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Serial Cost Sharing
in Multidimensional Contexts*

Cyril Téjédo† and Michel Truchon‡

Résumé / Abstract

La règle de partage séquentiel des coûts a été conçue à l’origine pour le cas où les demandes des
agents portent sur un bien privé homogène, produit par une technologie non reproductible. Dans un tel
contexte, cette règle satisfait de nombreuses propriétés d’équité et de cohérence. Dans cet article, on
étudie l’extension de cette règle aux cas où les demandes des agents peuvent être des vecteurs qui ne
représentent pas forcément des biens homogènes entre les agents, dont l’agrégation ne se fait pas
uniquement via la sommation et où les demandes doivent être ajustées de manière non proportionnelle,
plus précisément le long d’un sentier, pour le calcul des parts de coût. On explore ensuite certaines
propriétés et caractéristiques de cette règle plus générale. Certaines sont transposées directement du
contexte à un seul bien au contexte général. Cependant, on montre que le principe séquentiel est, dans ce
contexte général, incompatible avec l’incontournable traitement égalitaire des égaux. Il faut donc
l’affaiblir et plus précisément exiger qu’il soit respecté uniquement le long des sentiers servant à ajuster
les demandes le cas échéant. Cette forme affaiblie de principe séquentiel, combinée à une forme plus forte
de traitement égalitaire des égaux, caractérise la règle proposée dans cet article.

The Serial Cost Sharing Rule was originally conceived for situations where the demands of agents
pertain to a homogeneous private good, produced by an unreplicable technology. In this context, it is
endowed with a variety of desirable equity and coherency properties. This paper investigates the extension
of this rule to the context where agents request many goods that may be public, private or specific to some
of them, where the aggregation rule may be very general and where demands may have to be scaled in a
non proportional way, more precisely along paths, in order to compute cost shares. It proposes the Path
Serial Rule to address these general problems and explores some of its properties and characteristics.
Some of them are transposed directly from the single good context to the general one. However, it is
shown that in the general context, the serial principle is incompatible with the basic equal treatment of
equals. Thus, it is weakened by requiring that it holds only on the paths along which demands must be
scaled when needed. The resulting weaker Path Serial Principle characterizes the Path Serial Rule
together with the Equal Treatment of Equivalent Demands, a stronger form of Equal Treatment of Equals.
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1 Introduction

The Serial Cost Sharing Rule has received much attention since its introduction by Shenker

(1990) and its extensive analysis by Moulin and Shenker (1992, 1994). It was originally

conceived for problems where n agents request different quantities of a private good, the sum

of which is produced by a single facility. This rule can be constructed from two ethical axioms:

Equal Treatment of Equals (in terms of demands) and Independence of Larger Demands (a

protection of small demanders against larger ones). It satisfies other interesting properties

and has other characterizations as well. It is therefore natural to investigate whether this

rule can be extended to more general problems while keeping similar properties.

Sprumont (1998) brings a partial answer to this question by proposing the Axial Serial

Rule for the case where each agent requests a single specific good. Koster et al. (1998)

propose a similar extension, the Radial Serial Rule, for the context where agents request

several but homogeneous private goods. Both rules use stand alone costs as a basis to

compare demands. As its name implies, the Radial Serial Rule uses intermediate demands

that are constructed by changing the original demands in a proportional way.

None of the two problems considered by these authors is more general than the other. Our

paper considers a more general context where each agent requests a list of goods that may be

private, public, or specific to some agents and where aggregate demand is not necessarily the

sum of individual demands. By allowing agents to have vectors of personalized demands, we

generalize both the models of Sprumont (1998) and of Koster et al. (1998). Moreover, we ad-

mit more general paths along which demands may be scaled down to construct intermediate

demands. This yields a rule that we call the Path Serial Rule.

The paper presents an analysis of this rule in the light of properties found in the literature

on cost sharing rules. These properties are transposed or extended to the general context

whenever possible. Otherwise, they are weakened by requiring that the predicate holds

only for changes in the demands taking place along the specified paths. This is the case

of the Serial Principle defined by Sprumont (1998) since it is shown that this principle is

incompatible with the basic Equal Treatment of Equals. The weaker Path Serial Principle

characterizes the Path Serial Rule together with the Equal Treatment of Equivalent Demands

in terms of stand alone costs, a stronger form of Equal Treatment of Equals. The Path Serial

Rule also satisfies properties similar in spirit to the ones that hold for the original Serial

Rule. However, we show that a characterization in terms of other properties, as in Moulin

and Shenker (1994), Sprumont (1998), and Koster et al. (1998) depends crucially on the

fact that the Axial, the Radial and the Path Serial Rule use stand alone costs to compare

demands.
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The paper is organized as follows. In Section 2, we review some of the known results

on serial cost sharing and its generalization, in particular those of Kolpin (1996), Sprumont

(1998) and Koster et al. (1998). We also give an overview of the paper. The formulation

of the problem and the main definitions are given in Section 3. The section ends with an

example illustrating the importance of the more general form of the problems to be consid-

ered. The Path Serial Cost Sharing Rule is defined in Section 4. Three sets of properties

that can be imposed on a cost sharing rule are presented and discussed in Section 5. The

incompatibility result and the characterization of the Path Serial Rule in the general context

are the object of Section 6. A brief conclusion follows as Section 7. Two more technical

proofs appear in the last section.

2 Overview of the paper

With the original Serial Cost Sharing Rule, agents are ordered according to their demands.

Then, the cost of producing n times the demand of agent 1, which is called an intermediate

demand, is shared equally among all agents. In addition, agents 2 to n must bear equally the

incremental cost of another intermediate demand in which the demand of agents 2 to n is

increased to the level of the demand of agent 2. Next, the incremental cost of an intermediate

demand, in which the demand of agents 3 to n is increased to the level of the demand of

agent 3, is shared equally among agents 3 to n and so on until total demand is satisfied.

The two rules of Sprumont (1998) and Koster et al. (1998) consist in first ordering

individual demands according to their stand alone costs. Next, a first intermediate demand

is constructed by reducing demands of agents 2 to n along a ray or an axis down to the point

where their stand alone costs is the same as for agent 1. A second intermediate demand is

constructed by reducing demands of agents 3 to n down to the point where their stand alone

costs is the same as for agent 2, etc. Finally, the serial formula is applied to the costs of

these intermediate demands. The rules bear the names Axial or Radial because of the way

in which individual demands are reduced to construct intermediate demands.

Rays are particular cases of increasing paths. In some circumstances, it may be natural to

adjust all components of the demand of an agent along the ray to which it belongs. In others,

this may not be appropriate. For technological considerations or simply as an expression of

preferences, they may have to be adjusted in a non linear way. As pointed out by Koster et

al. (1998), one can envisage other extensions of the Serial Rule using more general paths to

scale the demands. This idea leads to the definition of the Path Serial Rule, which may be

seen as an application of the original Serial Rule to a path reduction of the problem.
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The original Serial Cost Sharing Rule has a simple characterization: it is the only cost

sharing rule to satisfy Equal Treatment of Equals (ETE) and Independence of Larger De-

mands (ILD). Condition (ETE) requires that equal demands be treated identically while

(ILD) requires that the cost share of an agent be independent of the size of the demands

that are larger than his or hers. In more general contexts, these conditions do not have

much bite since demands are not directly comparable. Sprumont (1998) proposes stronger

forms of these conditions, which he calls respectively Symmetry (S) and the Serial Principle

(SP). The idea behind Symmetry is that if the demands of two agents can be interchanged

without altering total cost, then the two goods should be deemed comparable. Then, if the

two agents request the same quantity of these two goods, they should be charged the same

amount. A stronger property introduced by Koster et al. (1998) is Equal Treatment of

Equivalent Demands (ETV), where demands are equivalent when they have the same stand

alone cost.

(ILD) implies the ordering of agents according to their demands, which may be impossible

in more general contexts. Sprumont’s answer is to order agents according to the cost shares

produced by the rule. Then, the Serial Principle says that an agent who pays less than

another agent should not see her cost share change if this other agent increases his demand.

Koster et al. (1998) define a weaker form of this property called the Radial Serial Principle

(RSP), which says that an agent who pays less than another agent should not see her cost

share change if this other agent increases his demand along the ray to which it belongs. In

the more general context considered here, this property becomes the Path Serial Principle

(PSP). Thus, the Axial, the Radial, and the Path Serial Rules are characterized by (ETV)

together with (SP), (RSP), and (PSP) respectively.

Moulin and Shenker (1994) show that the original Serial Cost Sharing Rule enjoys other

remarkable ethical and coherency properties. Among other results, it is characterized by

the combination of Additivity, Separability (for separable cost functions), Free Lunch, and

Fair Ranking. Additivity requires that a rule yields the same results, whether it is applied

separately to different cost elements or to their sums. Separability says that if cost is a linear

function of total demand, then it should be allocated proportionally to the demands. Free

Lunch says that if the cost of an n-fold replication of an agent’s demand is zero, so should

be the cost share of this agent. Fair Ranking, also called No-Domination, says that the cost

shares of agents should be ordered as their demands. It implies (ETE). While Separability,

Free Lunch, and Fair Ranking can be transposed to the Path Serial Rule, this is not the

case of Additivity. Indeed, Kolpin (1996) shows that there is no extension of the Serial Rule
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to a multidimensional context satisfying Scale Invariance and Additivity. Thus, none of the

Axial, Radial, and Path Serial Rules satisfies Additivity.

The original Serial Rule is immune to arbitrary changes in the way output is measured.

It satisfies a property introduced by Sprumont (1998) and called Ordinality, which says that

arbitrary changes in the units in which output is measured should not affect cost shares.

A weaker property is Scale Invariance, which prescribes the invariance of cost shares with

respect to linear changes in the units. We extend Ordinality to the general context considered

in this paper by requiring that the paths that belong to the specification of a problem be

transformed with the demands and the cost function to give an equivalent problem. We also

impose that demands that enter symmetrically in the cost function be transformed with the

same function in order to preserve symmetry. The Path Serial Rule satisfies Ordinality thus

defined.

Coming back to other characterizations, Sprumont (1998) shows that the Axial Serial

Rule is the only cost sharing rule that satisfies Symmetry (S), Rank Independence of Irrel-

evant Agents (RIIA), Independence of Null Agents (INA), Ordinality (O), and the Serial

Principle (SP). Condition (RIIA) imposes that the ranking of two agents’ cost shares de-

pends on their demands only. Put differently, a change in an agent’s demand must not affect

the interpersonal ranking of others’ cost shares. (INA) states that agents with null demands

can be entirely removed from a problem without altering the outcome for the others. This

implies that agents with null demands pay zero.

Koster et al. (1998) assert that Sprumont’s characterization of the Axial Serial Rule does

not extend to the Radial Serial Rule in their homogeneous context. We reinforce their result

by showing that (SP) and (ETE) are incompatible in this context. Since (ETE) is hardly a

disputable requirement, (SP) must be weakened in some way. Therefore, Koster et al. define

the Radial Serial Principle (RSP), by restricting (SP) to rays. We define the Path Serial

Principle (PSP) in a similar way, by restricting (SP) to paths.

Koster et al. also have a characterization theorem, asserting that the Radial Serial Rule is

the only cost sharing rule that satisfies (RSP), (INA), (RIIA), (ETE), and Radial Ordinality

(RO), a weaker form or ordinality. We argue that there is an implicit assumption behind

the theorems of Sprumont and of Koster et al.: stand alone cost is the proper basis for

the comparison of heterogeneous demands. We show that, by choosing other basis, we get

other rules that also satisfy all the conditions of their theorems. In the general context of

this paper, these other rules and the Path serial rule satisfy (S), (RIIA), (INA), and (O) in

addition to (PSP).
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3 The Cost Sharing Problem

A cost sharing problem starts with a profile of demands, to which a cost function is applied.

In some cases, as with serial cost sharing, demands may have to be scaled down to meet

certain conditions. The cost sharing problem must thus be completed by a description of

how this should be made. We address each of these elements in the next three subsections.

Then, we examine special cases of this problem found in the literature and we present an

example to illustrate the generality of our approach.

3.1 The demands

Throughout this paper, there is a fixed set of divisible commodities K = {1, . . . , k} and a
fixed set of agents N = {1, . . . , n} . The commodities may be goods, characteristics serving
to describe needs, or specifications of a certain facility. A commodity may be specific to a

particular agent or a subset of agents. This means that these agents are the only ones to be

able to consume, use, or enjoy the commodity in question. Hence, they will be the only ones

to demand positive quantities of this commodity. As for non specific commodities, they may

be private or public or anything in between.

For each agent i ∈ N, let there be a positive integer mi ≤ k and a one-to-one function

ci : {1, . . . ,mi} → K, specifying the list of commodities that may be requested by this

agent. Next, let Mi be the range of ci, i.e. Mi = {ci(1) , . . . , ci(mi)} . In plain words, Mi is

the subset of commodities for which agent i may request a positive quantity. We assume

that K = ∪ni=1Mi. Thus, for each commodity, there is at least one agent concerned by this

commodity.

The demand of agent i is described by a vector qi ∈ Rmi
+ . The scalar qih is the demand of

commodity ci(h) ∈Mi by agent i. Let M = {M1, . . . ,Mn} with cardinality m =
Pn

i=1mi ≤
nk. A profile of demands is an element Q ∈ Rm

+ =
Qn

i=1R
mi
+ . Given a subset S ⊂ N

and Q ∈ Rm
+ , let Q

S ∈ Rm
+ be the vector obtained from Q by changing all components

qj, j ∈ N\S, for components of 0.

3.2 The cost function

To continue the description of the problem, we assume that the agents jointly own a facility

to jointly produce any list of commodities that are requested. The cost of producing a bundle

Y ∈ Rm
+ is C (Y ) . A cost function C : Rm

+ → R+ also induces n stand alone cost functions
ci : Rmi

+ → R+ defined by:
ci (yi) = C

¡
Y {i}¢ ∀i ∈ N

5



Given yi, y0i ∈ Rmi
+ , let yi ¿ y0i mean yih < y0ih, h = 1, . . . ,mi.We shall say that ci : Rmi

+ → R+
is increasing if yi ¿ y0i implies ci (yi) < ci (y

0
i) . Thus, ci is increasing if an increase in all

components of yi yields a cost increase.

Let C (m) be the class of continuous and non-decreasing functions C : Rm
+ → R+ satis-

fying C (0) = 0 and whose induced functions ci, i = 1, . . . , n, are increasing. We shall work

with this class of functions throughout the paper. Whereas we need the mild assumption

that each ci be increasing, we do not want to impose and we do not need that C be in-

creasing. In other words, Y ≤ Y 0 ∈ Rm
+ and yi ¿ y0i for some i do not necessarily imply

C (Y ) < C (Y 0) . Indeed, C may be the result of a more or less complex aggregation and

optimization procedure. Thus, it is not necessarily increasing in all its components as, for

example, when some public goods are involved.

A function C ∈ C (m) is symmetric in the components i and j if C (Y ) = C (Yij) ∀Y ∈
Rm
+ where Yij is the vector Y with the components i and j interchanged. This requires that

mi = mj but not necessarilyMi =Mj. A function C ∈ C (nk) is symmetric if it is symmetric
in the components i and j ∀i, j ∈ N. For a symmetric function, we let mi = k ∀i. Thus,
m = nk.

Note that if C ∈ C (m) is symmetric in the components i and j, then ci (x) = cj (x) ∀x ∈
Rmi
+ . Indeed, ci (x) = C

¡
Y {i}¢ = C

¡
Y {j}¢ = cj (x) for any Y ∈ Rm

+ such that yi = yj = x.

The middle equality follows from the fact that the difference between Y {i} and Y {j} amounts
to an interchange of the components i and j.

3.3 The paths

Serial cost sharing requires that larger demands be initially scaled down to a level equivalent

to smaller ones. In some circumstances, it may be natural to adjust all components of the

demand of an agent along the ray to which it belongs, i.e. proportionally. This is the method

used in the Radial Serial Rule. In other circumstances, this may not be appropriate. As

pointed out by Koster et al. (1998) in their Remark 3.7, one can envisage other extensions

of the serial rule using more general paths to scale the demands. This is the idea developed

in this paper. This approach requires that we add the rules according to which demands

must be scaled, to Q and C in the definition of a cost sharing problem.

For each i ∈ N, we consider functions hi : Rmi+1
+ → Rmi

+ , which map each y ∈ Rmi
+ and

τ ∈ R+ onto a vector hi (y, τ) ∈ Rmi
+ . Assume that hi (y, · ) is non-decreasing, increasing

without bound in at least one component, and that for each y ∈ Rmi
+ , there exists a τ 0 ∈ R+

(necessarily unique) such that hi (y, τ 0) = y. Let Hi be the class of these functions. Then,

hi (y,R+) is the path through y defined by hi (y, · ) . Clearly, the class {hi (y,R+) : y ∈ Rmi
+ }

6



scans Rmi
+ since hi is defined for each y ∈ Rmi

+ . Finally, let hRi : R
mi
+ \ {0} × R+ → Rmi

+ be

defined by hRi (y, τ) = τy. This function defines the ray through a y 6= 0 in Rmi
+ . Index i may

be dropped in the homogeneous case.

We do not impose that hi (y, 0) = 0 and that hi (y, · ) be continuous and increasing
in all components. However, given a function C ∈ C (m) , we restrict ourselves to the
class of functions Hi (ci) ⊂ Hi for which ci (hi (y, · )) is continuous and increasing, with
ci (hi (y, 0)) = 0. Since ci (0) = 0 and since ci is increasing, this implies that there is at least

one null component in hi (y, 0) . In words, a path starts on an axis but not necessarily at

the origin. The cost of the bundle at the starting point is null and increasing thereafter.

This definition of Hi (ci) insures that for any α ∈ R+, there is a unique τα such that

ci (hi (y, τα)) = α.

Let H (C) = H1 (c1)×· · ·×Hn (cn) , H (Y, τ) = (h1 (y1, τ 1) , . . . , hn (yn, τn)), and C (m)×
H = {(C,H) : C ∈ C (m) and H ∈ H (C)} . A cost sharing problem is a triple (Q,C,H) ∈
Rm
+ ×C (m)×H (C) . Accordingly, a cost sharing rule is a mapping ξ : Rm

+ ×C (m)×H→
Rn
+ satisfying the budget balance condition:

nP
i=1

ξi (Q,C,H) = C (Q)

The vector ξ (Q,C,H) is the list of cost shares for the problem (Q,C,H) .

We assume that H is exogenous as is the case of Q. The choice of hi may come from

agent i, be imposed by the planner or be negotiated between all those concerned. The

criteria leading to the adoption of a particular hi may include technological considerations

or preferences. For example, the different components of qi may pertain to different technical

characteristics of a facility and for technological reasons that only agent i knows, any change

in qi should be done according to a function hi (not necessarily linear) supplied by the agent.

Alternatively, hi may be the expression of a preference by the agent. In the example given

below, each agent has a two-component demand, gas in summer and gas in winter. If these

demands are to be reduced, some agents may prefer a reduction of gas available in summer

rather than a proportional reduction of both. Others may have different desiderata.

3.4 Special cases

With some abuse of notation, we write Mi = {i} ∀i to describe the case where each agent
requests a quantity of a single specific or personalized good as in Sprumont (1998). This

impliesM = K = N . In this case, a problem may be written as a pair (Q,C) ∈ Rn
+×C (n) .

At the other end of the spectrum, whenMi = K ∀i and C (Y ) = c (
P

i yi) with c : Rk
+ →

R+, all commodities are homogeneous and private. Following Moulin and Shenker (1994)

7



and Sprumont (1998), we call these functions and the resulting problems homogeneous. If

in addition, hi = hR ∀i as with the Radial Serial Rule, then a problem may be written as a

pair (Q,C) ∈ Rnk
+ × C (nk) .

Moulin-Shenker k = 1 Mi = K ∀i C (Y ) = c (
P

i yi)

Koster et al. (1998) Mi = K ∀i C (Y ) = c (
P

i yi)

Sprumont (1998) k = n Mi = {i} ∀i

Table 1: Special cases

Table 1 summarizes the different features of problems considered in the literature thus

far. One can see that none of the two problems considered by Sprumont (1998) and Koster et

al. (1998) is more general than the other. Koster et al. study homogeneous problems while

Sprumont suppose only one commodity for each agent. By comparison, we allow mi > 1

and Mi 6=Mj ∀i, j. This means that agents may have vectors of demands for goods that are
specific to them. Thus, we generalize both the model of Sprumont and the one of Koster et

al. Actually, we allow for any mix of private, public, and specific commodities. In addition,

the hi define paths that are not necessarily rays.

3.5 An example

We conclude this section with an example that illustrates the kind of problem that can fit

in this general framework. Suppose there are three cities A,B and C that must be supplied

with natural gas from point S. Thus, a pipeline must be built to link the three cities to the

supply S. The possible links are represented in Figure 1. Thus, B could be fed directly from

S or through A.

S A C

B

1

23

4

Figure 1: A Network of pipelines
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Let there be two periods, summer and winter. Each city has a demand in each period

and this demand is expected to remain the same forever. Thus, the profile of demands is a

sextuple:

Q = ((qas, qaw) , (qbs, qbw) , (qcs, qcw))

Not only is gas in winter different from gas in summer but gas available in one city is different

from gas available in a different city. Gas is a specific good. Indeed, supplying additional

gas to A has an impact on costs that is different from the impact on costs of supplying the

same quantity to B or C.

A network of pipelines may be represented by a γ ∈ R4+ specifying the capacity of each
of the four segments labelled 1, 2, 3, 4. If we assume that the marginal cost of a segment

is decreasing with its capacity and if cost is to be minimized, only one of segments 1 and

4 will be built. In other words, only two networks are possible: γ1 with 0 capacity on the

last segment and γ2 with 0 capacity on the first segment. Capacity on each segment of each

network depends on the profile of demands. In other words, γ1 and γ2 are functions of Q.

More precisely, γ1 : R6+ → R4+ is defined by:

γ1 (Q) = (max {qbs, qbw} , max {qcs, qcw} , max {qas + qbs + qcs, qaw + qbw + qcw} , 0)

Indeed, the capacities on segments 1 and 2 must be sufficient to carry the largest quantities

required by B and C respectively over the two periods. Moreover, the capacity on segment 3

must be sufficient to carry the largest of the total quantity required by the three cities over

the two periods. γ2 : R6+ → R4+ is defined in a similar way.

γ2 (Q) = (0, max {qcs, qcw} , max {qas + qcs, qaw + qcw} , max {qbs, qbw})

Suppose that the cost of building a network γ is given by a function c : R4+ → R+. Then,
C would be given by:

C (Q) = min {c (γ1 (Q)) , c (γ2 (Q))}
Thus far, this problem fits neither the framework considered by Koster et al. (1998), since

the goods (gas in A,B, or C) are specific to agents, neither the one of Sprumont (1998) since

there is a vector of specific goods for each agent. To make the problem still more different,

suppose that each city requires that scaling up, if needed, be done in a proportional way but

that scaling down be done in a non proportional way. More precisely, in the latter case, the

largest demand should first be reduced until it reaches the size of the smallest demand and
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then both demands should be reduced proportionally. The prescribed path is described by

the following function hi : R3+ → R2+ :

hi (y, τ) =

(
(min {max {τys, ys} , τyw} , τyw) if ys ≤ yw

(τys, min {max {τyw, yw} , τys}) if ys > yw

This function belongs to Hi. One can insure that it belongs to Hi(ci) by imposing that ci be

increasing, be it slightly, with respect to both yis and yiw.

4 The Path Serial Cost Sharing Rule

The original version of the Serial Cost Sharing Rule has been introduced by Shenker (1990)

and characterized by Moulin and Shenker (1992, 1994) in the context where the individuals

request a single private good, i.e. k = 1 and C (Q) = c (
P

i qi) . Before presenting an

extension of this rule to the general context considered here, we give the definition of the

Direct Serial Rule introduced by Sprumont (1998). This is simply the original serial rule

applied to a problem (Q,C) ∈ Rn
+ × C (n) that is not necessarily homogeneous. This direct

rule will prove useful in assessing the properties of the Path Serial Rule.

Definition 1 (The Direct Serial Rule) Consider a problem (Q,C) ∈ Rn
+ × C (n) where

Q is naturally ordered, i.e. q1 ≤ . . . ≤ qn. Then, consider the intermediate demands Qi =

(qi1, . . . , q
i
n) ∈ Rn

+, i = 1, . . . , n, defined by qij = min {qi, qj} ∀j ∈ N. The Direct Serial Rule

ξDS : Rn
+ ×C (n)→ Rn

+ is defined by:

ξDS
i (Q,C) =

iX
j=1

C (Qj)− C (Qj−1)
n+ 1− j

, i = 1, . . . , n.

In the context of Moulin and Shenker, C (Q1) = c (nq1) , C (Q2) = c (q1 + (n− 1)q2) ,
C (Q3) = c (q1 + q2 + (n− 2)q3) , and so on. Thus all agents share equally the cost c (nq1) of a
list of identical demands (q1, . . . , q1) . Then, agents 2, . . . , n shares equally c (q1 + (n− 1)q2)−
c (nq1) , i.e. the cost increase when the demand is changed from (q1, . . . , q1) to (q1, q2, . . . , q2),

and so on. Note that in this context, q1 ≤ . . . ≤ qn is equivalent to c1 (q1) ≤ c2 (q2) ≤ . . . ≤
cn (qn) . This is not so for a more general problem (Q,C) ∈ Rn

+×C (n) , since different agents
may request different commodities. Actually, the order between agents may depend on the

units in which these demands are expressed and thus, the cost shares may depend on this

choice. This is certainly something that we want to avoid. In addition, with heterogeneous

commodities, (q1, . . . , q1) is not necessarily a vector of identical demands. Thus, there is no
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point in defining intermediate demands in this way. Moreover, this would not work in the

general context where the number of commodities may be different from oneMi to the other.

The Path Serial Rule that we now define takes care of these particularities. In essence,

it consists in first ordering individual demands according to their stand alone costs. Next,

a first intermediate demand is constructed by reducing demands of agents 2 to n along the

respective paths specified by the hi, down to the points where their stand alone costs are

the same as for agent 1. A second intermediate demand is constructed by reducing demands

of agents 3 to n, along the same paths, down to the point where their stand alone costs are

the same as for agent 2, etc. Finally, the formula of the Direct Serial Rule is applied to the

costs of these intermediate demands.

Definition 2 (The Path Serial Rule) Given a problem (Q,C,H) ∈ Rm
+×C (m)×H (C) ,

suppose, without loss of generality, that agents are ranked according to their ci (qi):

c1 (q1) ≤ c2 (q2) ≤ . . . ≤ cn (qn) .

Then, for each i, consider the intermediate demand Qi = (qi1, . . . , q
i
n) ∈ Rm

+ defined by:(
qij = qj if cj (qj) ≤ ci (qi)

qij ∈ hj (qj,R+) and cj
¡
qij
¢
= ci (qi) if cj (qj) > ci (qi)

By definition of H (C) , these intermediate demands are uniquely defined. Finally, the cost
allocation of the Path Serial Rule is given by the following formula:

ξPSi (Q,C,H) =
iX

j=1

C (Qj)− C (Qj−1)
n+ 1− j

, i = 1, . . . , n.

Remark 1 The Radial Serial Rule ξRS of Koster et al. (1998) is the Path Serial Rule ξPS

with the use of hRi as the scaling function for any i and any pair (Q,C) ∈ Rm
+ × C (m) . In

short, ξRS (Q,C) = ξPS
¡
Q,C,HR

¢
where HR =

¡
hR1 , . . . , h

R
n

¢
. Both ξPS and ξRS reduce to

the Axial Rule ξA of Sprumont (1998) whenMi = {i} ∀i and all three reduce to the original
serial rule in the context of the single private good. We say that they are Serial Extensions

of the original Serial Rule.

Remark 2 One might question the important role assigned to the stand alone costs in the
Path Serial Rule. From the point of view of agents, this may be the best criterion, at least

under increasing returns, since any subset of agents is then guaranteed not to pay more

on total than its stand alone cost. Yet, this is not the only way to order demands and to
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define equivalent demands. Koster et al. (1998) indicate that a more general binary relation

could be used to do so. In line with their formulation, ci could be replaced by any other

function, say gi, having similar properties. More precisely, let G = (g1, . . . , gn) be the vector

of such functions. Then, a problem would be defined by a four-tuple (Q,C,H,G) where

each hi would now be requested to belong to the class of functions Hi (gi) ⊂ Hi for which

gi (hi (y, · )) is continuous and increasing, with gi (hi (y, 0)) = 0. The definition of the Path

Serial Rule would be modified accordingly. Examples of modifications of the Path Serial

Rule along this line are given in Section 6.

Moulin and Shenker (1992, 1994) show that the Serial Rule, i.e. ξDS, has interesting

ethical and consistency properties in the context of the single private good. What can be

said of the Path Serial Rule ξPS? More generally, does there exist a serial extension that

possesses the same or similar interesting properties?

Before addressing this question, we associate with any problem (Q,C,H) ∈ Rm
+×C (m)×

H (C) , a reduced problem of a particular interest in the following way. Let c−1hiy : R+ →
Rmi
+ , i = 1, . . . , n, be defined by

c−1hiy (α) = hi (y, τ) : ci (hi (y, τ)) = α (1)

and cHQ : Rn
+ → R+ by:

cHQ (x) = C
¡
c−1h1q1(x1) , . . . , c

−1
hnqn

(xn)
¢

(2)

Finally, let c̆ (Q) = (c1 (q1) , . . . , cn (qn)) . The pair
¡
c̆ (Q) , cHQ

¢ ∈ Rn
+ × C (n) is a new cost

sharing problem, which is normalized in the following sense.

Definition 3 A problem (Q,C) ∈ Rn
+ × C (n) is said normalized if

¡
c̆ (Q) , cHQ

¢
= (Q,C) .

In particular, the problem
¡
c̆ (Q) , cHQ

¢ ∈ Rn
+ ×C (n) defined by (1-2) is normalized. We call

it the normalized path reduction of (Q,C,H) .

When Mi = {i} ∀i, the function c−1hiy is simply the inverse c
−1
i and

¡
c̆ (Q) , cHQ

¢
is the

normalized problem of Sprumont (1998). We now state, without proof, a very important

lemma.

Lemma 1 The Path Serial Rule ξPS is given by:

ξPS (Q,C,H) = ξDS
¡
c̆ (Q) , cHQ

¢
i.e. by applying the Direct Serial Rule to the normalized path reduction of the problem

(Q,C,H).
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The last lemma says that ξPS consists in applying ξDS to a problem in which each

demand is replaced by its stand alone cost as with ξA. However, there is more to it than just

a transformation of vectors of quantities into a scalar. The definition of the cost function

that applies to the reduced demands involves a projection of each demand onto a manifold

of dimension one, i.e. a path.

Not surprisingly, there is a cost associated with this reduction, even in the homogeneous

case. As we shall see, ξPS does not satisfy all of the properties that ξDS meets in the single

specific good context of Sprumont or the single private good context of Moulin-Shenker.

However, since ξPS is tantamount to applying the Axial Rule to the normalized path reduc-

tion of the problem, it satisfies a restriction of some of these properties to the paths along

which the rules operates.

5 Properties of the Path Serial Rule

This section is devoted to the presentation and discussion of three sets of properties. The

first one includes a strong form of scale invariance called Ordinality, which is satisfied by the

Path Serial Rule. In the other two, one finds the Equal Treatment of Equivalent demands

and the Path Serial Principle, which together characterize the Path Serial Rule.

5.1 Ordinality

Almost everybody would agree with the requirement that final cost shares should not de-

pend on the units in which demands are measured. In the literature on cost sharing and

game theory, one often finds a condition called Scale Invariance, which says that linear but

otherwise arbitrary and independent rescalings of the units should not affect cost shares.

Sprumont (1998) argues that no rescaling of the units should affect cost shares, not only

linear ones, a requirement which he calls ordinality. We adopt the same point of view and

we transpose his definition to the general context of this paper. Since a problem is now

defined as a triple, which include scaling functions hi defining paths, we add the natural

requirement that the latter be transformed by the same function that is applied to the units

and the cost function to transform a problem into an equivalent one. We also add another

natural requirement: the same transformation must be used for the demands of two agents

if they enter symmetrically in the cost function. This is essential to preserve the symmetry

of the cost function, without which some complications may arise.
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Let F (m) be the class of separable, increasing and one-to-one correspondences f : Rm
+ →

Rm
+ . More precisely, each f ∈ F (m) is a list of m increasing one-to-one correspondences fic :

R+ → R+, c = ci(1) , . . . , ci(mi) ; i = 1, . . . , n. Let f (Y ) = (f1 (y1) , . . . , fn (yn)) ∀Y ∈ Rm
+ .

We define two problems (Q,C,H) ∈ Rm
+ × C (m)×H (C) and (Q0, C 0, H 0) ∈ Rm

+ × C (m)×
H (C 0) as ordinally equivalent if there exists a transformation f ∈ F (m) such that:
• ∀i, j ∈ N : fi = fj if C is symmetric in the components i and j,

• Q = f (Q0) ,

• ∀i,∈ N : hi (qi,R+) = fi (h
0
i (q

0
i,R+)) or equivalently hi (fi (q0i) ,R+) = fi (h

0
i (q

0
i,R+))

• C 0 (Y ) = C (f (Y )) ∀Y ∈ Rm
+ .

Under this definition, the demand of each commodity by each agent may be transformed by

any increasing function. This function may be different from one commodity to the other and

from one agent to the other, except when the cost function is symmetric for these two agents.

However, separability requires that the transformation of each unit be done independently

from the others. The path h0i (q
0
i,R+) is also transformed into the path hi (qi,R+) and the

cost function C into C 0 in parallel with the transformation of q0i into qi.

Definition 4 A cost sharing rule ξ : Rm
+ × C (m) ×H → Rn

+ satisfies Ordinality (O) if for

any pair of ordinally equivalent problems (Q,C,H) ∈ Rm
+×C (m)×H (C) and (Q0, C 0, H 0) ∈

Rm
+ ×C (m)×H (C 0), we have ξ (Q,C,H) = ξ (Q0, C 0, H 0).

We now give an example of two ordinally equivalent problems. Consider a problem

(Q,C,H) ∈ R4+ × C (4)×H (C) with q1 = (1, 1) , q2 = (1, 4) ,

C (Y ) = y11 + y12 + y21 + y22

and hi = hRi for i = 1, 2. Next, let f1 : R2+ → R2+ be defined by f1 (y1, y2) = (y1, y2) and

f2 : R2+ → R2+ by f2 (y1, y2) = (y1, y
2
2) . We obtain an equivalent problem (Q0, C 0, H 0) ∈

R4+ ×C (4)×H (C) by defining:

q01 = f−11 (q1) = (1, 1) ; q02 = f−12 (q2) = (1, 2) ;

C 0 (Y ) = C (f (Y )) = y11 + y12 + y21 + y222

H 0 must meet the condition hi (fi (q
0
i) ,R+) = fi (h

0
i (q

0
i,R+)) or equivalently h0i (q

0
i,R+) =

f−1i (hi (fi (q
0
i) ,R+)) , i = 1, 2. Accordingly, we set:

h0i (y, τ) = f−1i (hi (fi (y) , τ)) ∀τ ∈ R+, i = 1, 2
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Substituting the definitions of fi and hi in the preceding identity, we get h01 = h1 and:

h02 (y, τ) = h2
¡
τy1,
√
τy2
¢ ∀τ ∈ R+

While h2 defines rays, this is not the case of h02.

Remark 3 If f is linear, then (O) reduces to the standard Scale Invariance. In particular,
f transforms rays into rays. The above example shows that this is not necessarily the case

with an arbitrary f ∈ F (m) . Consequently, the Radial Serial Rule does not satisfy (O)
since this rule operates along rays. Put differently, the requirement that rays be transformed

into rays places some restriction on the class of admissible transformation functions. This

restriction led Koster et al. (1998) to define a weaker invariance condition that they name

Radial Ordinality.

More precisely, two problems (Q,C) , (Q0, C 0) ∈ Rm
+ × C (m) are said to be ray-to-ray

equivalent if there exists a transformation f ∈ F (m) such that the prescriptions for ordinal
equivalence hold with the third one replaced by:

• ∀i,∈ N : hRi (qi,R+) = fi
¡
hRi (q

0
i,R+)

¢
or equivalently hRi (fi (q

0
i) ,R+) = fi

¡
hRi (q

0
i,R+)

¢
Then, Radial Ordinality (RO) requires that the cost shares be the same for two ray-to-ray

equivalent problems.

Interestingly, two ordinally equivalent problems have the same normalized path reduction.

Thus, a cost sharing rule defined on the normalized path reduction of a problem, satisfies

(O).

Lemma 2 Given a pair of ordinally equivalent problems (Q,C,H) ∈ Rm
+ × C (m) ×H (C)

and (Q0, C 0,H 0) ∈ Rm
+ × C (m)×H (C 0), we have

¡
c̆ (Q) , cHQ

¢
=
¡
c̆0 (Q0) , c0H

0
Q0
¢
.

The proof is given in subsection 8.1. Combining Lemmas 1 and 2, we obtain the following

corollary.

Corollary 1 The Path Serial Rule ξPS satisfies (O).

5.2 Equal Treatment of Equivalents Demands

The two essential features of the Serial Cost Sharing Rule introduced by Moulin and Shenker

(1992) is the equal treatment of equal demands and the protection it offers to agents with

small demands against larger ones. In the general context of this paper, demands are not
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necessarily comparable in terms of quantities. Sprumont (1998) and Koster et al. (1998)

address this problem and propose reinforcements of the properties just mentioned. In this

subsection, we review the definitions pertaining to the equal treatment of equivalent de-

mands. The protection against larger demands follows in the next subsection. We start with

a property called Fair Ranking or No-Domination, which implies equal treatment of equal

demands for homogeneous problems.

Definition 5 A cost sharing rule ξ : Rm
+ ×C (m)×H→ Rn

+ satisfies Fair Ranking (FR) if

for any homogeneous problem (Q,C,H) ∈ Rnk
+ ×C (nk)×H (C) and i, j ∈ N, the following

holds:

qi ≤ qj ⇒ ξi (Q,C,H) ≤ ξj (Q,C,H)

Definition 6 A cost sharing rule ξ : Rm
+ × C (m) × H → Rn

+ satisfies Equal Treatment

of Equals (ETE) if for any homogeneous problem (Q,C,H) ∈ Rnk
+ × C (nk) × H (C) and

i, j ∈ N, the following holds:

qi = qj ⇒ ξi (Q,C,H) = ξj (Q,C,H)

Koster et al. (1998) introduce a stronger condition, based on the notion of equivalent

demands. A very natural criterion to order two individual demands is their stand alone

cost. Thus, qi and qj are equivalent if ci (qi) = cj (qj) . This criterion yields the following

reinforcement of the above two properties.

Definition 7 A cost sharing rule ξ : Rm
+ × C (m) × H → Rn

+ satisfies Fair Ranking with

respect to stand alone cost (FRV) if for all (Q,C,H) ∈ Rm
+ × C (m) ×H (C) and i, j ∈ N,

the following holds:

ci (qi) ≤ cj (qj)⇒ ξi (Q,C,H) ≤ ξj (Q,C,H)

Definition 8 A cost sharing rule ξ : Rm
+ × C (m) × H → Rn

+ satisfies Equal Treatment of

Equivalents demands (ETV) if for all (Q,C,H) ∈ Rm
+ × C (m) × H (C) and i, j ∈ N, the

following holds:

ci (qi) = cj (qj)⇒ ξi (Q,C,H) = ξj (Q,C,H)

Sprumont (1998) uses the property of Symmetry instead, which can also be extended

to the general context. Comparing the demands of two different agents does not in general

make sense. It does make sense however if the two lists of commodities requested by the

two agents are sufficiently similar. One circumstance in which the commodities requested

by agent i can be declared similar to those requested by agent j is when the cost function is

symmetric in the components i and j, i.e. C (Y ) = C (Yij) ∀Y ∈ Rm
+ .
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Definition 9 A cost sharing rule ξ : Rm
+ ×C (m)×H→ Rn

+ satisfies Symmetry (S) if for all

(Q,C,H) ∈ Rm
+ × C (m)×H (C) and i, j ∈ N such that C is symmetric in the components

i and j, the following holds:

qi = qj ⇒ ξi (Q,C,H) = ξj (Q,C,H)

Remark 4 (ETV) implies (S), which implies (ETE). The converse is not true in general.
(ETE) does not imply (S) since a cost function may be symmetric without being homoge-

neous. Only for homogeneous problems are (S) and (ETE) identical. (S) does not imply

(ETV) since we can have ci (qi) = ci (qj) without having qi = qj.

Remark 5 The fact that ξDS satisfies (FR) on the class of normalized problems implies

that ξPS satisfies (FRV). More generally, let a rule ξ : Rm
+ × C (m) × H → Rn

+ be defined

from a rule ξN : Rn
+ ×C (n)→ Rn

+ by ξ (Q,C,H) = ξN
¡
c̆ (Q) , cHQ

¢
. Then, ξ satisfies (FRV)

if and only ξN satisfies (FR) on the class of normalized problems. As a corollary, ξ satisfies

(ETV) if and only if ξN satisfies (ETE) on the class of normalized problems.

5.3 The Serial Principle

This subsection is devoted to the independence of the contributions of agents with small

demands with respect to the size of larger demands. The original condition has been defined

for the single private good case. We first extend the definition to the general context.

However, this condition does not have much bite in this context since demands are not

necessarily comparable. Sprumont (1998) proposes a more powerful condition called the

Serial Principle. The latter being incompatible with Equal Treatment of Equals in the general

context, it must be weakened. We propose the Path Serial Principle. The subsection ends

with two related conditions called Rank Independence of Irrelevant Agents and Independence

of Null Agents.

Definition 10 A cost sharing rule ξ : Rm
+ × C (m) × H → Rn

+ satisfies Independence of

Larger Demands (ILD) if for two cost sharing problems (Q,C,H) and (Q0, C,H) ∈ Rnk
+ ×

C (nk)×H (C) such that Mi = K ∀i and any i ∈ N such that q0i = qi and

q0j = qj ∀j ∈ N\ {i} : qj < qi

q0j ≥ qj ∀j ∈ N\ {i} : qi ≤ qj

the following holds:

ξi (Q,C,H) = ξi (Q
0, C,H)
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In the general context, (ILD) has no real content since demands cannot be compared. In

the homogeneous case, things are better but the condition remains weak since the relation

≤ on Rk is not complete. To obviate this problem, Sprumont (1998) proposes that demands

be ordered according to the cost shares produced by the cost sharing rule itself. This yields

the Serial Principle, which requires that an agent’s cost share be unaffected by increases in

the demands of those who initially pay more than him.

Definition 11 A cost sharing rule ξ : Rm
+ × C (m)×H→ Rn

+ satisfies the Serial Principle

(SP) if for two cost sharing problems (Q,C,H) and (Q0, C,H) ∈ Rm
+ × C (m)×H (C) , and

any i ∈ N such that q0i = qi and

q0j = qj ∀j ∈ N\ {i} : ξj (Q,C,H) < ξi (Q,C,H)

q0j ≥ qj ∀j ∈ N\ {i} : ξi (Q,C,H) ≤ ξj (Q,C,H)

the following holds:

ξi (Q,C,H) = ξi (Q
0, C,H)

In the general context of this paper, (SP) is a very demanding condition. It is not

necessarily satisfied by a serial extension. Actually, as shown in the next section, it is

incompatible with (ETE), hence with (ETV), which is a basic property of the Path Serial

Rule. Since (ETE) is a hardly disputable equity condition, the only avenue left is to weaken

the Serial Principle (SP) into a less demanding condition. We consider a restriction of (SP)

to paths.

Definition 12 A cost sharing rule ξ : Rm
+ × C (m) × H → Rn

+ satisfies the Path Serial

Principle (PSP) if given two cost sharing problems (Q,C,H) and (Q0, C,H) ∈ Rm
+×C (m)×

H (C), any i ∈ N such that q0i = qi and

q0j = qj ∀j ∈ N\ {i} : ξj (Q,C,H) < ξi (Q,C,H)

qj ∈ hj
¡
q0j,R+

¢
and q0j ≥ qj ∀j ∈ N\ {i} : ξi (Q,C,H) ≤ ξj (Q,C,H)

the following holds:

ξi (Q,C,H) = ξi (Q
0, C,H)

Remark 6 From Lemma 1 and the fact that ξDS satisfies (SP) in Rn
+ × C (n) , we obtain

that ξPS satisfies (PSP). Actually, the fact that ξDS satisfies (ILD) on the class of normalized

problems in Rn
+ ×C (n) yields the same conclusion.

We conclude this section by transposing to the general context, two properties introduced

by Sprumont (1998). The first imposes on a cost sharing rule that the ranking of two agents’

cost shares depends on their demands alone. Thus, a change in an agent’s demand must

not affect the interpersonal ranking of the other cost shares. The second says that an agent
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with a null stand alone cost can be entirely removed from any problem without altering the

outcome for the other agents. This implies of course that agents with null demands pay zero.

Both are satisfied by the Path Serial Rule.

Definition 13 A cost sharing rule ξ : Rm
+ × C (m) ×H → Rn

+ satisfies Rank Independence

of Irrelevant Agents (RIIA) if for two cost sharing problems (Q,C,H) and (Q0, C,H) ∈
Rm
+ ×C (m)×H (C) such that qi = q0i and qj = q0j for some i, j ∈ N, then:

ξi (Q,C,H) ≤ ξj (Q,C,H)⇔ ξi (Q
0, C,H) ≤ ξj (Q

0, C,H)

Definition 14 Given a profileQ ∈ Rm
+ , let ξ

N\{i} be the restriction of ξ to the reduced profile
Q−i = (q1, . . . , qi−1, qi+1, . . . , qn) and C−i and H−i be the restrictions of C and H respectively

to Q−i. A cost sharing rule ξ : Rm
+ × C (m) ×H → Rn

+ ×H satisfies Independence of Null

Agents (INA) if for any (Q,C,H) ∈ Rm
+ ×C (m)×H (C) and any i ∈ N, the following holds:

ci (qi) = 0⇒ ξ
N\{i}
j (Q−i, C−i, H−i) = ξj (Q,C,H) ∀j ∈ N\ {i}

Remark 7 Note that the premise of the condition as defined by Sprumont, reads qi = 0.

Thus, our condition is slightly stronger than his in the general context of this paper.

Remark 8 (INA) implies that ξi (Q,C,H) = 0 ∀i : qi = 0, a property called no exploitation
by some authors. However (INA) says more. If an agent with a null stand alone cost is

removed from the problem, this must not change the contributions of the remaining agents.

This is a form of consistency. The Path Serial Principle implies the first part of (INA) but

not the latter. Also note that (INA) implies Free Lunch, which Moulin and Shenker (1994)

use to characterize the Serial Rule in the single private good context. It also implies another

condition called Dummy in cooperative game theory, which says that if an agent does not

affect the cost of any coalition that she might join, then her cost share must be zero.

6 The Main Results

Not surprisingly, paralleling the characterization of the original Serial Rule, the Path Serial

Rule is the only cost sharing rule that satisfies Equal Treatment of Equivalents (ETV) and

the Path Serial Principle (PSP). To justify the weakening of (SP) into (PSP), we first show

that (ETE) and (SP) are incompatible in the general context. This means that (S) and (SP)

are also incompatible. So are (ETV) and (SP), hence the use of (PSP) in the characterization

theorem. To conclude the section, we discuss other characterizations of the Axial and the

Radial Serial Rule given by Sprumont (1998) and Koster et al. (1998) respectively.
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Theorem 1 If mi ≥ 2 for at least one i, there does not exist a cost sharing rule that satisfies
(ETE) and (SP).

This result follows from the enlargement of the demand space alone. The proof is given

in subsection 8.2.

Theorem 2 ξPS is the only cost sharing rule that satisfies (ETV) and (PSP).

It has been pointed out in Remarks 5 and 6 that ξPS satisfies (ETV) and (PSP). The

proof of the converse follows from the definition of the rule and the axioms. Since it is now

standard, it is omitted.

Remark 9 Combining Remarks 5 and 6, we get the following characterization. If a rule
ξ : Rm

+ × C (m) ×H → Rn
+ is defined from a rule ξN : Rn

+ × C (n) → Rn
+ by ξ (Q,C,H) =

ξN
¡
c̆ (Q) , cHQ

¢
and if ξN satisfies Independence of Larger Demands (ILD) and Equal Treat-

ment of Equals (ETE) on the class of normalized problems, then ξ = ξPS.

Are there other characterizations of the Path Serial Rule? Sprumont (1998) shows that

the Axial Rule ξA : Rn
+ × C (n) → Rn

+ is the only cost sharing rule that satisfies Ordinality

(O), (SP), Independence of Null Agents (INA), Rank Independence of Irrelevant Agents

(RIIA), and Symmetry (S) in the context where Mi = {i} ∀i. However, there is an implicit
assumption behind this result: stand alone cost is the proper basis for the comparison of

heterogeneous demands. This is an implication of choosing the normalized problem as the

proper form to which to apply a given rule. But, why choose the normalized form? We

show below that, by choosing to apply the Direct Serial Rule to a different member of the

equivalence class of the problem, and there may be good reasons to do so, we get a different

rule that satisfies all the conditions of Sprumont’s Theorem.

Koster et al. (1998) have a similar theorem, which asserts that the Radial Serial Rule ξRS

is the only cost sharing rule that satisfies the Radial Serial Principle (RSP), (INA), (RIIA),

(ETE), and Radial Ordinality (RO). Clearly, Koster et al. assume that the stand alone cost

of the demand of an agent is the proper aggregate of this demand. Thus, the Radial Serial

Rule is defined by applying the Direct Serial Rule to the normalized reduced form of the

problem. Again, why choose the normalized reduced form? For a different choice of the

reduction, we get a different rule having the same properties.

To illustrate these points, we now present three rules along the lines that have just been

suggested. The first is designed for the general context of this paper and is different from

ξPS, and thus from ξRS and ξA, except for homogeneous problems. The second rule is
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defined specifically for homogeneous problems and the third for general problems, including

homogeneous ones.

One can imagine the first rule, which we call ξT1, in the following manner. Given a prob-

lem, the planner decides to apply multiplicative factors θi to the stand alone cost functions

before using them. In all fairness, if the cost function is symmetric in the components i and

j, she chooses θi = θj.

Given a problem (Q,C,H) ∈ Rm
+ × C (m) × H (C) , let θ = (θ1, . . . , θn) ∈ Rn

++ be

such that θi = θj if C is symmetric in the components i and j. Then, let the functions

ĉi : Rmi
+ → R+, i = 1, . . . , n, be defined by ĉi (y) = θici (y) . Finally, ξ

T1 is defined in the

same manner as ξPS except that agents are ordered according to their ĉi (qi) :

ĉ1 (q1) ≤ ĉ2 (q2) ≤ . . . ≤ ĉn (qn)

and the intermediate demands Q̂1, . . . , Q̂n, are constructed using the functions ĉi instead of

ci. Clearly, ξ
T1 is different from ξPS whenever ∃i, j : θi 6= θj.

Remark 10 Consider the problem
¡
ĉ (Q) , ĉHQ

¢ ∈ Rn
+×C (n)where ĉ (Q) = (ĉ1 (q1) , . . . , ĉn (qn))

and ĉHQ is obtained by replacing c with ĉ in (1) and (2). It can be checked that
¡
ĉ (Q) , ĉHQ

¢
is

ordinally equivalent to
¡
c̆ (Q) , cHQ

¢
, but it is not normalized. The rule ξT1 is actually defined

by applying the Direct Serial Rule to this different path reduction of the problem:

ξT1 (Q,C,H) = ξDS
¡
ĉ (Q) , ĉHQ

¢
Theorem 3 The rule ξT1 : Rm

+ × C (m) ×H → Rn
+ is a serial extension that satisfies (O),

(PSP), (INA), (RIIA), and (S).

Proof. ξT1 is a serial extension since θi = θj ∀i, j in the single private good case.
It satisfies (S) by construction and (O) since all ordinally equivalent problems have the

same normalized path reduced form
¡
c̆ (Q) , cHQ

¢
and hence the same path reduced form¡

ĉ (Q) , ĉHQ
¢
. Since removing an agent from the problem does not change θj for the others,

ξT1 inherits (INA) from ξDS as well as (RIIA) and (PSP). Recall that (PSP) is the restriction

of (SP) to the paths hi (y,R+) .

Corollary 2 The Path Serial Rule ξPS satisfies (O), (PSP), (INA), (RIIA), and (S).

Proof. ξPS is ξT1 with θi = 1 ∀i ∈ N.

Remark 11 ξT1 applies to the context of Sprumont (1998), where Mi = {i} ∀i. In this
context, ξT1 satisfies (SP) and it is different from ξA.
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We now define a rule, which we call ξT2, for homogeneous problems. With this rule, the

planner wishes to penalize in some way an abusive use of good 1 relative to good 2. Given a

homogeneous problem (Q,C,H) ∈ Rnk
+ × C (nk)×H (C) , she selects a function g ∈ F (k) ,

which presumably depends on the units in which demands are expressed, and she defines

N1 (Q) = {i ∈ N : g1 (qi1) > g2 (qi2)} and N2 (Q) = N\N1 (Q) , with N1 (Q) = ∅ if k = 1.

Moreover, this partition is invariant over the class of ordinally equivalent problems: for two

ordinally equivalent problems (Q,C,H) and (Q0, C 0, H 0) with qi = f (q0i) ∀i and f ∈ F (k) ,
N1 (Q

0) = N1 (Q) . Put differently, if the formulation were to be changed for (Q0, C 0, H 0) ,
then the planner would replace g by g◦f. Then, let the functions ĉi : Rmi

+ → R+, i = 1, . . . , n,
be defined by:

ĉi (y) =

(
γci (y) if i ∈ N1 (Q)

ci (y) if i ∈ N2 (Q)

where γ is any positive real number. Otherwise, ξT2 is defined exactly as is ξT1.

Theorem 4 The rule ξT2 : Rnk
+ × C (nk) → Rn

+ is a serial extension that satisfies (O),

(PSP), (INA), (RIIA), and (ETE) on homogeneous problems.

Proof. ξT2 is a serial extension since N1 (Q) = ∅ in the single private good case. It
satisfies (O) since the partition of N is preserved under an ordinal transformation and since

all ordinally equivalent problems have the same path reduced form
¡
ĉ (Q) , ĉHQ

¢
. As ξT1, it

inherits (PSP), (INA), (RIIA), and (ETE) from ξDS.

Remark 12 Since rays are particular cases of path, ξT2 satisfies (RO), (RSP), (INA),
(RIIA), and (ETE) on homogeneous problems, showing that the Radial Serial Rule is not

the only one to possess these properties.

The third rule, called ξT3, applies to general problems. Given a problem (Q,C,H) ∈
Rm
+ × C (m) × H (C) , we now partition N into two subsets N1 (Q,C,H) and N2 (Q,C,H)

according to the following rule:

N1 (Q,C,H) = {i ∈ N : ci (hi (qi,R+)) = [0,∞)}
N2 (Q,C,H) = N \N1 (Q,C)

Finally, we define the functions ĉi : Rmi
+ → R+, i = 1, . . . , n, by

ĉi (y) =

(
γc (y) if i ∈ N1 (Q,C,H)

c (y) if i ∈ N2 (Q,C,H)

where γ is any positive real number. From now on, the new rule ξT3 is defined exactly as ξT .
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Clearly, ξT3 satisfies (O), (PSP), (INA), (RIIA), and (S). That ξT3 is different from

ξPS, and thus from ξRS and ξA, can be seen by considering the following homogeneous

problem
¡
Q,C,HR

¢
, where Q = ((3, 3) , (0, 2)) , HR =

¡
hR, hR

¢
, and C (Q) = c (q1 + q2)

with c (y) = y1 + a (1− b−y2) and where a and b are finite numbers satisfying a > 0 and

b > 1. Thus, recalling that hR (qi,R+) is the ray through qi, we have c
¡
hR (q1,R+)

¢
= [0,∞)

and c
¡
hR (q2,R+)

¢
= [0, a) , from which N1

¡
Q,C,HR

¢
= {1} and N2

¡
Q,C,HR

¢
= {2} .

7 Conclusion

We have shown that serial cost sharing can be extended to the general context where agents
request several commodities that can be public, private, or specific to some of them and
where aggregation may be very general. Actually, aggregation may be so general as to
involve optimization. We have defined the Path Serial Rule to meet this kind of problem.
As it names implies, it consists in scaling down the demands along paths that belong to
the specification of the problem, in order to construct the intermediate demands that are at
the root of serial cost sharing. Put differently, the Path Serial Rule consists in applying the
original Serial Cost Sharing Rule to a projection of each demand onto the specified path.
We have been able to characterize the Path Serial Rule only by the Equal Treatment

of Equivalents (demands) and the Path Serial Principle. Yet, the Path Serial Principle is
considerably weaker than the corresponding property in the single good context. Indeed,
this principle says something about how cost shares should behave when demands change
along the specified paths. Anything can happen for other types of changes in the demands.
The Path Serial Rule satisfies other properties such as Independence of Null Agents,

Rank Independence of Irrelevant Agents, and Ordinality. However, we have exhibited other
rules that have the same properties. We have also pointed out that the characterizations
of the Axial Serial Rule by Sprumont (1998) and of the Radial Serial Rule by Koster et
al. (1998), in terms of similar properties, rely on the implicit assumption that stand alone
costs are the proper numbers to compare heterogeneous demands, or the proper aggregates
of multi-commodity demands.
In a companion paper (Téjédo and Truchon, 2002), we address two additional issues:

monotonicity and bounds of cost shares. Moulin and Shenker (1994) prove that, under
appropriate assumptions on the cost function, the original Serial Rule produces cost shares
that are monotone with respect to own and others’ demands and that lay between reasonable
bounds. Moulin (1996) shows that it satisfies the Stand Alone Test under increasing returns,
i.e. no subset of agents pay more than their stand alone cost. We transpose these results
to the Path Serial Rule under an assumption of diminishing incremental cost. However,
Monotonicity and Cross Monotonicity is restricted to hold along paths.

23



8 Proofs

8.1 Proof of Lemma 2

Let f : Rm
+ → Rm

+ be the ordinal transformation. Thus, we have Q = f (Q0) , hi (qi,R+) =
fi (h

0 (q0i,R+)) ∀i, and C 0 (Y ) = C (f (Y )) ∀Y ∈ Rm
+ . The latter implies

c0i (y) = ci (fi (y)) ∀y ∈ Rmi
+ ∀i ∈ N

and:

c0i (q
0
i) = ci (qi) ∀i ∈ N

In short, c̆0(Q0) = c̆ (Q) . Next, we show that c0H
0

Q0 = cHQ . Given a x ∈ Rn
+ and a i ∈ N, let τ

and τ 0 be two real numbers such that:

ci (hi (qi, τ)) = xi = c0i (h
0
i (q

0
i, τ

0)) = ci (fi (h
0
i (q

0
i, τ

0)))

Since the two problems are ordinally equivalent, hi (qi,R+) = fi (h
0
i (q

0
i,R+)) , i.e. hi (qi, τ)

and fi (h
0
i (q

0
i, τ

0)) are both on the path hi (qi,R+). Since ci (hi (qi, · )) is an increasing func-
tion, ci (hi (qi, τ)) = ci (fi (h

0
i (q

0
i, τ

0))) implies hi (qi, τ) = fi (h
0
i (q

0
i, τ

0)) . Using the latter with
c−1hiqi (xi) = hi (y, τ) , and c0−1h0iq

0
i
(xi) = h0i (q

0
i, τ

0) , we get:

c0H
0

Q0 (x) = C 0
³
c0−1h01q

0
1
(x1) , . . . , c

0−1
h0nq0n

(xn)
´
= C

³
f
³
c0−1h01q

0
1
(x1) , . . . , c

0−1
h0nq0n

(xn)
´´

= C
¡
c−1h1q1(x1) , . . . , c

−1
hnqn

(xn)
¢
= cHQ (x)

8.2 Proof of Theorem 1

Consider the two homogeneous problems (Q,C,H) and
³
Q̃, C,H

´
∈ R4+ × C (4) × H (C)

where Q = ((2, 1) , (1, 2)) , Q̃ = ((2, 1) , (2, 3)) and C (Y ) = (y11 + y21)
3 + (y12 + y22)

3 and

let ξ be a cost sharing rule that satisfying (ETE) and (SP). Suppose that ξ1 (Q,C,H) ≤
ξ2 (Q,C,H) . The latter implies:

ξ1 (Q,C,H) ≤
C (Q)

2
= 27 (3)

Next, consider the profile of demandsQ1 = ((2, 1) , (2, 1)) . By (ETE), we have ξ1 (Q
1, C,H) =

C (Q1)

2
= 36. Thus, by (SP):

ξ1 (Q,C,H) = ξ1

³
Q̃, C,H

´
= ξ1

¡
Q1, C,H

¢
= 36 (4)

We have a contradiction between (3) and (4).
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