 reports results for the bootstrap prediction intervals from

the different ES models. We notice the following: The Historical Simulation ES bands
(calculated from the i.i.d. bootstrap) have a low effective coverage for a promised nominal
coverage of 90%. Furthermore the confidence bands on average are quite wide. The HS
results for ES are roughly comparable with those for VaR in Table 1. The ES imposing the
conditional normal distribution (Normal) has a surprisingly low coverage. Thus, while the
normal distribution is bad for VaR prediction intervals it is much worse for ES prediction
intervals. The Student model suffers from slight under-coverage but is very narrow. The
Hill model has the best coverage of the feasible models but is quite wide. The GC model
has very low coverage and quite wide intervals. Finally, the FHS model has considerable

6We also calculated GARCH-bootstrap confidence intervals for the HS model. These performed better
than the iid bootstrap intervals reported in the tables but they were still very inaccurate and were therefore
not included in the tables. The iid boostrap is shown here because it is arguably most in line with the
model-free spirit of the HS model.
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under-coverage. This is in contrast with the VaR intervals in the top half of the table.
Looking more broadly at the results in Table 1, we see that the infeasible Student has

the best coverage followed by the Hill and then the FHS model. The HS, Normal and GC
models have poor coverage. Compared with the top half of the table it thus appears that
while the FHS performs well for VaR prediction interval calculation, it is less useful for
ES prediction intervals. The Hill estimator appears to be preferable here. Generally the
coverage rates are considerably worse for ES than for VaR.

4.2.2 The High Persistence Case

The top right hand side of Table 2 reports VaR interval results from a return generating
process with relatively high persistence. Comparing panel for panel with the benchmark
process in Table 1, we notice that the HS model has worse coverage and worse width,
whereas the Normal model has better coverage. The Student model has slightly worse
coverage. The GC model has similar coverage but wider intervals. The FHS has roughly
the same coverage under high persistence but the widths are wider here as well. Thus, the
higher persistence associated with higher kurtosis leads to wider prediction intervals overall.
The bottom right hand side of Table 2 reports ES results. Comparing the VaR and ES

results in Table 2 we see that the coverage rates are typically much worse for ES than VaR.
A comparison of the results for ES against the benchmark process in Table 1 reveals

that the HS model has worse coverage and worse width. The Normal model has very poor
coverage still. The Student model has slightly worse coverage and the width is worse. The
Hill model generally has better coverage but wider intervals. The GC model still has very
poor coverage. Finally, the FHS has roughly the same coverage under high persistence but
the widths are worse here as well. The higher persistence again leads to wider prediction
intervals overall.

4.2.3 The Low Persistence Case

The top right hand side of Table 3 reports VaR results from returns with low variance
persistence. Not surprisingly the results are reversed from Table 2, which contained high
persistence variances. We now find that the HS model has much better coverage and
slightly better widths. The low persistence process is closer to i.i.d., the only assumption
under which the HS model is truly justified. The Normal model has worse coverages but it
has better widths. The Student model has near perfect coverage and better widths. The
Hill and GC models have similar coverages and better widths than before. Finally, the FHS
model has worse coverages, but the widths are slightly better.
The bottom right hand side of Table 3 reports ES results from returns with low variance

persistence. We now find that the HS performs much better as we are closer to the i.i.d.
case but otherwise the results are similar to the benchmarks in Table 1.

4.2.4 The Conditional Normal Case

In Table 4 we generate returns which are close to conditionally normally distributed. Com-
paring the VaR panels in Table 4 with the corresponding panels in Table 1, where the

17



conditional returns were t(8), we see the following: The HS model now has worse cover-
age but also lower width than before. The Normal model has better coverage and better
width. This is not surprising as the Normal model is now closer to the truth. The Student
model has better coverage and better width, probably because the return data generating
process is to some degree easier to capture. The Hill and GC models have similar coverage
and better width than before. The FHS model also has roughly the same coverage under
conditional normality but better width than under the conditional t(8). Not surprisingly,
the models generally perform better under conditional normality. It is perhaps surprising
that the Hill model performs well under conditional normality as the tail index parameter
may be biased in this case.
In the bottom half of Table 4 we report the ES results. As expected, the models generally

perform better under conditional normality in terms of coverage. The HS model is again
notably worse than the other models, the FHS is also worse than the others. The Normal
model and the GCmodel which nests the normal models naturally have very good coverages.

4.3 Summary of Results

Based on the results in Tables 1-4, we reach the conclusion that the HS model not only gives
bad point estimates of VaR and ES estimates (see also Pritsker 2001) but it also implies
very poor confidence bands. This is true even when the degree of volatility persistence is
relatively modest. The Normal model of course works reasonably well when the normality
assumption is close to true in the data but otherwise not. The Hill and FHS models
perform quite well, even for the conditionally normal distribution. We noticed also that
the GC model has serious problems when calculating ES point estimates and intervals for
conditionally non-normal returns. Finally, the FHS model works particularly well for VaR
calculations.
In general we found that the RMSEs of the feasible models were much higher in percent

of the benchmark Student model when calculating ES compared to VaR measures. Thus,
while the ES measure in theory conveys more information about the loss distribution tail,
it is also harder to estimate precisely. This point is important to consider when arguing
over the relative merits of the two risk measures.
Unfortunately, it is also much harder to reliably assess ex ante the accuracy of ES

measures compared with the VaR measures. While the Hill, GC and particularly the FHS
model give quite reliable coverage rates for the 90% confidence bands around the VaR point
forecast, the corresponding coverage rates for the ES measure are typically much lower
than 90% and thus unreliable. We suspect that the higher bias of the ES forecasts is the
culprit of the under-coverage in this case. Notice that from a conservative risk management
perspective over-coverage would be preferred to under-coverage.
Finally, while the FHS model appears to be preferable for calculating VaR forecasts and

forecasts intervals, the Hill model performs well in the ES case. The distribution-free FHS
model is useful for quantile forecasting but when the mean beyond the quantile must be
forecast, then the functional form estimation implicit in the Hill method adds value.
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5 Summary and Directions for Future Work

Risk managers and portfolio managers often haggle over the precision of a VaR estimate.
A trader faced with a point estimate VaR which exceeds the agreed upon VaR limit may
be forced to rebalance the portfolio at an inopportune time. Quantifying the uncertainty
of the VaR point estimate is important because it allows for risk managers to make more
informed decisions when dictating a portfolio rebalance.
Consequently we suggest a bootstrap method for calculating confidence bands around

the VaR point estimate. The procedure is valid even under conditional heteroskedasticity
and nonnormality, which are important features of speculative asset returns. We find that
the FHS VaR models yield confidence bands which have correct coverage but which are also
quite wide. VaR models based on parametric assumptions are much narrower but also often
too narrow causing under-coverage of the intervals. We also find that the accuracy of ES
forecasts is typically much lower than that of VaR forecasts. Furthermore the accuracy of
the ES forecasts is harder to quantify ex ante. These findings have important implications
for the choice of risk model and risk measure.
The directions for future work are several.

• So far we have studied the effects of estimation risk at the portfolio level only (See
Benson and Zangari, 1997, Engle and Manganelli, 2000, and Zangari, 1997). Many
banks rely instead on multivariate risk factor models such as those considered in
Glasserman, Heidelberger, and Shahabuddin (2000 and 2002). The issue of estimation
risk is probably even more important in the multivariate case.

• We only consider one-day ahead VaR and ES in this paper. Extending the horizon
of interest would be useful. The interesting thing about the 1-step ahead is that here
ONLY estimation risk matters (given the true model).

• We want to extend the bootstrap methods described here to account for model risk.
• Risk models based on realized volatility models rather than GARCH models may
allow for the calculation of VaR and ES prediction intervals from asymptotic theory
(See Andersen, Bollerslev, Diebold and Labys, 2003). We plan to explore these types
of models in future work.

We round off by noting that one of the industry benchmarks, namely RiskMetrics, relies
on calibrated rather than estimated parameters and does not allow for the calculation of
estimation risk. The issue of VaR uncertainty is nevertheless crucial in those models as well
but it is not easily quantified.
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Figure 1: RMSE and Bias of Hill Estimator for Various Truncation Points
The Total Sample Consists of 500 Daily Loss Observations
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Figure 2: RMSE and Bias of Hill Estimator for Various Truncation Points
The Total Sample Consists of 1,000 Daily Loss Observations
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Table 1. 90% Prediction Intervals for 1% VaR and ES: Benchmark Case

DGP: GARCH-t (d) with α = 0.10, β = 0.80 and d = 8

VaR Properties VaR Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage
Rate

Lower
Limit

Upper
Limit

Width
% VaR

500 HS 3.282 0.176 0.747 60.44 2.73 4.03 41.80
Normal 2.866 −0.240 0.331 59.66 2.53 3.19 21.20
Student 3.090 −0.016 0.243 88.78 2.73 3.44 22.83
Hill 3.053 −0.053 0.327 86.04 2.56 3.53 31.19
GC 3.194 0.088 0.493 85.10 2.60 3.67 34.41
FHS 3.138 0.032 0.383 90.72 2.57 3.77 38.59

1000 HS 3.239 0.133 0.671 47.52 2.85 3.69 27.11
Normal 2.872 −0.234 0.289 41.74 2.63 3.09 14.85
Student 3.097 −0.009 0.179 88.60 2.83 3.33 16.14
Hill 3.071 −0.035 0.237 86.80 2.71 3.40 22.27
GC 3.245 0.139 0.435 87.08 2.77 3.63 27.75
FHS 3.106 0.000 0.268 90.48 2.70 3.52 26.46

ES Properties ES Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage
Rate

Lower
Limit

Upper
Limit

Width
% ES

500 HS 3.966 0.131 0.978 60.54 3.15 4.61 38.06
Normal 3.283 −0.552 0.617 20.70 2.90 3.64 19.29
Student 3.816 −0.019 0.299 88.78 3.37 4.24 22.68
Hill 3.765 −0.071 0.544 77.12 2.97 4.45 47.56
GC 2.609 −1.226 1.421 42.08 1.98 3.79 47.18
FHS 3.718 −0.107 0.535 75.42 2.95 4.36 36.75

1000 HS 4.020 0.185 0.894 52.24 3.40 4.57 30.58
Normal 3.289 −0.546 0.586 7.32 3.01 3.54 13.85
Student 3.824 −0.011 0.221 88.60 3.50 4.11 15.94
Hill 3.815 −0.020 0.397 83.16 3.22 4.36 29.95
GC 2.490 −1.345 1.469 13.52 1.98 3.32 35.02
FHS 3.771 −0.064 0.391 80.52 3.18 4.27 28.49
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Table 2. 90% Prediction Intervals 1% VaR and ES: High Persistence

DGP: GARCH-t (d) with α = 0.10, β = 0.89 and d = 8

VaR Properties VaR Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage
Rate

Lower
Limit

Upper
Limit

Width
% VaR

500 HS 3.242 0.532 1.958 32.82 2.61 4.04 52.52
Normal 2.471 −0.239 0.341 60.60 2.13 2.83 25.71
Student 2.664 −0.046 0.239 86.68 2.30 3.05 27.54
Hill 2.662 −0.048 0.349 85.22 2.17 3.14 35.62
GC 2.771 0.061 0.556 85.72 2.20 3.33 41.50
FHS 2.738 0.028 0.418 90.52 2.19 3.35 42.60

1000 HS 3.330 0.620 2.064 20.78 2.85 3.92 40.06
Normal 2.485 −0.225 0.299 45.84 2.23 2.67 16.47
Student 2.679 −0.031 0.178 88.44 2.41 2.88 17.60
Hill 2.681 −0.029 0.248 87.22 2.31 2.94 23.59
GC 2.821 0.111 0.549 87.54 2.37 3.18 30.33
FHS 2.711 0.001 0.279 90.86 2.30 3.05 28.08

ES Properties ES Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage
Rate

Lower
Limit

Upper
Limit

Width
% ES

500 HS 3.967 0.620 2.440 32.34 3.07 4.63 46.40
Normal 2.829 −0.518 0.635 33.42 2.44 3.24 23.79
Student 3.289 −0.058 0.296 86.68 2.84 3.77 27.66
Hill 3.293 −0.048 0.597 78.42 2.51 3.97 43.95
GC 2.222 −1.125 1.557 44.12 1.61 3.32 50.86
FHS 3.259 −0.088 0.576 77.10 2.52 3.92 41.64

1000 HS 4.286 0.939 2.751 22.00 3.54 4.98 43.66
Normal 2.846 −0.501 0.602 14.02 2.55 3.06 15.46
Student 3.309 −0.038 0.219 88.44 2.98 3.56 17.59
Hill 3.337 −0.010 0.435 84.46 2.75 3.80 31.72
GC 2.135 −1.212 1.578 13.98 1.64 2.84 36.39
FHS 3.298 −0.049 0.417 82.12 2.72 3.71 30.02
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Table 3. 90% Prediction Intervals 1% VaR and ES: Low Persistence

DGP: GARCH-t (d) with α = 0.10, β = 0.4 and d = 8

VaR Properties VaR Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage
Rate

Lower
Limit

Upper
Limit

Width
% VaR

500 HS 3.226 0.079 0.464 82.36 2.72 3.94 38.79
Normal 2.910 −0.237 0.321 52.02 2.63 3.20 18.12
Student 3.137 −0.010 0.232 90.60 2.84 3.45 19.40
Hill 3.093 −0.054 0.318 85.96 2.64 3.56 29.25
GC 3.245 0.098 0.497 85.06 2.69 3.72 32.75
FHS 3.179 0.032 0.374 91.48 2.65 3.81 36.88

1000 HS 3.186 0.039 0.382 75.10 2.83 3.60 24.47
Normal 2.914 −0.233 0.284 36.22 2.70 3.13 13.66
Student 3.142 −0.005 0.173 90.10 2.91 3.38 14.93
Hill 3.112 −0.035 0.233 87.50 2.77 3.46 21.93
GC 3.291 0.144 0.437 86.98 2.84 3.70 27.33
FHS 3.147 0.000 0.263 90.46 2.76 3.58 26.06

ES Properties ES Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage
Rate

Lower
Limit

Upper
Limit

Width
% ES

500 HS 3.867 −0.019 0.636 73.52 3.11 4.51 36.05
Normal 3.333 −0.553 0.608 14.58 3.01 3.67 17.00
Student 3.875 −0.011 0.286 90.60 3.50 4.26 19.57
Hill 3.816 −0.072 0.537 76.04 3.06 4.52 37.66
GC 2.648 −1.238 1.412 41.18 2.01 3.84 47.12
FHS 3.778 −0.108 0.529 73.92 3.03 4.41 35.54

1000 HS 3.901 0.015 0.524 76.18 3.33 4.42 28.04
Normal 3.337 −0.549 0.581 6.20 3.09 3.59 12.86
Student 3.879 −0.007 0.214 90.10 3.60 4.17 14.66
Hill 3.865 −0.021 0.392 82.88 3.29 4.44 29.55
GC 2.528 −1.358 1.458 12.82 2.01 3.36 34.73
FHS 3.820 −0.066 0.386 80.36 3.25 4.34 28.04
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Table 4. 90% Prediction Intervals 1% VaR and ES: Normal Distribution

DGP: GARCH-t (d) with α = 0.10, β = 0.80 and d = 500

VaR Properties VaR Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage
Rate

Lower
Limit

Upper
Limit

Width
% VaR

500 HS 3.023 0.122 0.545 55.14 2.63 3.50 30.08
Normal 2.889 −0.012 0.172 88.90 2.61 3.13 17.98
Student 2.893 −0.008 0.172 88.90 2.61 3.13 17.98
Hill 2.850 −0.051 0.227 86.06 2.48 3.17 23.86
GC 2.874 −0.027 0.209 86.94 2.53 3.16 21.78
FHS 2.903 0.002 0.255 90.88 2.49 3.30 28.01

1000 HS 2.999 0.098 0.502 39.96 2.72 3.30 19.98
Normal 2.895 −0.006 0.123 89.54 2.70 3.07 12.75
Student 2.898 −0.003 0.123 89.76 2.71 3.08 12.75
Hill 2.869 −0.032 0.163 87.46 2.61 3.10 16.88
GC 2.889 −0.012 0.149 87.92 2.65 3.11 15.85
FHS 2.888 −0.013 0.179 90.36 2.60 3.17 19.64

ES Properties ES Bootstrap Intervals Properties

T Method Average Bias RMSE
Coverage
Rate

Lower
Limit

Upper
Limit

Width
% ES

500 HS 3.447 0.127 0.647 54.44 2.92 3.83 27.5
Normal 3.309 −0.011 0.196 88.86 2.99 3.58 17.83
Student 3.309 −0.011 0.196 88.90 2.99 3.58 17.83
Hill 3.271 −0.048 0.306 80.98 2.78 3.66 26.50
GC 3.416 0.096 0.489 88.10 2.78 4.30 45.93
FHS 3.347 −0.073 0.308 79.70 2.75 3.62 26.29

1000 HS 3.480 0.160 0.608 41.98 3.09 3.80 21.37
Normal 3.315 −0.005 0.141 89.68 3.10 3.52 12.64
Student 3.316 −0.004 0.141 89.76 3.10 3.52 12.64
Hill 3.304 −0.017 0.219 85.54 2.95 3.61 19.82
GC 3.365 0.045 0.339 89.90 2.91 3.97 31.91
FHS 3.274 −0.046 0.221 83.46 2.92 3.57 19.57
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