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Résumé / Abstract 
 
Dans ce travail, nous proposons une généralisation au cas multivarié de l'approche de Hong 
(1996) afin de tester l'indépendance de deux séries multivariées stationnaires et 
autorégressives d'ordre infini. Il s'agit d'une approche semiparamétrique où chaque série est 
d'abord filtrée par une autorégression d'ordre fini et où la statistique de test est une version 
normalisée d'une somme pondérée de formes quadratiques dans les matrices de corrélations 
croisées résiduelles résultantes à tous les délais. Les poids sont définis par une fonction de 
noyau et un point de troncature. En utilisant un résultat de Lewis et Reinsel (1985), la loi 
asymptotique de la statistique de test est obtenue sous l'hypothèse nulle et la convergence du 
test est établie pour une contre-hypothèse fixée de corrélation sérielle de forme quelconque.  
À des facteurs de normalisation près, la statistique portmanteau étudiée dans Bouhaddioui et 
Roy (2003), qui est basée sur un nombre fixé de délais, peut être vue comme un cas particulier 
en utilisant le noyau uniforme tronqué. Cependant, plusieurs noyaux produisent une plus 
grande puissance comme le montrent une analyse asymptotique de la puissance ainsi que des 
simulations de Monte Carlo en échantillons finis. Un exemple avec des données réelles est 
aussi présenté. 
 

Mots clés : vecteurs autorégressifs d'ordre infini, indépendance, corrélations 
croisées résiduelles, noyaux, statistique portmanteau, puissance. asymptotique. 
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In many situations, we want to verify the existence of a relationship between multivariate time 
series. Here, we propose a semiparametric approach for testing the independence between 
two infinite order vector autoregressive (VAR(∞ )) series which is an extension of Hong’s 
(1996a) univariate results. We first filter each series by a finite-order autoregression and the 
test statistic is a standardized version of a weighted sum of quadratic form in residual cross-
correlation at all possible lags. The weights depend on a kernel function and on a truncation 
parameter. Using a result of Lewis and Reinsel (1985), the asymptotic distribution of the 
statistic test is derived under the null hypothesis and its consistency is also established for a 
fixed alternative of serial cross-correlation of unknown form. Apart from standardization 
factors, the multivariate portmanteau statistic proposed by Bouhaddioui and Roy (2003) that 
takes into account a fixed number of lags can be viewed as a special case by using the 
truncated uniform kernel. However, many kernels lead to a greater power, as shown in an 
asymptotic power analysis and by a small simulation study in finite samples. A numerical 
example with real data is also presented. 
 

 
Keywords: infinite order vector autoregressive process,  independence, 
residual crosscorrelation, kernel function; portmanteau statistic; asymptotic power. 
 
Codes JEL : Primary 62M10; secondary 62M15 



1 Introduction

In multivariate time series, many recent papers address the problem of checking the hypothesis

independence or non-correlation between two vector series. Most of these studies concentrated

on tests for independence of two multivariate finite order vector autoregressive (VAR) or vector

autoregressive moving average (VARMA) time series. El Himdi and Roy (1997) generalized the

procedure developed by Haugh (1976) for univariate time series in order to test the null hypothesis

of noncorrelation between two multivariate stationary and invertible VARMA series. They proposed

test statistics based on the residual cross-correlation matrices R(12)
â (j), |j| ≤ M for a given M < N ,

(N being the sample size), between the two residual series {â(1)
t } and {â(2)

t } resulting from fitting

the true VARMA models to each of the original series {X(1)
t } and {X(2)

t }. Under the hypothesis

of non-correlation between the two series, they showed in particular that an arbitrary vector of

residual cross-correlations asymptotically follows a multivariate normal distribution. Hallin and

Saidi (2002) used that result to develop a test statistic that takes into account a possible pattern in

the signs of cross-correlations at different lags. This latter test is a generalization to the multivariate

case of the procedure introduced by Koch and Yang (1986). Also, El Himdi and Roy’s procedure

was extended to partially nonstationary (cointegrated) VARMA series by Pham, Roy and Cédras

(2003).

In the univariate case, another important extension of Haugh’s test is the class of spectral test

statistics introduced by Hong (1996a). His approach is semiparametric and is valid for two infinite

order autoregressive series AR(∞), say {X(1)
t } and {X(2)

t }. Its consists to fitting an autoregressive

model of order p to a series of N observations from each infinite order autoregressive process X(h),

h = 1, 2. The order ph of the fitted autoregression is a function of the sample size, see Berk (1974).

The portmanteau type statistic is based on the sum of the weighted squared cross-correlations

r
(12)
â (j) at all possible lags between the residual series and is defined by

QN =
N
∑N−1

j=1−N k2(j/M)r(12)
â (j)

2
− SN (k)

{2DN (k)}1/2
, (1.1)

where k(.) is an arbitrary kernel function, M is either a truncation or smoothing parameter. The

quantities SN (k) and DN (k) that depend only on the kernel k(.) are defined by equation (3.4).

They essentially correspond to the asymptotic mean and variance of the weighted sum. Using the

truncated uniform kernel, QN can be viewed as a normalized version of Haugh’s statistic. Un-

der the null hypothesis of independence, the statistic QN is asymptotically N (0, 1). The test is

unilateral and rejects for large values of QN . Hong’s approach presents two important practical

advantages. First, it protects us against mis-specifications of the true underlying ARMA models,
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as in Haugh approach that may lead to wrong conclusions because they invalidate the asymptotic

theory. Second, in contrast to Haugh’s and Koch and Yang’s tests that are based on the residual

cross-correlations at lag j such that |j| ≤ M , where M is fixed with respect to N , the portmanteau

test QN takes into account all lags and is therefore consistent for a large class of alternatives of

serial cross-correlations of arbitrary form between the two series. A robust version of Hong’s test

for univariate ARMA series is described in Duchesne and Roy (2003). Bouhaddioui and Roy (2003)

derived the asymptotic distribution of an arbitrary vector of residual cross-correlation under the

hypothesis of non-correlation of two series. That result allows them to propose test statistics for the

alternative of serial cross-correlation at a particular lag or at a fixed number of lags j, for example

|j| ≤ M .

The main objective of this work is to extend Hong’s approach to VAR(∞) models. These mod-

els were studied by many authors and are discussed for example in Lütkepohl (1991) and Reinsel

(1993). Using the cross-correlation matrices R(12)
â (j), |j| ≤ N − 1, between the two residuals se-

ries {â(1)
t } and {â(2)

t }, obtained by approximating the two multivariate VAR(∞) series by finite

order autoregressions, we introduce a multivariate version of the weighted portmanteau statistic

QN . It can be viewed as a normalized version of the L2-norm of a kernel-based estimator of the

cross-coherency function between the two innovation series. With univariate series, we retrieve

Hong’s statistic. The test statistic continues to have an asymptotic N (0, 1) distribution under the

hypothesis of independence of the two series and is also consistent for any alternative of serial

cross-correlation of arbitrary form.

The organization of the paper is as follows. Section 2 contains preliminary results. The new

test statistic is introduced in Section 3. Using a central limit theorem for a martingale difference, it

is shown that its asymptotic distribution under the null hypothesis is N (0, 1). The consistency of

the test is established in Section 4. The Bahadur’s asymptotic relative efficiency of one kernel with

respect to another is also discussed. In Section 5, we present the results of a small Monte Carlo

experiment conducted in order to study the exact level and power of the test for finite samples and

to analyze the impact of the kernel and the truncation parameter on the level and power. Finally,

the new test is applied to a set of American and Canadian economic data. Most of the proofs are

relegated to the Appendix.
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2 Preliminaries

Let X = {Xt , t ∈ Z} be a multivariate second-order stationary process of dimension m. Without

loss of generality, we can assume that E(Xt) = 0. The autocovariance matrix at lag j, j ∈ Z, is

given by

ΓX(j) = E(XtXt−j)T = (γuv(j))m×m,

with ΓX(j) = ΓX(−j)T . We suppose that

∞∑
j=−∞

|γuv(j)| < ∞ , u, v = 1, ...,m, j ∈ Z. (2.1)

The autocorrelation matrix at lag j, j ∈ Z, is denoted by

ρX(j) = (ρuv(j))m×m, ρuv(j) = γuv(j){γuu(0)γvv(0)}−1/2,

with ρX(j) = ρX(−j)T . If we denote by D{bi} a diagonal matrix whose elements are b1, ..., bm,

the matrix form of ρX(j) is given by

ρX(j) = D{γii(0)−1/2}ΓX(j)D{γii(0)−1/2} , j ∈ Z. (2.2)

Under condition (2.1), the standardized spectral density function fX(λ) = (fuv(λ))m×m is defined

by

fX(λ) =
1
2π

∞∑
j=−∞

ρX(j)e−iλj , −π ≤ λ ≤ π,

The coherency function SX(λ) = (Suv(λ))m×m at the frequency λ is given by

SX(λ) = D{fuu(λ)}−1/2fX(λ)D{fvv(λ)}−1/2 , −π ≤ λ ≤ π.

The coherence function at the frequency λ is the modulus of the coherency function.

Given a realization X1, ...,XN of length N of the process X, the m×m sample autocovariance

and autocorrelation matrices at lag j, 0 ≤ j ≤ N − 1, are denoted by CX(j) = (cuv(j))m×m and

RX(j) = (ruv(j))m×m and are defined by

CX(j) =
1
N

N∑
t=j+1

XtXT
t−j , RX(j) = D{cii(0)−1/2}CX(j)D{cii(0)−1/2}.

For −N + 1 ≤ j ≤ 0, we have CX(j) = CX(−j)T and RX(j) = RX(−j)T .
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In the sequel, we suppose that the process X admits a stationary infinite-order autoregressive

representation, VAR(∞), i.e., there exists matrices Φl, l ∈ N, such that

Xt −
∞∑
l=1

ΦlXt−l = Φ(B)Xt = at, t ∈ Z, (2.3)

where
∑∞

l=1 ‖Φl‖ < ∞, Φ(z) = Im −
∑∞

l=1 Φlz
l and det{Φ(z)} 6= 0, |z| ≤ 1, where Im is the

identity matrix of dimension m, B is the backward shift operator defined by BlXt = Xt−l and ‖.‖

is the Euclidean matrix norm defined by ‖A‖2 = tr(ATA) for a given matrix A. The process a is

a strong white noise that is, a sequence of independent identically distributed random vectors with

mean 0 and regular covariance matrix Σ. The stationarity assumption ensures that the process X

also admits a causal linear representation.

Based on a realization X1, ...,XN of length N , we fit an autoregressive model of order p,

VAR(p), whose coefficients are denoted by Φ1,p, ...,Φp,p and we write Φ(p) = (Φ1,p, ...,Φp,p). The

corresponding Yule-Walker estimator Φ̂(p) = (Φ̂1,p, ..., Φ̂p,p) is given by

Φ̂(p) = ÂT
1,pÂ

−1
p , (2.4)

where Â1,p = (N − p)−1
∑N

t=p+1 Xt(p)XT
t , Âp = (N − p)−1

∑N
t=p+1 Xt(p)XT

t (p) and Xt(p) =

(XT
t−1,X

T
t−2, ...,X

T
t−p)

T . To obtain a consistent estimator Φ̂(p), we must let p tends to infinity as

N increases but not too fast. The following assumption on the noise process is also needed.

Assumption A The m-dimensional strong white noise a = {at = (a1t, .., amt)T } is such that

E(a) = 0, its covariance matrix Σ is regular and

E|ai,taj,tak,tal,t| < γ4 < ∞ , i, j, k, l ∈ {1, ...,m} and t ∈ Z.

The following proposition that gives the consistency rate of Φ̂(p) is a multivariate generalization

of a univariate result given by Berk (1974). It follows from Eq. (2.8) of Lewis and Reinsel (1985,

p. 397), see also Theorem 2.1 in Paparoditis (1996).

Proposition 2.1 Let {Xt} be a VAR(∞) process given by (2.3) and satisfying Assumption A.

Also, suppose that the following two conditions are verified:

(i) p is chosen as a function of N such that p →∞ and p2/N → 0 as N →∞ ;

(ii)
√

p
∑∞

j=p+1 ‖Φj‖ → 0 as N →∞.

Then, the estimator Φ̂(p) defined by (2.4) is such that

‖Φ̂(p)−Φ(p)‖ = Op(
p1/2

N1/2
). (2.5)
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In this result, the condition p = o(N1/2) for the rate of increase of p ensures that asymptotically,

enough sample information is available for the estimators to have standard limiting distributions.

The condition
√

p
∑∞

j=p+1 ‖Φj‖ → 0 imposes a lower bound on the growth rate of p, which ensures

that the approximation error of the true underlying model by a finite order autoregression gets

small when the sample size increases. A more detailed discussion of these conditions is available in

Lütkepohl (1991), see also Hong (1996a).

Now, suppose that the process X is partitioned into two subprocesses X(h) = {X(h)
t , t ∈ Z},

h = 1, 2, with m1 and m2 components respectively (m1 + m2 = m), that is Xt = (X(1)T

t ,X(2)T

t )T .

The autocovariance matrix ΓX(j) is partitioned as

ΓX(j) =

 Γ(11)
X (j) Γ(12)

X (j)

Γ(21)
X (j) Γ(22)

X (j)

 , j ∈ Z,

where Γ(hh)
X (j) is the autocovariance matrix at lag j of the process X(h), h = 1, 2, and Γ(12)

X (j) is

the cross-covariance matrix at lag j between {X(1)
t } and {X(2)

t } and Γ(21)
X (j) = Γ(12)

X (−j)T . The

autocorrelation matrix ρX(j), the spectral density matrix fX(λ) and the coherency function SX(λ)

can also be partitioned in a similar way. Given a realization of length N of the process X , the

sample cross-covariance matrix at lag j is defined by

C
(12)
X (j) = N−1

N∑
t=j+1

X(1)
t X(2)T

t−j , 0 ≤ j ≤ N − 1. (2.6)

Also, for −N + 1 ≤ j ≤ 0, C
(12)
X (−j) = C

(21)
X (j)T and C

(12)
X (j) = 0 for |j| ≥ N . The sample

cross-correlation matrix at lag j is given by

R(12)
X (j) = D{c(11)

X,ii(0)−1}C(12)
X (j)D{c(22)

X,ii(0)−1}. (2.7)

We denote by r
(12)
X (j) = vec(R(12)

X (j)) where the symbol vec stands for the usual operator that

transforms a matrix into a vector by stacking its columns.

In the sequel, we suppose that for h = 1, 2, X(h) satisfy (2.3) and Assumption A and we want

to test the null hypothesis that they are uncorrelated (or independent in the Gaussian case), that

is ρ
(12)
X (j) = 0, j ∈ Z. As in El Himdi and Roy (1997), this hypothesis is equivalent to

ρ
(12)
a (j) = 0 , j ∈ Z. (2.8)
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Each series X(h)
1 , ...,X(h)

N is described by a finite-order autoregressive model VAR(ph). The order

ph depends on N . The resulting residuals are given by

â
(h)
t =

X(h)
t −

∑ph
l=1 Φ̂l,ph

X(h)
t−l if t = ph + 1, ..., N ,

0 if t ≤ ph,
(2.9)

where the Φ̂l,ph
are the Yule-Walker estimators defined by (2.4). The residual cross-covariance

matrix C
(12)
â (j) is defined by

C
(12)
â (j) =

N−1
∑N

t=j+1 â
(1)
t â

(2)T

t−j if 0 ≤ j ≤ N − 1 ,

N−1
∑N

t=−j+1 â
(1)
t+jâ

(2)T

t if −N + 1 ≤ j ≤ 0 ,
(2.10)

the corresponding residual cross-correlation matrix is given by

R(12)
â (j) = D{c(11)

â,ii (0)−1}C(12)
â (j)D{c(11)

â,ii (0)−1}.

A commonly used nonparametric kernel-based estimator of the standardized cross-spectral den-

sity function f (12)
a (λ) is given by

f̂
(12)

a (λ) =
1
2π

N−1∑
j=−N+1

k(j/M)R(12)
â (j)e−iλj , (2.11)

where k(.) is a suitable kernel function. The parameter M is a truncation point when the kernel is

of compact support, or a smoothing parameter when the kernel support is unbounded. We suppose

that M is function of N such that M → ∞ and M/N → 0 when N → ∞. The most commonly

used kernels typically give more weight to lower lags and less weight to higher ones. An exception

is the truncated uniform kernel kT (z) = I[|z| ≤ 1], where I(A) represents the indicator function

of the set A, which gives the same weight to all lags. In the sequel, we suppose that the kernel

function k satisfies the following assumption.

Assumption B The kernel k : R → [−1, 1] is a symmetric function, continuous at zero, has at

most a finite number of discontinuity points, and is such that k(0) = 1,
∫ +∞
−∞ k2(z)dz < ∞.

The property k(0) = 1 implies that the weights assigned to the lower lags are close to unity. The

square integrability of the kernel k implies that k(z) → 0 as |z| → ∞. Thus, eventually, less weight

is given to R(12)
â (j) as j increases. It is worth noting that all the kernels used in spectral analysis

satisfy Assumption B, see Priestley (1981, Section 6.2.3).
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3 The test statistic and its asymptotic null distribution

With multivariate time series, the squared cross-correlation r
(12)
â (j)2 in (1.1) is replaced by a

quadratic form in the vector r
(12)
â (j) = vec(R(12)

â (j)). The test is based on the following sum

of weighted quadratic forms at all possible lags

T (â, Σ̂) =
N−1∑

j=1−N

k2(j/M)Q(12)
â (j) (3.1)

where

Qâ(j) = Nr
(12)
â (j)

T
(
R(22)

â (0)
−1
⊗R(11)

â (0)
−1
)

r
(12)
â (j), (3.2)

and k(.) is a kernel function satisfying Assumption B. The test statistic is a standardized version

of T (â, Σ̂) given by

QN =
T (â, Σ̂)−m1m2SN (k)√

2m1m2DN (k)
, (3.3)

where the smoothing parameter M = M(N) →∞ and M/N → 0 when N →∞, and

SN (k) =
N−1∑

j=1−N

(1− |j|/N)k2(j/M), DN (k) =
N−2∑

j=2−N

(1− |j|/N)(1− (|j|+ 1)/N)k4(j/M) (3.4)

Note that SN (k) and DN (k) are essentially the asymptotic mean and variance of T (â, Σ̂) under

H0. If k is the truncated uniform kernel, apart from the standardization factors SN (k) and DN (k),

QN corresponds to the multivariate version of Haugh’s statistic introduced in El Himdi and Roy

(1997) that is defined by

PM =
M∑

j=−M

Qâ(j). (3.5)

In that case, M is a fixed integer that does not depend on the sample size N . The properties of

PM in the VAR(∞) context are studied in Bouhaddioui and Roy (2003). As it will be seen below,

many kernels k yeald to a greater power than PM .

Under some conditions on the smoothing parameter M and if the kernel k verifies the Assump-

tion B, it is easily seen that

M−1SN (k) → S(k) , M−1DN (k) → D(k), (3.6)

where

S(k) =
∫ +∞

−∞
k2(z)dz , D(k) =

∫ +∞

−∞
k4(z)dz. (3.7)
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An alternative statistic is obtained by replacing SN (k) and DN (k) by their asymptotic approxima-

tions MS(k) an MD(k) respectively and is defined by

Q∗N =
T (â, Σ̂)−Mm1m2S(k)√

2Mm1m2D(k)
. (3.8)

Both QN and Q∗N have the same asymptotic null distribution and power properties.

The statistic QN can also be expressed in term of the autocovariances C(hh)
â (0) and the cross-

covariances C(12)
â (j) of the same residual series. Invoking Lemma 4.1 of El Himdi and Roy (1997),

the quadratic form T (â, Σ̂) can be written as follows in terms of the residual covariances:

T (â, Σ̂) = N

N−1∑
j=1−N

k2(j/M)c(12)
â (j)

T
(
C(22)

â (0)
−1
⊗C(11)

â (0)
−1
)

c(12)
â (j)

with c(12)
â (j) = vec

(
C(12)

â (j)
)
. Our main result is stated in the following theorem. In the sequel,

L→ stands for convergence in law and
p→ for convergence in probability.

Theorem 3.1 Let X(1) and X(2) be two multivariate stationary processes that satisfy the VAR(∞)

model (2.3) and suppose that Assumptions A and B hold. Let M = M(N) →∞, M/N → 0 when

N →∞ and let ph, h = 1, 2, satisfy the following conditions

(i) ph = o
(

N1/2

M1/4

)
.

(ii) N
∑∞

j=ph+1 ||Φ
(h)
j ||2 = o

(
N1/2

M1/4

)
.

If the processes a(1) and a(2) are independent, the statistic QN defined by (3.3) has an asymptotic

normal distribution, that is QN
L→ N (0, 1).

Remark: For the practical implications of the conditions (i) and (ii), let us consider the case

of a stationary and invertible VARMA(p,q) process. In that situation, we know that for large j,

‖Φj‖ ≤ Cρj where C and ρ are constants (independent of j) such that C > 0 and ρ ∈ [0, 1].

It follows that N
∑∞

j=ph+1 ≤ C1ρ
2ph where C1 > 0 is another constant and Condition (ii) holds

provided that ph(N) →∞ at any rate faster that ln(N).

Proof of Theorem 3.1.

We start by defining the pseudo-statistic

T (a,Σ) = N
N−1∑

j=1−N

k2(j/M)c(12)
a (j)

T (
Σ−1

2 ⊗Σ−1
1

)
c(12)

a (j),
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where c(12)
a (j) is defined as c(12)

â (j) with the residual series
(
â

(1)
t , â

(2)
t

)N

t=1
replaced by the unob-

servable innovation series
(
a

(1)
t ,a

(2)
t

)N

t=1
and Σh = Γ(hh)

a (0), h = 1, 2, is the covariance matrix of

a(h). Also, we define T (â,Σ) by

T (â,Σ) = N

N−1∑
j=1−N

k2(j/M)c(12)
â (j)

T
(Σ−1

2 ⊗Σ−1
1 )c(12)

â (j).

Thus, with Σ̂h = C
(hh)
â (0), h = 1, 2, we can write the statistic QN as

QN =
T (â, Σ̂)−m1m2SN (k)√

2m1m2DN (k)

=
T (â,Σ)−m1m2SN (k)√

2m1m2DN (k)
+
T (â, Σ̂)− T (â,Σ)√

2m1m2DN (k)
. (3.9)

The asymptotic distribution of QN follows from the next two propositions.

Proposition 3.1 Under the assumptions of Theorem 3.1, we have that

T (â,Σ)−m1m2SN (k)√
2m1m2DN (k)

L→ N (0, 1).

Proof.

With a decomposition similar to the one for QN in (3.9), we can write

T (â,Σ)−m1m2SN (k)√
2m1m2DN (k)

=
T (a,Σ)−m1m2SN (k)√

2m1m2DN (k)
+
T (â,Σ)− T (a,Σ)√

2m1m2DN (k)

and Proposition 3.1 can be established using the following two lemmas.

Lemma 3.1 Under the assumptions of Theorem 3.1, we have that

T (a,Σ)−m1m2SN (k)√
2m1m2DN (k)

L→ N (0, 1).

Lemma 3.2 Under the assumptions of Theorem 3.1, it follows that

T (â,Σ)− T (a,Σ) = op(M1/2).

The proofs of the these two lemmas are long and technical and are deferred to the Appendix.

Proposition 3.2 Under the assumptions of Theorem 3.1, it follows that

T (â, Σ̂)− T (â,Σ)√
2m1m2DN (k)

p→ 0.

Proof.

9



Since DN (k) = MD(k){1 + o(1)}, it is sufficient to show that

T (â, Σ̂)− T (â,Σ) = Op(M/N1/2).

Using the fact that C(hh)
â (0) − Σh = Op(N−1/2), (see Lütkepohl (1991, p.309)), for h = 1, 2, it

follows that

C(22)
â (0)

−1
⊗C(11)

â (0)
−1
−Σ−1

2 ⊗Σ−1
1 = Op(N−1/2).

Thus,

T (â, Σ̂)− T (â,Σ) = N

N−1∑
j=1−N

k2(j/M)c(12)
â (j)

T
Op(N−1/2)c(12)

â (j)

= Op(N1/2)
N−1∑

j=1−N

k2(j/M)c(12)
â (j)

T
c(12)

â (j).

To complete the proof, it remains to prove that

B(N) =
N−1∑

j=1−N

k2(j/M)c(12)
â (j)

T
c(12)

â (j) = Op(M/N).

First, let us decompose B(N) in two parts

B(N) =
N−1∑

j=1−N

k2(j/M){c(12)
â (j)

T
c(12)

â (j)− c(12)
a (j)

T
c(12)

a (j)}+
N−1∑

j=1−N

k2(j/M)c(12)
a (j)

T
c(12)

a (j)

= B1 + B2.

By an argument similar to the one used in the second part of the proof of Lemma 3.2 in the

Appendix, we have that

B1(N) =
N−1∑

j=1−N

k2(j/M){c(12)
â (j)

T
c(12)

â (j)− c(12)
a (j)

T
c(12)

a (j)} = op(M1/2/N),

and by Markov inequality, it follows that

B2(N) =
N−1∑

j=1−N

k2(j/M)c(12)
a (j)

T
c(12)

a (j) = Op(M/N).

Combining the results for B1(N) and B2(N), we obtain that

T (â, Σ̂)− T (â,Σ)) = Op(N1/2)Op(M/N) = Op(M/N1/2),

and the proof of Proposition 3.2 is completed.
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4 Consistency of the generalized test

We now investigate the asymptotic power of the test QN under fixed alternatives. We consider an

alternative H1 of serial cross-correlation between the two innovation processes a(1) and a(2) that

satisfies the following general assumptions.

Assumption C The two innovation processes a(1) et a(2) are jointly fourth-order stationary and

their cross-correlation structure is such that Γ(12)
a (j) 6= 0 for at least one value of j and

+∞∑
j=−∞

‖Γ(12)
a (j)‖2 < ∞ ,

+∞∑
i=−∞

+∞∑
j=−∞

+∞∑
l=−∞

|κuvuv(0, i, j, l)| < ∞,

where κuvuv(0, i, j, l) is the fourth-order cumulant of the joint distribution of a
(1)
u,t , a

(2)
v,t+i, a

(1)
u,t+j,

a
(2)
v,t+l.

If the joint process {(a(1)T

t ,a
(1)T

t )T } is Gaussian, the fourth-order cumulants are zero and the

cumulant condition is trivially satisfied. Fourth-order stationary linear processes with absolutely

summable coefficients and with innovations whose fourth-order moments exist, also satisfy the

cumulant condition, see Hannan (1970, p. 211).

The statistic QN is a normalized version of T (â, Σ̂) which can be viewed as the L2-norm of

a kernel-based estimator of the cross-coherency function between the two innovations processes.

Indeed, the cross-coherency function S
(12)
a (w) between the two innovation processes is given by

S
(12)
a (w) =

∞∑
j=−∞

Σ1
−1/2Γ(12)

a (j)Σ2
−1/2e−iwj ,

where Σh is the covariance matrix of a(h), h = 1, 2. Using the relation vec (ABC) = (C ⊗A) vec (B),

we have

s
(12)
a (w) =

∞∑
j=−∞

(Σ2 ⊗Σ1)
−1/2 γ

(12)
a (j)e−iwj

where s
(12)
a (w) = vec

(
S

(12)
a (w)

)
and γ

(12)
a (j) = vec(Γ(12)

a (j)). Employing the following quadratic

norm ‖.‖2
2 = 1

2π

∫ π
−π |.|

2dw, where |.| represents the modulus of a complex number, we have

‖s(12)
a ‖2

2 =
∞∑

j=−∞
γ

(12)
a (j)T (Σ2 ⊗Σ1)

−1 γ
(12)
a (j). (4.1)

The following theorem gives sufficient conditions for the consistency of QN under a fixed alternative

hypothesis.
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Theorem 4.1 Let X(1) and X(2) be two multivariate stationary processes that satisfy the VAR(∞)

model (2.3) and suppose that their innovation processes a(1) and a(1) follow Assumptions A and

C. If the kernel k(.) satisfies B and if ph, h = 1, 2, are such that

p2
h = o

(
N

M

)
,

∞∑
j=ph+1

‖Φ(h)
j ‖2 = o

(
M−1

)
.

Then, we have (
M1/2

N

)
QN

p→ ‖s(12)
x ‖2

2

{2m1m2D(k)}1/2
(4.2)

where s(12)
x = vec(S(12)

x ), S(12)
x being the cross-coherency function between X(1) and X(2).

The proof is given in the appendix. This result is a multivariate version of Theorem 4 in Hong

(1996a). Under a fixed alternative, this theorem implies that QN goes to infinity at the rate

N/M1/2. Thus, the slower M grows, the faster QN will approach to infinity and the test will be

more powerful.

Since QN depends on a kernel function and that under the null hypothesis H0, the statistic

QN is asymptotically normal, we can use the concept of asymptotic slope introduced by Bahadur

(1960) to compare two kernels k1 and k2 for a given alternative H1. For a given kernel k, let QN (k)

be the corresponding statistic. The Bahadur’s slope criterion is useful for large sample tests under

fixed alternatives and is defined as the rate at which the asymptotic p-value goes to zero as N →∞.

Thus, for the test QN (k), the asymptotic p-value is given by 1 − Φ(QN ) where Φ(.) denotes the

N(0,1) cumulative distribution function. Now define

ℵN (k) = −2ln{1− Φ(QN )}. (4.3)

As shown in Bahadur (1960, p. 283), we can use the relation ln{1−Φ(ξ)} = −1
2ξ2{1 + o(1)} for a

large ξ, and by (4.2), we have that(
M

N2

)
ℵN (k)

p→ ‖s(12)
x ‖4

2m1m2D(k)
, (4.4)

under a fixed alternative as M → ∞ and M/N → 0. Following Bahadur (1960), the quan-

tity ‖s(12)x ‖4
2m1m2D(k) is the asymptotic slope of QN . The Bahadur’s asymptotic relative efficiency

AREB(k2, k1) of k2 with respect of k1 is by definition the limit ratio of the two sample sizes

N1 and N2 required by the two test statistics to obtain the same asymptotic significance level

under the alternative H1. If we take M = Nν , it is easily shown by standard arguments that

AREB(k2, k1) = lim
N1,N2→∞

N1

N2
=
{

D(k1)
D(k2)

} 1
2−ν

. (4.5)
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For example, AREB(kBAR, kTR) > 2.23, where kBAR and kTR denote respectively the Bartlett and

the truncated uniform kernels which are given in Table 2.

Many of the commonly used kernels in spectral estimation lead to an AREB greater than one

with respect to the truncated uniform kernel. A test with a greater asymptotic slope may be

expected to have a greater power for a fixed alternative than one with a smaller asymptotic slope.

However, Geweke (1981) noticed that there is no clear analytical relationship between the slope

of a test and its power function. Hence, for a specific alternative, we cannot conclude that a test

with a greater asymptotic slope should be automatically preferred to one with a smaller asymptotic

slope without analyzing further the finite sample properties of the two test statistics.

5 Simulation study

It is natural to inquire after the finite sample properties of the proposed test statistics , in particular

their exact level and power. At this aim, a small Monte Carlo simulation was conducted. In addition

to the test statistics discussed in the preceding sections, the multivariate version of Haugh’s statistic

P ∗
M previously studied by El Himdi and Roy (1997) and Bouhaddioui and Roy (2003) was also

included:

P ∗
M =

M∑
j=−M

N

N − |j|
Qâ(j), (5.1)

where Q
(12)
â (j) is given by (3.2). The statistic P ∗

M is a slightly modified version of PM defined by

(3.5).

5.1 Description of the experiment

In the simulation experiment, we considered bivariate series {X(1)
t } and {X(2)

t } generated from the

global 4-dimensional, stationary and invertible AR(1), MA(1) and ARδ(1) models described in

Table 1. In the first two models, the two subprocesses X(1) and X(2) are independent bivariate

AR(1) or MA(1) and served for the level study. The third one, in which there is instantaneous

correlation between the two innovation series, was used for the power study. The correlation de-

pends on a parameter δ and the values δ = 1.0, 1.5 and 2 were chosen. For each model, two series

lengths (N = 100, 200), were considered. With the statistics QN and Q∗N defined by (3.3) and

(3.8) respectively, we used the four kernels described in Table 2. For each kernel, the following three

truncation values M were employed: M = [ln(N)], [3N0.2] et [3N0.3] ([a] denotes the integer part
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of a). These rates are discussed in Hong (1996c, p. 849). They lead respectively to M = 5, 8, 12

for the length series N = 100, and to M = 5, 9, 15 for N = 200. The same truncation values were

used for P ∗
M .

In the level study, 5.000 independent realizations were generated from both AR(1) and MA(1)

models for each series length N . Computations were made in the following way.

1. First, pseudo-random variables from the N (0, 1) distribution were obtained with the pseudo-

random normal generator of the S-plus package and were transformed into independent N (0,Σa)

pseudo-random vectors using the Cholesky decomposition. Second, the Xt values were obtained

by directly solving the difference equation defining a VARMA model. For the AR(1) model, X1

was generated from the exact N (0,ΓX(0)) distribution of the Xt’s. The covariance ΓX(0) was

obtained by an algorithm of Ansley (1980).

2. For both series {X(h)
t , t = 1, . . . , N}, h = 1, 2, autoregressions were fitted by conditional least

squares. The autoregressive order was obtained by minimizing the AIC criterion for p ≤ P , where

P was fixed to 12. The residual series {â(h)
t }, h = 1, 2, were cross-correlated by computing the

R(12)
â (j)’s as defined by (2.7).

3. For each realization, the test statistics QN and Q∗N were compared for each of the four kernels

and the three values of M . The same values of M were used for the statistic P ∗
M . The values of

the statistics QN and Q∗N were compared with the N (0, 1) critical values and those of P ∗
M to the

χ2
4(2M+1) critical values.

4. Finally, for each model, each series length and each nominal level, the empirical frequencies of

rejection of the null hypothesis of non-correlation were obtained from the 5.000 realizations. The

results in percentage are reported in Table 3. The standard error of the empirical level is 0.14%

for the nominal level 1%, 0.31% for 5% and 0.42% for 10%.

Computations for the power analysis were made in a similar way using the ARδ(1) model with

different values of δ.

5.2 Discussion of the level study

Results from the level study are presented in Table 3. For both AR(1) and MA(1) models, we make

the following observations. The asymptotic N (0, 1) distribution provides a good approximation of

the exact distributions of QN and Q∗N at the three nominal levels, for the five considered kernels

and for the three truncation values chosen. Almost all empirical levels are within three standard
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errors of the corresponding nominal levels and the majority are within two standard errors. The

statistic Q∗N is slightly better approximated than QN since most of its empirical levels are within

two standard errors of the nominal level. At the 1% and 10% nominal levels, both statistics have a

small tendancy to under or over-reject. There is no significant difference between the kernels. The

best approximation is obtained with the Bartlett-Priestley kernel and the less good one corresponds

to the Parzen kernel. With the Bartlett-Priestley kernel, the empirical size is always within two

standard errors of the nominal size. The size of P ∗
M and of QN and Q∗N with the truncated uniform

kernel are very close. It is not surprising since QN and Q∗N are linear transformations of PM and

P ∗
M is nothing else than a finite sample-size modification of PM . For the models considered, the

values of the truncation parameter M has no significant effect on the size of the tests. Finally,

when the series length N goes from 100 to 200, the approximation improves very slightly.

5.3 Discussion of the power study

The results are given in Table 4. With the ARδ(1), the cross-correlation at lag 0 between the two

innovation series increases with δ and as expected, the power of the three tests considered also

increases with δ. Since the relative behaviors pf the various tests are similar for the three values of

δ (1, 1.5, 2), only the results for δ = 2 are presented. Furthermore, we only present the result for

Q∗N since QN and Q∗N have a similar behavior with respect to the kernels and the truncation values.

The following observations are made from Table 4. First, the power of all tests increases when

the sample size varies from 100 to 200. Also, the power decreases as M increases. It is not surprising

since the model considered is characterized by the lag 0 serial correlation and in such a situation, we

expect that the tests assigning more weight to small lags will be more powerful than those assigning

weights to a large number of lags. For the three significance levels and the three truncation values,

the Daniel, Parzen, Bartlett and Bartlett-Priestley kernels lead to similar powers for the test Q∗N .

However, the power of Q∗N with the truncated uniform kernels is much smaller and is comparable

to the power of P ∗
M . At least for the chosen model, the new tests QN or Q∗N with another kernel

than the truncated uniform one should be prefer to the multivariate version of Haugh’s test P ∗
M .

6 Application

Here, we consider a set of seven quarterly series of Canadian and American economic indicators

used in a study of Canadian monetary policy in order to investigate the relationships between the
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Table 1: Time series models used in the simulation study.
MODELS EQUATIONS Σa

AR(1)

 X(1)
t

X(2)
t

 =

 Φ(1) 0

0 Φ(2)

 X(1)
t−1

X(2)
t−1

+

 a(1)
t

a(2)
t

  Σ(1)
a 0

0 Σ(2)
a



MA(1)

 X(1)
t

X(2)
t

 =

 Ψ(1) 0

0 Ψ(2)

 a(1)
t−1

a(2)
t−1

+

 a(1)
t

a(2)
t

  Σ(1)
a 0

0 Σ(2)
a



ARδ(1)

 X(1)
t

X(2)
t

 =

 Φ(1) 0

0 Φ(2)

 X(1)
t−1

X(2)
t−1

+

 a(1)
t

a(2)
t

  Σ(1)
a Σ(12)

a,δ

Σ(12)
a,δ Σ(2)

a


PARAMETERS VALUES

Φ(1) =

 1.2 −0.5

0.6 0.3

 Φ(2) =

 −0.6 0.3

0.3 0.6

 Ψ(1) =

 −0.2 0.3

−0.6 1.1



Ψ(2) =

 0.8 0.3

0.1 0.6

 Σ(1)
a =

 1.0 0.5

0.5 1.0

 Σ(2)
a =

 1.0 0.75

0.75 1.0



Σ(12)
a,δ =

 0.1δ 0

0 0.05δ



Table 2: Kernels used with the test statistics QN and Q∗N .

Truncated Uniform (TR): k(z) =

 1, |z| ≤ 1,

0, otherwise.

Bartlett (BAR): k(z) =

 1− |z|, |z| ≤ 1,

0, otherwise.

Daniell (DAN): k(z) = sin(πz)
πz , z ∈ R.

Parzen (PAR): k(z) =


1− 6z2 + 6|z|3, if |z| ≤ 0.5,

2 (1− |z|)3 , if 0.5 ≤ |z| ≤ 1 ,

0, otherwise.

Bartlett-Priestley (BP): k(z) = 3
(πz)2 {

sin(πz)
πz − cos(πz)}, z ∈ R.
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Table 3: Empirical level (in percentage) of the test QN , Q∗N and P ∗
M based on 5000 realizations

for different kernels, different truncation values, for the AR(1) and MA(1) models.
QN Q∗N P ∗M

N M α% DAN PAR BAR BP TR DAN PAR BAR BP TR

1 0.8 0.5 0.7 0.7 0.6 0.9 0.6 0.8 0.8 0.7 0.7

5 5 6.1 3.4 5.7 4.8 4.6 4.8 4.2 4.8 5.1 4.7 4.4

10 9.4 7.8 9.5 10.2 8.4 9.7 8.2 9.2 10.3 9.3 9.1

1 0.9 0.6 0.8 1.3 0.6 1.5 0.8 0.9 1.2 0.9 0.7

100 8 5 5.4 3.9 5.9 5.2 3.6 5.2 4.2 5.8 4.8 4.1 4.7

10 10.5 8.9 11.2 10.7 7.1 9.4 9.3 10.8 10.2 8.9 8.9

1 0.7 0.6 0.8 0.9 0.5 0.8 0.7 1.2 1.1 0.6 0.7

12 5 5.1 4.6 5.2 4.8 4.1 4.2 4.3 4.9 4.7 4.4 4.2

10 10.6 8.6 11.0 11.1 7.5 10.3 9.2 10.6 10.4 7.9 8.2

AR(1) 1 0.8 0.6 0.7 0.8 0.7 0.8 0.8 0.8 1.1 0.8 0.8

5 5 5.9 4.8 5.5 5.7 4.2 6.1 4.5 4.9 5.2 4.8 4.1

10 9.1 8.3 9.2 9.4 7.9 8.5 8.4 9.4 9.6 8.6 8.7

1 0.8 0.6 0.7 0.8 0.7 0.8 0.7 0.7 1.2 0.8 0.7

200 9 5 6.3 4.2 5.7 5.7 4.2 5.8 4.4 5.4 5.6 4.7 4.4

10 9.7 8.9 10.4 10.2 7.3 8.9 9.0 9.5 9.7 8.9 9.0

1 1.2 0.7 1.3 0.8 0.7 0.9 0.8 1.2 0.8 0.7 0.8

15 5 6.4 4.1 6.0 5.8 3.9 5.1 4.3 5.8 5.2 4.3 4.6

10 10.2 8.9 11.1 10.4 6.9 9.7 9.1 10.8 10.6 8.5 8.9

1 0.8 0.6 0.7 0.9 0.6 0.9 0.7 1.3 1.1 0.7 0.8

5 5 5.9 4.2 4.4 5.2 4.6 4.8 4.3 5.7 5.1 4.7 4.8

10 10.3 7.8 8.5 10.2 8.2 9.6 9.5 8.9 9.8 8.7 8.7

1 0.8 0.5 0.6 1.3 0.6 1.1 0.6 0.7 1.1 0.7 1.1

100 8 5 5.4 4.2 5.7 5.6 3.6 5.2 4.3 4.6 4.8 4.1 5.2

10 10.3 8.2 9.1 10.1 7.1 9.4 8.6 9.3 9.2 7.9 9.4

1 0.8 0.6 1.4 0.9 0.7 0.8 0.7 1.2 1.1 0.8 0.8

12 5 5.4 4.7 5.6 5.8 4.6 5.2 4.9 5.6 5.2 4.8 4.3

10 9.3 8.6 9.1 9.2 7.5 9.5 8.4 8.9 9.4 7.9 7.9

MA(1) 1 0.7 0.6 0.7 0.8 0.7 0.8 0.7 0.9 1.1 0.8 0.7

5 5 5.9 4.5 5.3 5.7 4.2 6.1 4.4 5.4 5.2 4.8 6.1

10 9.2 8.3 8.5 9.0 7.9 9.5 8.4 10.2 9.6 8.6 8.5

1 0.8 0.9 1.4 0.8 0.7 0.8 0.9 9.5 1.0 0.8 0.8

200 9 5 6.3 4.1 4.6 5.7 4.2 5.8 4.5 4.8 5.6 4.7 5.8

10 9.7 8.9 9.3 10.5 7.3 9.2 9.1 9.5 9.7 8.9 8.9

1 1.1 0.8 0.9 0.9 0.7 0.8 0.8 0.9 1.1 0.9 0.8

15 5 6.4 4.4 5.5 5.8 4.5 5.1 4.5 4.6 5.4 4.6 5.1

10 10.2 9.1 10.3 9.2 6.9 9.7 9.5 10.4 10.1 9.5 8.7
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Table 4: Power of the tests QN , Q∗N and P ∗
M based on their asymptotic critical values for different

kernels and different truncation values for the ARδ(1) data generation process with δ = 2.

Q∗N P ∗
M

N M α% DAN PAR BAR BP TR

1 54.2 52.7 52.1 53.1 31.2 27.8

5 5 59.1 61.9 56.8 58.7 34.2 28.4

10 64.8 66.2 65.3 67.3 36.7 29.3

1 51.2 48.9 50.2 49.0 25.7 19.4

100 8 5 56.2 54.0 56.0 55.0 30.1 20.2

10 62.3 60.6 61.4 63.5 31.9 22.6

1 46.2 44.7 46.1 45.3 23.4 19.8

12 5 51.2 48.3 50.2 52.0 26.4 20.5

10 54.9 52.6 54.6 53.5 26.8 22.9

1 76.8 72.6 73.6 74.0 50.8 54.8

5 5 84.2 82.6 80.4 84.8 52.8 57.1

10 92.5 90.4 88.8 90.6 60.6 58.9

1 66.4 62.9 64.0 63.8 40.2 45.7

200 9 5 71.2 72.4 70.6 74.6 42.5 47.9

10 77.8 75.4 79.6 78.8 47.4 48.6

1 54.8 53.4 50.8 55.1 29.9 39.8

15 5 62.1 56.4 51.0 61.1 31.3 42.5

10 62.6 54.6 55.2 60.6 29.5 44.6
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two economies; see Racette and Raynauld (1992). The Canadian economic indicators are the gross

domestic production (GDP) in constant 1982 dollars, the implicit price index of the gross domestic

production (GDPI), the nominal short-term interest rate (TX.CA) and the monetary basis value

(M1). The other three variables represent the American gross national product (GNP) in constant

1982 dollars, the implicit price index of the American gross national production (GNPI), and the

nominal short-term American interest rate (TX.US). In this study, the observation period extends

from the first quarter of 1970 through to the last quarter of 1989. The data sources with the

corresponding CANSIM series numbers are given in Table 1 of Racette and Raynauld (1992). The

natural logarithm of M1 was taken in order to stabilize its variance, and all series except interest

rates were differenced to have stationarity.

In the sequel, the two vector series of Canadian and American data, denoted by {X(1)
t } and

{X(2)
t }, are defined by

X(1)
t =


1

1000(1−B)GDPt

10(1−B)GDPIt

TX.CAt

100(1−B)ln(M1t)

 , X(2)
t =


1
10(1−B)GNPt,

10(1−B)GNPIt,

TX.USt.

 .

The multiplicative factors appearing in the definition of these series are the same as those used in

El Himdi and Roy (1997). With these factors, the sample variances of the variables within each of

the two vector series are of the same order of magnitude. Autoregressive AR(p) models were fitted

to each series using the STEPAR procedure of the SCA statistical package. The autoregressive

order p was obtained by minimizing the AIC criterion. For the Canadian series, this procedure led

to p = 11. After deleting the non-significant matrix coefficients at 5% significance level, we finally

obtain the following model:

X(1)
t = µ

(1)
0 + Φ(1)

1 X(1)
t−1 + Φ(1)

2 X(1)
t−2 + Φ(1)

11 X(1)
t−11 + a(1)

t , t ∈ Z. (6.1)

At the estimation stage, the full model was reestimated by the Gaussian maximum likelihood

method (the “exact” method available in SCA) and then, each parameter estimate smaller than

one standard error, in absolute value, was set at zero. The reduced model was reestimated until

all the parameter estimates were greater than one standard error, in absolute value. The final

parameter estimates of model (6.1) are given in Table 5.

In similar way, an AR(10) model was identified for the American series

X(2)
t = µ

(2)
0 + Φ(2)

1 X(2)
t−1 + Φ(2)

2 X(2)
t−2 + Φ(2)

3 X(2)
t−3 + Φ(2)

10 X(2)
t−10 + a(2)

t , t ∈ Z. (6.2)
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and the maximum likelihood method led to the final estimates given in Table 5. The two final

models are stationary and satisfy the diagnostic checking procedure suggested by Tiao and Box

(1981) for model adequacy.

Values of the statistics

Qâ(j)∗ =
N

N − |j|
Qâ(j) (6.3)

where Qâ(j) defined by (3.2), are displayed in Figure 1. At the significance level α = 0.05, the

asymptotic critical value for testing the null hypothesis H0 of noncorrelation between a(1) and a(2)

against the alternative H1j : ρ
(12)
a (j) 6= 0 is 21.02 and only the three cross-correlation ρ

(12)
a (j),

j = −1, 0, 2, are significantly different from zero. The p-value of the portmanteau test P ∗
M for H0

are also reported in Table 6, for M = 1, ..12. At the 0.05 significance level, H0 is rejected for all

values of M such that M ≤ 9.

The values of the global tests QN and Q∗N and the corresponding p-values are reported in Table

8 for the truncated uniform , Daniell and Bartlett-Priestley kernels. As in the simulation study,

the truncation values are [ln(N)], [3N0.2] and [3N0.3] which correspond to 4, 7 and 11 respectively.

The Daniell kernel is more powerful in the Bahadur’s sense whilst the Bartlett-Priestley one has

had the best size in the simulation study. At the 5% significance level, the tests based on QN and

Q∗N reject the hypothesis of non-correlation between the two series with DAN and BP kernels for

the three values of M . With the truncated uniform kernel, the conclusion is the same with QN

and Q∗N does not reject when M = 11. The difference between the values of QN and Q∗N is due to

the fact that the length of the series is pretty small (N = 68) and that MS(k) and MD(k) do not

provide good approximations of SN (k) and DN (k) as illustrated in Table 7.

Figure 1 indicates that there is a rather strong instantaneous correlation between the two series

and the null hypothesis of non-correlation between them is rejected with the test Qâ(0) which is

solely based on the cross-correlation matrix at lag 0. The portmanteau test P ∗
M does not reject

when M > 9 whilst the new tests QN or Q∗N , with DAN or BP kernels, reject for the three values

of M considered. This conclusion is coherent with the simulation study which shows that QN and

Q∗N with one of the four kernels DAN, PAR, BAR and PB, are considerably more powerful than

P ∗
M .
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Table 5: Estimated AR models for the Canadian and American series

(a) Canadian series



1− .109 B11 1.07 B −.177 B11 −.516 B2 − .049 B11

(0.088) (0.117) (0.112) (0.089) (0.104)

0 1− .576 B + .189 B11 0 0
(0.094) (0.075)

−.179 B −.177 B − .39 B2 1− 0.888 B −.106 B
(0.044) (0.060) (0.061) (0.074) (0.049)

1.129 B2 −.445 B 1.718 B − .779 B2 1 + .253 B
(0.093) (0.110) (0.212) (0.219) (0.101)





X
(1)
1t

X
(1)
2t

X
(1)
3t

X
(1)
4t



=



0.256
(0.554)

1.275
(0.272)

−0.357
(0.221)

3.339
(0.476)


+



a
(1)
1t

a
(1)
2t

a
(1)
3t

a
(1)
4t


(b) American series



1 0 .618 B2 − .371 B10

(0.093) (0.084)

0 1− .554 B −.511 B + .335 B2

(0.105) (0.163) (0.154)

−.203 B2 − .125 B10 −.230 B2 1− .910 B − .482 B2 + .359 B3

(0.054) (0.044) (0.062) (0.092) (0.131) (0.103)





X
(1)
1t

X
(1)
2t

X
(1)
3t



=



0.144
(0.342)

0.627
(0.254)

−.156
(0.192)


+



a
(1)
1t

a
(1)
2t

a
(1)
3t


(c) Residual covariance matrices

Σ̂
(1)

a =


0.746 −.327 0.033 −.007

−.327 0.507 0.021 0.097

0.033 0.021 0.108 −.006

−.007 0.097 −.006 0.447

 , Σ̂
(2)

a =


0.589 −.025 0.097

−.025 0.406 0.017

0.097 0.017 0.149

 .
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Figure 1: Values of the statistic Qâ(j)∗ defined by (6.3) at different lags j. The horizontal dotted

line represent the marginal critical value at the significance level α = 0.05.
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7 Conclusion

Following the idea of Hong (1996a), we have introduced a new semi-parametric approach to test

the non-correlation (or independence in the Gaussian case) between two multivariate stationary

VAR(∞) series. The approach is semi-parametric in the sens that if the two series are VARMA,

we do not need to separately estimate the true model for each of the series. We rather fit a

vector autoregression to each series and the test statistic is based on residual cross-correlations

at all possible lags. The weights assigned to the lags are determined by a kernel function and a

truncation parameter. With univariate series, we retrieve Hong’s (1996a) test. Under the hypothesis

of independence of the two series, the asymptotic normality of the test statistic is established. For

a general class of fixed alternatives of cross-correlation between the two series, the consistency of

the test is also derived. The finite sample properties of the test were investigated by a Monte

Carlo experiment. It is seen that the level is reasonably well controlled with short series of 100

observations. Furthermore, with the model considered, the four kernels DAN, PAR, BAR, BP lead

to similar powers and are more powerful than the truncated uniform kernel which corresponds to

the multivariate version of Haugh’s portmanteau test.
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Table 6: Values of the global statistic P ∗
M defined by (5.1) and its empirical significance level for

M = 1, ..12.

M P ∗
M αM M P ∗

M αM

1 64.254 0.003 7 218.771 0.026

2 94.028 0.003 8 242.721 0.033

3 115.723 0.012 9 268.552 0.034

4 145.184 0.010 10 281.917 0.095

5 167.284 0.021 11 300.734 0.147

6 194.675 0.019 12 318.024 0.227

Table 7: Value of SN (k), MS(k), DN (k) and MD(k) with the truncated uniform kernel for

variaous values of M when N = 68.

M SN (k) MS(k) DN (k) MD(k)

4 8.7 8 8.29 8

7 14.2 14 13.2 14

11 21.1 22 19.0 22

Table 8: Values of the statistics QN and Q∗N and their p-values for three kernels and three values

of M .

M = 4 M = 7 M = 11

Kernels TR DAN BP TR DAN BP TR DAN BP

QN 2.922 2.191 2.672 2.640 2.779 2.964 2.189 2.969 2.838

α 0.002 0.014 0.004 0.004 0.003 0.002 0.014 0.002 0.002

QN∗ 3.586 1.931 2.474 2.680 2.560 2.537 1.544 2.564 2.054

α 0.0001 0.027 0.007 0.004 0.005 0.006 0.061 0.005 0.002
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Appendix

The following notations are adopted. The Euclidian scalar product of xt and xs is defined by

〈xt,xs〉 = xT
t xs and the Euclidean norm of xt by ‖xt‖ =

√
〈xt,xt〉. The scalar ∆ denotes a generic

positive bounded constant that may differ from place to place. Important parts of the proofs

presented in this appendix are adaptations of those presented in Hong (1996b) for univariate case.

However, the multivariate context involves a lot of matrix calculus.

Proof of Lemma 3.1.

Consider the following linear transformation bt = Σ−1/2at. The process b = {bt, t ∈ Z} is a white

noise process with mean 0 and variance Im. Since C
(12)
b (j) = Σ−1/2

1 C
(12)
a (j)Σ−1/2

2 , and using the

property vec(ABC) = (CT ⊗A)vec(B), we have that

T (a,Σ) = N

N−1∑
j=1−N

k2(j/M)c(12)
a (j)

T
(Σ−1

2 ⊗Σ−1
1 )c(12)

a (j)

= N

N−1∑
j=1−N

k2(j/M)c(12)
b (j)

T
c(12)

b (j)

= T (12)
b ,

(say). We can decompose the last quantity in two parts. First, using definition (2.6), and since

C
(12)
b (−j) = C

(21)
b (j)T , for j > 0, we have

tr[C(12)
b (−j)

T
C

(12)
b (−j)] = N−2[

N∑
t=j+1

‖b(1)
t−j‖

2‖b(2)
t ‖2 + 2

N∑
t=j+2

t−1∑
s=j+1

π
(21)
jts ],

and for j ≥ 0, we also have

tr[C(12)
b (j)

T
C

(12)
b (j)] = N−2[

N∑
t=j+1

‖b(1)
t ‖2‖b(2)

t−j‖
2 + 2

N∑
t=j+2

t−1∑
s=j+1

π
(12)
jts ],

where π
(12)
jts = 〈b(1)

t , b
(1)
s 〉〈b(2)

t−j , b
(2)
s−j〉 and π

(21)
jts = 〈b(2)

t , b
(2)
s 〉〈b(1)

t−j , b
(1)
s−j〉. If

H1N = N−1
N−1∑
j=0

k2(j/M)
N∑

t=j+1

‖b(1)
t ‖2‖b(2)

t−j‖
2,H2N = N−1

N−1∑
j=1

k2(j/M)
N∑

t=j+1

‖b(1)
t−j‖

2‖b(2)
t ‖2

W ∗
1N = 2N−1

N−2∑
j=0

k2(j/M)
N∑

t=j+2

t−1∑
s=j+1

π
(12)
jts , W ∗

2N = 2N−1
N−2∑
j=1

k2(j/M)
N∑

t=j+2

t−1∑
s=j+1

π
(21)
jts .
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Thus, we can write T (12)
b as

T (12)
b = N

N−1∑
j=1

k2(j/M)tr[C(12)
b (−j)

T
C

(12)
b (−j)] + N

N−1∑
j=0

k2(j/M)tr[C(12)
b (j)

T
C

(12)
b (j)]

= HN + W ∗
N ,

with HN = H1N + H2N and W ∗
N = W ∗

1N + W ∗
2N . The proof of Lemma 3.1 can be completed by

proving the following two lemmas.

Lemma A.1 σ−1(N){HN −m1m2SN (k)} p→ 0 where σ2(N) = 2m1m2DN (k).

Lemma A.2 σ−1(N)W ∗
N

L→ N(0, 1).

Proof of Lemma A.1.

First, we note that E(HN ) = m1m2SN (k) since

E(HN ) = N−1E{
N−1∑
j=0

k2(j/M)
N∑

t=j+1

‖b(1)
t ‖2‖b(2)

t−j‖
2 +

N−1∑
j=1

k2(j/M)
N∑

t=j+1

‖b(1)
t−j‖

2‖b(2)
t ‖2}.

By symmetry of the kernel k, the independence of the two processes and since E(‖b(h)
t ‖2) = mh,

for h = 1, 2, we have

E(HN ) =
m1m2

N
(
N−1∑
j=0

N∑
t=j+1

k2(j/M) +
N−1∑
j=1

N∑
t=j+1

k2(j/M))

= m1m2

N−1∑
j=1−N

(1− |j|
N

)k2(j/M) = m1m2SN (k).

Also, using Minkowski inequality, we obtain

E(H1N − EH1N )2 = E[N−1
N−1∑
j=0

k2(j/M)
N∑

t=j+1

(‖b(1)
t ‖2‖b(2)

t−j‖
2 −m1m2)]2

≤ ∆M2

N
{M−1

N−1∑
j=0

k2(j/M)}2.

Given assumption B and since

M →∞ as N →∞, we have M−1
∑N−1

j=0 k2(j/M)→
∫∞
0 k2(z)dz < ∞ and thus E(H1N−EH1N )2 =

O(M2/N). By symmetry, we have E(H2N − EH2N )2 = O(M2/N). Using Minkowski inequality

once more, it follows that E (HN − EHN )2 = O(M2/N). Since M−1DN (k) → D(k) as N →∞ and

M/N → 0, we have σ2(N) = 2m1m2MD(k){1 + o(1)} = O(M) and it follows that σ−1(N){HN −

m1m2SN (k)} p→ 0.
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Proof of Lemma A.2.

First, we denote by W1Nt = 2
∑t−1

s=2

∑s−1
j=0 k2(j/M)π(12)

jts , W2Nt = 2
∑t−1

s=2

∑s−1
j=1 k2(j/M)π(21)

jts and

ωN = 2N−1
∑N

t=2 π
(12)
0t1 . Using the properties

∑N−2
j=0

∑N
t=j+2

∑t−1
s=j+1 =

∑N
t=2

∑t−1
s=1

∑s−1
j=0 and∑N−2

j=1

∑N
t=j+2

∑t−1
s=j+1 =

∑N
t=3

∑t−1
s=1

∑s−1
j=1, it can be shown that

W ∗
N = N−1

N∑
t=3

(W1Nt + W2Nt) + ωN = N−1
N∑

t=3

WNt + ωN .

By the hypothesis of independence of the two processes, note that ωN = op(1). We also have that

σ(N)−1 = O(M−1/2) and we obtain that σ−1(N)ωN
p→ 0. Therefore, the asymptotic behaviour of

W ∗
N is determined by the one of WN = N−1

∑N
t=3 WNt. Its exact variance is the following.

Lemma A.3

V ar(WN ) = σ2(N) where σ2(N) = 2m1m2DN (k).

Proof.

From the independence of the two innovation processes, it follows that E(W1Nt) = 2
∑t−1

s=2

∑s−1
j=0

k2(j/M)E(〈b(1)
t , b

(1)
s 〉)E(〈b(2)

t−j , b
(2)
s−j〉) = 0 since for t 6= s, E(〈b(1)

t , b
(1)
s 〉) = 0. Also, we have

E(W1NtW2Nt) = 0 since E(π(12)
jts π

(21)
j1ts1

) = 0 and

V ar(WNt) = E
(
W 2

Nt

)
= E

(
W 2

1Nt + W 2
2Nt

)
.

By developing W 2
1Nt, using the independence of the two innovation processes and the properties

E(〈b(1)
t , b

(1)
s 〉)2 = m1 and E(〈b(2)

t−j , b
(2)
s−j〉)2 = m2, we have

E(W 2
1Nt) = 4

t−1∑
s=2

s−1∑
j=0

k4(j/M)E〈b(1)
t , b(1)

s 〉
2
E〈b(2)

t−j , b
(2)
s−j〉

2
= 4m1m2

t−1∑
s=2

s−1∑
j=0

k4(j/M).

Similarly, E(W 2
2Nt) = 4m1m2

∑t−1
s=2

∑s−1
j=1 k4(j/M), and we obtain V ar(WNt) = 4m1m2

∑t−1
s=2

∑s−1
|j|=0

k4(j/M). Finally, using the fact that E(WNt) = 0 and for t 6= t1, E(WNtWNt1) = 0, it follows that

V ar(WN ) =
1

N2

N∑
t=3

E
(
W 2

Nt

)
=

4m1m2

N2

N−2∑
|j|=0

N∑
t=|j|+2

t∑
s=2

k4(j/M)

= 2m1m2

N−2∑
|j|=0

(
1− |j|

N

)(
1− |j|+ 1

N

)
k4(j/M) = σ2(N).

To continue the proof of Lemma A.2, we note that {(WNt,Ft−1) ; t ∈ Z}, where Ft−1 is the

σ-algebra generated by {(b(1)
s , b

(2)
s )T , s ≤ t}, is a martingale difference since E (WNt|Ft−1) = 0.

26



As in Hong(1996a, 1996b), the asymptotic normality of W ∗
N follows from the central limit theorem

for a martingale difference derived in Brown (1971). To apply this later theorem, it is sufficient to

verify the following two conditions stated in the next two lemmas.

Lemma A.4 σ−2(N) 1
N2

∑N
t=3 E[W 2

N,tI{|WN,t| > εσ(N)}]→0 , ∀ε > 0.

Lemma A.5 σ−2(N) 1
N2

∑N
t=3 Ẅ 2

Nt

p→ 1, where Ẅ 2
Nt = E

(
W 2

Nt|Ft−1

)
.

Proof of Lemma A.4.

To prove this lemma, it is sufficient to verify the Lyapounov condition σ−4(N)N−4
∑N

t=3 E
(
W 4

Nt

)
→0.

To do that, denote G
(1)
ts =

∑s−1
j=1 k2(j/M)〈b(1)

t−j , b
(1)
s−j〉 and G

(2)
ts =

∑s−1
j=0 k2(j/M)〈b(2)

t−j , b
(2)
s−j〉. Then,

we can write W1Nt = 2
∑t−1

s=2〈b
(1)
t , b

(1)
s 〉G(2)

ts and W2Nt = 2
∑t−1

s=2〈b
(2)
t , b

(2)
s 〉G(1)

ts . Given the assump-

tion of independence of the two innovation processes, we have

E(W 4
1Nt) ≤ 16E[

t−1∑
s=2

‖b(1)
t ‖‖b(1)

s ‖G(2)
ts ]4

≤ 48E‖b(1)
t ‖4{

t−1∑
s=2

[E‖b(1)
s ‖4E(G(2)

ts )4]1/2}2 ≤ ∆{
t−1∑
s=2

[E(G(2)
ts )4]1/2}2.

The second inequality follows by applying the inequality E(
∑n

i=1 Yi)4 ≤ 3{
∑n

i=1[E(Y 4
i )]1/2}1/2

where the sequence of random variables {Yi} verify E(Yi) = 0 and E(Yif(Yj , Yk, Yl)) = 0 for

i 6= j, k, l and for any function f . Also, using the same inequality, and for t > s, we have

E(G(2)
ts )4 ≤ 3{

s−1∑
j=1

k4(j/M)[E‖b(2)
t−j‖

4E‖b(2)
s−j‖

4]1/2}2 ≤ ∆M2{ 1
M

s−1∑
j=1

k4(j/M)}2 = O(M2).

Thus, we obtain that E(W 4
1Nt) ≤ ∆t2M2 = O(t2M2). By symmetry, we also have E(W 4

2Nt) =

O(t2M2). Since (a + b)4 ≤ 8(a4 + b4), it follows that

σ−4(N)N−4
N∑

t=3

E
(
W 4

Nt

)
≤ σ−4(N)

8
N4

N∑
t=3

E
(
W 4

1Nt + W 4
2Nt

)
.

Since σ−4(N) = O(M−2) and
∑N

t=3 E(W 4
1Nt + W 4

2Nt) ≤ ∆
∑N

t=3 t2M2 ≤ ∆N3M2, then

σ−4(N)N−4
N∑

t=3

E
(
W 4

Nt

)
= O(N−1)

and the proof of Lemma A.4 is completed.

Proof of Lemma A.5.
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To prove the second condition, it is sufficient to show that σ−4(N)var(N−2
∑N

t=3 Ẅ 2
Nt) → 0. By

definition of Ẅ 2
Nt, we can write

Ẅ 2
Nt = E[W 2

1Nt|Ft−1] + E[W 2
2Nt|Ft−1]

= 4tr{E[
t−1∑
s=2

G
(2)
ts b(1)T

s b
(1)
t b

(1)T

t

t−1∑
s1=2

b(1)
s1

G
(2)
ts1
|Ft−1]}+ 4tr{E[

t−1∑
s=2

G
(1)
ts b(2)T

s b
(2)
t b

(2)T

t

t−1∑
s1=2

b(2)
s1

G
(1)
ts1
|Ft−1]}

We denote λ1Nt =
∑t−1

s=2 G
(1)
ts b

(2)T

s and λ2Nt =
∑t−1

s=2 G
(2)
ts b

(1)T

s . Since tr(AB) ≤ tr(A)tr(B) and

that the processes {b(h)
t }, h = 1, 2, are independent, we have

Ẅ 2
Nt ≤ 4tr{E[λ1Ntλ

T
1Nt|Ft−1]}tr{E[b(1)

t b
(1)T

t |Ft−1]}+ 4tr{E[λ2Ntλ
T
2Nt|Ft−1]}tr{E[b(2)

t b
(2)T

t |Ft−1]}

≤ 4(Ẅ 2
1Nt + Ẅ 2

2Nt),

where Ẅ 2
1Nt = m1‖λ1Nt‖2 and Ẅ 2

2Nt = m2‖λ2Nt‖2. The second inequality follows since by con-

ditioning on Ft−1, the terms λ1Nt and λ2Nt become constant. Thus, to prove the lemma, it is

sufficient to show that M−2var(N−2
∑N

t=3 Ẅ 2
lNt)→0, for l = 1, 2. We consider the case l = 1, and

we write

Ẅ 2
1Nt = m1tr{(

t−1∑
s=2

G
(2)
ts b(1)

s )(
t−1∑
s=2

G
(2)
ts b(1)T

s )}

= m1

t−1∑
s=2

‖b(1)
s ‖2(G(2)

ts )2 + 2m1

t−1∑
s2=3

s2−1∑
s1=2

G
(2)
ts1

G
(2)
ts2
〈b(1)

s1
, b(1)

s2
〉

= B̃1Nt + Ã1Nt.

Note that Ã1Nt =
∑t−1

s2=3 Ã
(12)
s2t where Ã

(12)
s2t =

∑s2−1
s1=2 G

(2)
ts1

G
(2)
ts2
〈b(1)

s1 , b
(1)
s2 〉 is a sum of a martingale

difference sequence over s2 since E[Ã(12)
s2t |F

(1)
τ−1] = 0 where F (1)

τ−1 is the σ-algebra generated by

{b(1)
s2 , s2 ≤ τ}. Given the assumption of independence between {b(1)

s1 } and {b(2)
s2 }, for t2 ≥ t1, by

developping the product Ã1Nt2Ã1Nt1 , see Bouhaddioui (2002), and using E(〈b(1)
s1 , b

(1)
s2 〉) = m1, we

obtain that

E(Ã1Nt2Ã1Nt1) = 4m3
1

t1−1∑
s2=3

s2−1∑
s1=2

E(G(2)
t2s2

G
(2)
t2s1

G
(2)
t1s2

G
(2)
t1s1

).

Using the definition of G
(h)
ts , h = 1, 2, and by straightforward but tedious calculus, we get for t2 > s2

, t1 > s1,

∣∣∣E(G(2)
t2s2

G
(2)
t2s1

G
(2)
t1s2

G
(2)
t1s1

)
∣∣∣ ≤

 ∆M2
{

1
M

∑N−1
j=0 k2(j/M)

}2
if t2 = t1,

∆M
{

1
M

∑N−1
j=0 k2(j/M)

}
if t2 > t1,
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and it follows that E(Ã1Nt2Ã1Nt1) ≤ ∆Mt21.

Also, we have 1
M2 E( 1

N2

∑N
t=3 Ã1Nt)2 = 1

M2N4

∑N
t=3 E(Ã2

1Nt) + 2
M2N4

∑N
t2=4

∑t2−1
t1=3 E(Ã1Nt2Ã1Nt1).

Since E(Ã2
1Nt) ≤ M2

∑t−1
s2=3

∑s2−1
s1=2 ∆ ≤ ∆M2t2, we obtain that

1
M2

E(
1

N2

N∑
t=3

Ã1Nt)2 = O(N−1 + M−1).

Now, the first term B̃1Nt can be decomposed in two parts.

B̃1Nt = m2
1

t−1∑
s=2

(G(2)
ts )2 + m1

t−1∑
s=2

(‖b(1)
s ‖2 −m1)(G

(2)
ts )2 = B̃2Nt + Ã2Nt.

By conditioning on (b(2)
t )N

t=1, Ã2Nt is a weighted sum of independent and identically distributed

random variables. Using the fact that E(G(2)
ts )4 ≤ ∆M2{ 1

M

∑N−1
j=0 k2(j/M)}2, it follows that

EÃ2
2Nt =

t−1∑
s=2

E(‖b(1)
s ‖2 −m1)2E(G(2)

ts )4 ≤ ∆tM2{ 1
M

N−1∑
j=0

k2(j/M)}2,

Thus, using Minkowski inequality, we have

1
M2

E(
1

N2

N∑
t=3

Ã2Nt)2 ≤
1

M2N4
{

N∑
t=3

(EÃ2
2Nt)

1/2}2 = O(N−1).

The term B̃2Nt can be decomposed it in two parts B̃2Nt = B̃3Nt + Ã3Nt where

B̃3Nt = m2
1

t−1∑
s=2

s−1∑
j=0

k4(j/M)b(2)T

t−j b
(2)
s−jb

(2)T

s−j b
(2)
t−j ,

Ã3Nt =
t−3∑
j1=0

t−2∑
j2=j1+1

t−1∑
s=0

k2(j2/M)k2(j1/M)b(2)T

t−j2
b

(2)
s−j2

b
(2)T

s−j1
b

(2)
t−j1

.

Using the fact that tr(b(2)T

t−j2
b

(2)
s−j2

b
(2)T

s−j1
b

(2)
t−j1

) = tr(b(2)
t−j1

b
(2)T

t−j2
b

(2)
s−j2

b
(2)T

s−j1
), we can write

Ã3Nt = tr(
t−3∑
j1=0

k2(j1/M)b(2)
t−j1

t−2∑
j2=j1+1

k2(j2/M)b(2)T

t−j2

t−1∑
s=0

b
(2)
s−j2

b
(2)T

s−j1
).

Similarly, Ã3Nt is a sum over j1 of a martingale difference. By using the inequality tr(AB) ≤

tr(A)tr(B), Minkowski inequality and the fact that E(
∑t−1

s=j2+1 ‖b
(2)
s−j1

‖‖b(2)
s−j2

‖)2 ≤ ∆t for t > s >

j2 > j1, it follows that

EÃ2
3Nt ≤ 4m4

1m
2
2

t−3∑
j1=1

k4(j1/M)[
t−2∑

j2=j1+1

k2(j2/M){E(
t−1∑

s=j2+1

‖b(2)
s−j1

‖‖b(2)
s−j2

‖)2}1/2]2

≤ ∆tM3{ 1
M

N−1∑
j1=1

k4(j1/M)}{ 1
M

N−1∑
j2=1

k2(j2/M)}2 = O(tM3).
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Thus, we can write

1
M2

E(
1

N2

N∑
t=3

Ã3Nt)2 ≤
1

M2N4
{

N∑
t=3

E1/2(Ã2
3Nt)}2 = O(M/N).

Finally, for the term B̃3Nt, we have

B̃3Nt = m2
1m

2
2

t−1∑
s=2

s−1∑
j=0

k4(j/M) + m2
1

t−1∑
s=2

s−1∑
j=0

k4(j/M)(b(2)T

t−j b
(2)
s−jb

(2)T

s−j b
(2)
t−j −m2

2)

=
m1m2

4
E(W 2

1Nt) + Ã4Nt.

By an argument similar to the one employed for Ã3Nt, we have that E(Ã4Nt)2 ≤ ∆t2M , and it

follows that M−2N−4E(
∑N

t=3 Ã4Nt)2 ≤ M−2N−4{
∑N

t=3 E1/2(Ã2
4Nt)}2 = O(M−1). Thus, Ẅ 2

1Nt can

be written as

Ẅ 2
1Nt =

m1m2

4
E(W 2

1Nt) +
4∑

l=1

ÃlNt,

and by combining all above results, we obtain

1
M2

var(
1

N2

N∑
t=3

Ẅ 2
1Nt) ≤ ∆

M2

4∑
l=1

E(
1

N2

N∑
t=3

ÃlNt)2 = O(M/N + M−1).

A similar result for Ẅ 2
2Nt can be proven by symmetry. The result of Lemma A.5 follows if M/N → 0

and M →∞, as N →∞.

Proof of Lemma 3.2.

Considering the same linear transformation as the one in the proof of Lemma 3.1, that is b̂t =

Σ−1/2ât and noting that C
(12)

b̂
(j) = Σ−1/2

1 C(12)
â (j)Σ−1/2

2 , we can write

T (â,Σ) = N

N−1∑
j=1−N

k2(j/M)c(12)
â (j)

T
(Σ−1

2 ⊗Σ−1
1 )c(12)

â (j) = N

N−1∑
j=1−N

k2(j/M)c(12)

b̂
(j)

T
c(12)

b̂
(j)

= T (12)

b̂
.

Thus, to prove the result, it is sufficient to show that T (12)
b −T (12)

b̂
= op(M1/2). The result follows

by decomposing the latter difference in two parts, that is,

T (12)
b − T (12)

b̂
= N

N−1∑
j=1−N

k2(j/M)(‖c(12)

b̂
(j)− c(12)

b (j)‖2 + 2〈c(12)
b (j), c(12)

b̂
(j)− c(12)

b (j)〉) = T
(1)
N + T

(2)
N ,

and by showing that each part is op(M1/2). To prove that, we only consider the positive lags j ≥ 0,

since for negative lags, the proof is similar by symmetry.
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Define δ̂t = b
(1)
t − b̂

(1)

t and η̂t = b
(2)
t − b̂

(2)

t . From (2.10), we have

T
(1)
N = N

N−1∑
j=0

k2(j/M)‖c(12)

b̂
(j)− c(12)

b (j)‖2 = N

N−1∑
j=0

k2(j/M)‖ 1
N

N∑
t=j+1

(b(1)
t b

(2)T

t−j − b̂
(1)

t b̂
(2)T

t−j )‖2,

and using Cauchy-Schwarz inequality, we obtain

T
(1)
N = N

N−1∑
j=0

k2(j/M)‖ 1
N

N∑
t=j+1

(b(1)
t η̂T

t−j + δ̂tb
(2)T

t−j − δ̂tη̂
T
t−j)‖2 ≤ 4N(T1N + T2N + T3N ),

with T1N =
∑N−1

j=0 k2(j/M)‖ 1
N

∑N
t=j+1 b

(1)
t η̂T

t−j‖2, T2N =
∑N−1

j=0 k2(j/M)‖ 1
N

∑N
t=j+1 δ̂tb

(2)T

t−j ‖2 and

T3N =
∑N−1

j=0 k2(j/M)‖ 1
N

∑N
t=j+1 δ̂tη̂

T
t−j‖2. Now, it suffices to show that the terms TjN , j = 1, 2, 3,

are op(M1/2/N). The techniques used in this part of the proof are similar to those using in the

proof of Theorem 3.1 in Bouhaddioui and Roy (2003). From (2.9), we can write that

η̂t = {Φ(p2)− Φ̂(p2)}X(2)
t (p2) + ξt(p2),

where ξt(p2) =
∑∞

l=p2+1 Φ(2)
l X(2)

t−l represents the bias of the VAR(p2) approximation of {X(2)
t }. By

equation (3.15) in Bouhaddioui and Roy (2003), we have E
(
‖ξt(ph)‖2

)
= O

(∑∞
l=ph+1 ‖Φ

(h)
l ‖

)2
,

h = 1, 2. Also, by result (3.17) in the same paper and equation (2.5), we obtain that

T1N =
N−1∑
j=0

k2(j/M)‖ 1
N

N∑
t=j+1

η̂tb
(2)T

t−j ‖
2 = Op(

p2
1M

N2
){ 1

M

N−1∑
j=0

k2(j/M)}

Since p2
1 = o( N

M1/2 ), we have T1N = op(M1/2

N ). By symmetry, we can prove that T2N = op(M1/2

N ).

For the third term T3N , using the Cauchy-Schwarz inequality, we obtain

T3N =
N−1∑
j=0

k2(j/M)‖N−1
N∑

t=j+1

η̂tδ̂
T

t−j‖2

≤ ‖Φ(p1)− Φ̂(p1)‖2‖Φ(p2)− Φ̂(p2)‖2
N−1∑
j=0

k2(j/M)‖N−1
N∑

t=j+1

X(1)
t (p1)X

(2)
t−j(p2)

T
‖2

+ ‖Φ(p1)− Φ̂(p1)‖2
N−1∑
j=0

k2(j/M)‖N−1
N∑

t=j+1

X(1)
t (p1)ξt−j(p2)

T ‖2

+ ‖Φ(p2)− Φ̂(p2)‖2
N−1∑
j=0

k2(j/M)‖N−1
N∑

t=j+1

ξt(p1)X
(2)
t−j(p2)

T
‖2

+
N−1∑
j=0

k2(j/M)‖N−1
N∑

t=j+1

ξt(p1)ξt−j(p2)T ‖2
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Using the equations (3.19) - (3.22) in Bouhaddioui and Roy (2003), assumptions (i) and (ii) of

Theorem 3.1 and result (2.5), we can conclude that T3N = op(M1/2/N). Therefore, we obtain

T
(1)
N = N

N−1∑
j=0

k2(j/M)‖c(12)

b̂
(j)− c(12)

b (j)‖2 = op

(
M1/2

)
. (A.1)

Finally, for T
(2)
N , using the Cauchy-Schwarz inequality, we have

T
(2)
N = N

N−1∑
j=1−N

k2(j/M)〈c(12)
b (j), c(12)

b̂
(j)− c

(12)
b (j)〉

≤ N{
N−1∑

j=1−N

k2(j/M)‖c(12)
b (j)‖2}1/2{

N−1∑
j=1−N

k2(j/M)‖c(12)
b (j)− c

(12)

b̂
(j)‖2}1/2.

From Markov inequality, we have
∑N−1

j=1 k2(j/M)‖c(12)
b (j)‖2 = Op(M/N). From (A.1) and the fact

that M/N → 0, we obtain that

T
(2)
N = op(M1/2).

Thus, the second result is verified. This completes the proof of Lemma 3.2.

Proof of theorem 4.1.

By definition of QN , we can write(
M1/2

N

)
QN =

M1/2‖s(12)
â ‖2

2 −
(

M1/2

N

)
m1m2SN (k)

{2m1m2D(k)}1/2

=
‖s(12)

â ‖2
2

{2m1m2M−1DN (k)}1/2
− N−1SN (k)

{2M−1DN (k)}1/2
(m1m2)

1/2 .

From (3.6), the last term of the previous equation goes to zero when M/N → 0 as N →∞. By the

invariance property of the coherency function under linear transformations, see Priestley (1981, p.

661), we have ‖s(12)
x ‖ = ‖s(12)

a ‖. Using, as in Lemma 3.1, the linear transformation bt = Σ−1/2at,

we also get ‖s(12)
a ‖ = ‖s(12)

b ‖. Thus, to prove the consistency result (4.2), it is sufficient to verify

that ‖s(12)

b̂
‖2 − ‖s(12)

b ‖2 p→ 0, which follows from the two following lemmas. We first note that

s̃
(12)
b (w) is defined as s

(12)

b̂
(w), the residual series (b̂

(1)

t , b̂
(2)

t )N
t=1 being replaced by the innovation

series (b(1)
t , b

(2)
t )N

t=1.

Lemma A.6 Under the assumptions of Theorem 4.1, we have

‖s(12)

b̂
‖2
2 − ‖s̃

(12)
b ‖2

2
p→ 0
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Lemma A.7 Under the assumptions of Theorem 4.1, we have

‖s̃(12)
b ‖2 − ‖s(12)

b ‖2 p→ 0

Proof of Lemma A.6.

By definition of s
(12)

b̂
and s̃

(12)
b , and by similar calculations to those for the proof in Lemma 3.2, we

obtain

‖s(12)

b̂
‖2
2 − ‖s̃

(12)
b ‖2

2 =
N−1∑

j=1−N

k2(j/M)(‖c(12)

b̂
(j)‖2 − ‖c(12)

b (j)‖2)

=
N−1∑

j=1−N

k2(j/M)‖c(12)

b̂
(j)− c

(12)
b (j)‖2

+ 2
N−1∑

j=1−N

k2(j/M)〈c(12)
b (j), c(12)

b̂
(j)− c

(12)
b (j)〉.

It is sufficient to prove that the first term goes to zero in probability, because the second term

can be bounded by a product of the first term and a finite quantity, using the Cauchy-Schwarz

inequality. With the notations of Lemma 3.2, we can write
N−1∑

j=1−N

k2(j/M)‖c(12)

b̂
(j)− c

(12)
b (j)‖2 ≤ 4

3∑
l=1

TlN ,

where TlN , l = 1, 2, 3, are defined as Lemma 3.2. We first prove that T1N → 0 in probability. By

the Cauchy-Schwarz inequality, we obtain

T1N ≤ M{ 1
M

N−1∑
j=0

k2(j/M)}{ 1
N

N∑
t=1

‖b(1)
t ‖2}{ 1

N

N∑
t=1

‖η̂t‖2}.

By definition of η̂t, it follows that

1
N

N∑
t=j

‖η̂t‖2 ≤ 1
N

N∑
t=1

{‖Φ(p2)− Φ̂(p2)X
(2)
t (p2)‖2 + ‖

∞∑
l=p2+1

Φ(2)
l X(2)

t−l‖
2}.

Under the assumptions on the process b, on p2 and on the parameters (Φ(2)
l ), we have

T1N = Op(
Mp2

2

N
) + Op(M

∞∑
l=p2+1

‖Φ(2)
l ‖2) = op(1).

By symmetry, we can verify that T2N = op(1). For T3N , we can write

T3N =
N−1∑
j=0

k2(j/M)‖ 1
N

N∑
t=j+1

δ̂tη̂
T
t−j‖2

≤ M{ 1
M

N−1∑
j=0

k2(j/M)}{ 1
N

N∑
t=1

‖δ̂t‖2}{ 1
N

N∑
t=1

‖η̂t‖2}.
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By symmetry, we can prove that 1
N

∑N
t=1 ‖δ̂t‖2 = Op(

p2
1

N ) + Op(1)
∑∞

l=p1+1 ‖Φ
(1)
l ‖2, and using the

same assumptions as those for T1N , we obtain that T3N = op(1). Finally, we conclude that

‖s(12)

b̂
‖2 − ‖s̃(12)

b ‖2 = op(1).

This complete the proof of Lemma A.6.

Proof of Lemma A.7.

The development here is similar to the one in the previous proof. By definition of ‖s̃(12)
b ‖2 and

‖s(12)
b ‖2, we can write

‖s̃(12)
b ‖2 − ‖s(12)

b ‖2 =
N−1∑

j=1−N

k2(j/M)‖c(12)
b (j)‖2 −

∞∑
j=−∞

‖γ(12)
b (j)‖2

=
N−1∑

j=1−N

k2(j/M)[‖c(12)
b (j)‖2 − ‖γ(12)

b (j)‖2]

+
N−1∑

j=1−N

(k2(j/M)− 1)‖γ(12)
b (j)‖2 +

∑
|j|>N

‖γ(12)
b (j)‖2.

Given Assumptions B and C, the second term of this equality goes to zero as M → ∞ by the

dominate convergence theorem. Also the last term goes to zero since
∑+∞

j=−∞ ‖Γ(12)
X (j)‖2 < ∞. It

remains to show that the first term tends to 0 in probability. Since

N−1∑
j=1−N

k2(j/M)[‖c(12)
b (j)‖2 − ‖γ(12)

b (j)‖2] =
N−1∑

j=1−N

k2(j/M)‖c(12)
b (j)− γ

(12)
b (j)‖2 + 2

N−1∑
j=1−N

k2(j/M)λ(j),

where λ(j) = 〈γ(12)
b (j), c(12)

b (j)− γ
(12)
b (j)〉. As in the proof of the Lemma A.6, it suffices to show

that
∑N−1

j=1−N k2(j/M)‖c(12)
b (j) − γ

(12)
b (j)‖2 =

∑m1,m2
u,v=1

∑N−1
j=−N+1 k2(j/M){c(12)

uv (j) − γ
(12)
uv (j)}2 =

op(1) where c
(12)
uv (j) and γ

(12)
uv (j) denote the (u, v) element of the matrices C

(12)
b (j) and Γ(12)

b (j)

respectively. Under Assumptions A, C and by Priestley (1981, p. 325-26), we have

V ar{c(12)
uv (j)} =

1
N

N−1∑
i=−N+1

(1− |i|
N

){γ(12)
uv (i + j)γ(12)

uv (i− j) + κuvuv(0, j, i, i + j)}.

It follows, from Assumptions B and C, that

N−1∑
j=−N+1

k2(j/M)V ar{c(12)
uv (j)} =

1
N

N−1∑
j=−N+1

k2(j/M)
N−1∑

i=−N+1

(1− |i|
N

)γ(12)
uv (i + j)γ(12)

uv (i− j)

+
1
N

N−1∑
j=−N+1

k2(j/M)
N−1∑

i=−N+1

(1− |i|
N

)κuvuv(0, j, i, i + j)

= O(
M

N
+

1
N

).
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Thus, we conclude that
∑N−1

j=1−N k2(j/M)‖c(12)
b (j) − γ

(12)
b (j)‖2 = op(1). This completes the proof

of Lemma A.7 and Theorem 4.1 follows from Lemmas A.6 and A.7.
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