Price Discovery
in a Matching and Bargaining Market
with Aggregate Uncertainty

Artyom Shneyerov1 and Adam Chi Leung Wong2

Workshop in Memory of Artyom Shneyerov
CIRANO
October 12, 2018

1Concordia University and CIREQ, CIRANO
2Lingnan University
In a market where buyers and sellers are strategic and \textbf{uncertain} about demand and supply, at what price should they trade?

Study dynamic market with \textbf{search frictions} and \textbf{decentralized bilateral bargaining}

- e.g. second-hand housing market, used car market, labor market

2 states:

- H: high-demand low-supply (sellers’ market)
- L: high-supply low-demand (buyers’ market)

Traders learn from search experiences

If search frictions are small, would the transaction prices be close to the true-state Walrasian (or competitive, or market-clearing) price?
Main Results

In our model, as search frictions converge to 0, the market discovers the true-state Walrasian price quickly:

- transaction prices converge to the true-state Walrasian price in expectation
- the rate of convergence is linear in search frictions, the same as it would be if the state were commonly known
Literature (Dynamic matching and bargaining games)

- Initiated by Rubinstein & Wolinsky (1985), homogeneous buyers/sellers, no uncertainty
- Heterogeneous buyers/sellers, complete info bargaining
 - Gale (1987), Mortensen & Wright (2002)
- Heterogeneous buyers/sellers, IPV bargaining
- Common values uncertainty
- Aggregate (demand-supply) uncertainty
 - Majumdar, Shneyerov, & Xie (2016), Lauermann, Merzyn, & Virag (2018)
Model

- Buyers/sellers arrive at market deterministically and continuously
- Each seller has a unit supply of a homogeneous, indivisible good; cost is 0
- Each buyer has a unit demand; valuation is 1
Model

- Buyers/sellers arrive at market deterministically and continuously
- Each seller has a unit supply of a homogeneous, indivisible good; cost is 0
- Each buyer has a unit demand; valuation is 1
- Two possible states: $\omega \in \{H, L\}$; inflow rates of buyers/sellers in state ω are λ_B^ω and λ_S^ω

Assumption 1: $\lambda_B^H > \lambda_S^H$ and $\lambda_B^L < \lambda_S^L$.

- State is constant over time. No one knows the true state; common prior belief ϕ^ω

Note: flow Walrasian price is 1 if $\omega = H$ and 0 if $\omega = L$
Model

- Buyers/sellers arrive at market deterministically and continuously
- Each seller has a unit supply of a homogeneous, indivisible good; cost is 0
- Each buyer has a unit demand; valuation is 1
- Two possible states: $\omega \in \{H, L\}$; inflow rates of buyers/sellers in state ω are λ^ω_B and λ^ω_S

Assumption 1: $\lambda^H_B > \lambda^H_S$ and $\lambda^L_B < \lambda^L_S$.

- State is constant over time. No one knows the true state; common prior belief ϕ^ω

Note: flow Walrasian price is 1 if $\omega = H$ and 0 if $\omega = L$

- Every trader is risk neutral
- Continuous time, infinite horizon; focus on steady state
• Given stocks of buyers/sellers Λ_B, Λ_S, the mass of pairs matched per unit time is $\mu \cdot \min\{\Lambda_B, \Lambda_S\}$

• Who gets matched and Who matches whom are random

• Once matched, they bargain:
 1. Nature randomly chooses a proposer: buyer with prob. $\beta_B \in (0, 1)$; seller with prob. $\beta_S \equiv 1 - \beta_B$
 2. Proposer makes take-it-or-leave-it price offer
 3. Responder chooses to accept or reject
Given stocks of buyers/sellers Λ_B, Λ_S, the mass of pairs matched per unit time is $\mu \cdot \min\{\Lambda_B, \Lambda_S\}$

Who gets matched and Who matches whom are random

Once matched, they bargain:

1. Nature randomly chooses a proposer: buyer with prob. $\beta_B \in (0, 1)$; seller with prob. $\beta_S \equiv 1 - \beta_B$
2. Proposer makes take-it-or-leave-it price offer
3. Responder chooses to accept or reject

Assumption 2: Upon meeting, each trader observes the total time his partner has participated in the market.

- If trade at p, buyer leaves with payoff $1 - p$, seller leaves with p
- If don’t trade, stay searching for another match

Friction profile: (r, δ)
- $\delta > 0$: exogenous exit rate
- $r \geq 0$: time discount rate
Full trade (steady state) market equilibrium

Basic equilibrium objects:

- steady state stocks and distributions of traders
- traders’ beliefs about state
- traders’ bargaining strategies
Full trade (steady state) market equilibrium

Basic equilibrium objects:

- steady state stocks and distributions of traders
- traders’ beliefs about state
- traders’ bargaining strategies

such that

- Given bargaining strategies, steady state equations are satisfied to maintain the stocks and distributions
- Given steady state stocks and distributions, the traders’ beliefs and bargaining strategies constitute Perfect Bayesian Equilibrium
- In addition, restrict attention to full trade equilibria (FTE), in which every meeting on equilibrium path results in trade.
Steady state stocks

For each $\omega = L, H$, stocks $\Lambda^\omega_B, \Lambda^\omega_S$ satisfy

$$\lambda^\omega_B = \delta \Lambda^\omega_B + \mu \min\{\Lambda^\omega_B, \Lambda^\omega_S\}$$

$$\lambda^\omega_S = \delta \Lambda^\omega_S + \mu \min\{\Lambda^\omega_B, \Lambda^\omega_S\}$$

so that

$$\Lambda^\omega_B = \frac{(\delta + \mu) \lambda^\omega_B - \mu \min\{\lambda^\omega_B, \lambda^\omega_S\}}{\delta (\delta + \mu)},$$

$$\Lambda^\omega_S = \frac{(\delta + \mu) \lambda^\omega_S - \mu \min\{\lambda^\omega_B, \lambda^\omega_S\}}{\delta (\delta + \mu)}.$$

Note: $\Lambda^H_B > \Lambda^H_S$ and $\Lambda^L_B < \Lambda^L_S$.
Steady state finding rates

For each $\omega = L, H$, finding rates $\alpha^\omega_B, \alpha^\omega_S$ are

$$\alpha^\omega_B \equiv \frac{\mu \min\{\Lambda^\omega_B, \Lambda^\omega_S\}}{\Lambda^\omega_B}, \quad \alpha^\omega_S \equiv \frac{\mu \min\{\Lambda^\omega_B, \Lambda^\omega_S\}}{\Lambda^\omega_S}$$
Steady state finding rates

For each \(\omega = L, H \), finding rates \(\alpha_B^\omega, \alpha_S^\omega \) are

\[
\alpha_B^\omega \equiv \frac{\mu \min\{\Lambda_B^\omega, \Lambda_S^\omega\}}{\Lambda_B^\omega}, \quad \alpha_S^\omega \equiv \frac{\mu \min\{\Lambda_B^\omega, \Lambda_S^\omega\}}{\Lambda_S^\omega}
\]

In particular, short sides’ finding rates are

\[
\alpha_B^L = \alpha_S^H = \mu,
\]

long sides’ finding rates are

\[
\alpha_B^H = \frac{\delta \mu \lambda_S^H}{(\delta + \mu) \lambda_B^H - \mu \lambda_S^H} < \mu,
\]

\[
\alpha_S^L = \frac{\delta \mu \lambda_B^L}{(\delta + \mu) \lambda_S^L - \mu \lambda_B^L} < \mu.
\]

Lemma 1. \(\alpha_B^H \) and \(\alpha_S^L \) are \(O(\delta) \).
Steady state distributions

- Let $G^\omega_B(t_B)$ be the fraction of buyers’ steady-state stock in state ω who have been in the market for less than time t_B.

- Steady-state equation for $G^\omega_B(\cdot)$ implies:

$$G^\omega_B(t_B) = 1 - \exp\left(- (\delta + \alpha^\omega_B) t_B \right)$$
Steady state distributions

- Let $G^\omega_B(t_B)$ be the fraction of buyers’ steady-state stock in state ω who have been in the market for less than time t_B

- Steady-state equation for $G^\omega_B(\cdot)$ implies

$$G^\omega_B(t_B) = 1 - \exp(-\left(\delta + \alpha^\omega_B\right)t_B)$$

Alternative Interpretation: conditional distribution of searching time

- $G^\omega_B(t_B)$ is, from an unmatched buyer’s perspective, the prob. of being matched after some searching time less than t_B, conditional on the event that the true state is ω and this buyer will meet a seller (rather than exogenously exit before meeting)

- Similar note for $G^\omega_S(t_S) = 1 - \exp(-\left(\delta + \alpha^\omega_S\right)t_S)$
Belief formation
Search history and bargaining history

Search history (on or off equilibrium path) of a buyer who has met n sellers:

$$(t_{B1}, \ldots, t_{Bn}, t_{B(n+1)}; t_{S1}, \ldots, t_{Sn})$$

- t_{Bi} for $i \in \{1, \ldots, n\}$ is searching time spent to have the i-th meeting
- t_{Si} for $i \in \{1, \ldots, n\}$ is the observed time on the market of the i-th seller met
- $t_{B(n+1)}$ is the time on the market since last meeting
Belief formation
Search history and bargaining history

Search history (on or off equilibrium path) of a buyer who has met n sellers:

$$(t_{B1}, \ldots, t_{Bn}, t_{B(n+1)}; t_{S1}, \ldots, t_{Sn})$$

- t_{Bi} for $i \in \{1, \ldots, n\}$ is searching time spent to have the i-th meeting
- t_{Si} for $i \in \{1, \ldots, n\}$ is the observed time on the market of the i-th seller met
- $t_{B(n+1)}$ is the time on the market since last meeting

Bargaining history:

- which side proposed in previous meetings
- previous price offers
- that these offers are rejected
Belief formation
Search history and bargaining history

Search history (on or off equilibrium path) of a buyer who has met n sellers:

$$(t_{B1}, \ldots, t_{Bn}, t_{B(n+1)}; t_{S1}, \ldots, t_{Sn})$$

- t_{Bi} for $i \in \{1, \ldots, n\}$ is searching time spent to have the i-th meeting
- t_{Si} for $i \in \{1, \ldots, n\}$ is the observed time on the market of the i-th seller met
- $t_{B(n+1)}$ is the time on the market since last meeting

Bargaining history:
- which side proposed in previous meetings
- previous price offers
- that these offers are rejected

Can WLOG assume every trader only uses search history to update belief, since focus on FTE.
Belief formation
Updating from search history

\[h_B \equiv (t_{B1}, \ldots, t_{Bn}, t_{B(n+1)}; t_{S1}, \ldots, t_{Sn}) \]

- Given \(\alpha_B^\omega, \alpha_S^\omega, G_B^\omega(t_B), G_S^\omega(t_S) \), a buyer’s belief \(\pi_B^\omega(h_B) \) about state \(\omega \) after \(h_B \) can be computed from Bayes’ rule.
- \(\pi_B^\omega(h_B) \) depends on \(h_B \) only through \(\sum_{i=1}^{n+1} t_{Bi} \equiv t_B, \sum_{i=1}^{n} t_{Si} \equiv t_S \) and \(n \).
Belief formation
Updating from search history

\[h_B \equiv (t_{B1}, \ldots, t_{Bn}, t_{B(n+1)}; t_{S1}, \ldots, t_{Sn}) \]

- Given \(\alpha^\omega_B, \alpha^\omega_S, G^\omega_B(t_B), G^\omega_S(t_S) \), a buyer’s belief \(\pi^\omega_B(h_B) \) about state \(\omega \) after \(h_B \) can be computed from Bayes’ rule
- \(\pi^\omega_B(h_B) \) depends on \(h_B \) only through \(\sum_{i=1}^{n+1} t_{Bi} \equiv t_B, \sum_{i=1}^{n} t_{Si} \equiv t_S \) and \(n \)
- Similarly, \(\pi^\omega_S(h_S) \) depends on \(h_S \) only through \(\sum_{i=1}^{n} t_{Bi} \equiv t_B, \sum_{i=1}^{n+1} t_{Si} \equiv t_S \) and \(n \)
- Write \(\pi^\omega_B(t_B, t_S, n) \) and \(\pi^\omega_S(t_B, t_S, n) \)
Belief formation
Updating from search history

\[h_B \equiv (t_{B1}, \ldots, t_{Bn}, t_{B(n+1)}; t_{S1}, \ldots, t_{Sn}) \]

- Given \(\alpha^\omega_B, \alpha^\omega_S, G_B^\omega(t_B), G_S^\omega(t_S) \), a buyer’s belief \(\pi^\omega_B(h_B) \) about state \(\omega \) after \(h_B \) can be computed from Bayes’ rule.
- \(\pi^\omega_B(h_B) \) depends on \(h_B \) only through \(\sum_{i=1}^{n+1} t_{Bi} \equiv t_B, \sum_{i=1}^{n} t_{Si} \equiv t_S \) and \(n \).
- Similarly, \(\pi^\omega_S(h_S) \) depends on \(h_S \) only through \(\sum_{i=1}^{n} t_{Bi} \equiv t_B, \sum_{i=1}^{n+1} t_{Si} \equiv t_S \) and \(n \).
- Write \(\pi^\omega_B(t_B, t_S, n) \) and \(\pi^\omega_S(t_B, t_S, n) \).

Feature: \(\pi^\omega_B(t_B, t_S, 1) = \pi^\omega_S(t_B, t_S, 1) \) for every \(t_B, t_S \).
- meeting on eqm path is the first meeting for both.
- bargaining on eqm path is under sym info.
Bellman equations

- Bargaining strategies are fully characterized by the continuation payoffs (or search values) $W_B(h_B)$ and $W_S(h_S)$ just after breaking-up.
- Write $W_B(t_B, t_S, n)$ and $W_S(t_B, t_S, n)$.
Bellman equations

- Bargaining strategies are fully characterized by the continuation payoffs (or search values) $W_B(h_B)$ and $W_S(h_S)$ just after breaking-up.
- Write $W_B(t_B, t_S, n)$ and $W_S(t_B, t_S, n)$.

Let T_B, T_S be independent r.v. that follow distributions $G_B^\omega(\cdot)$, $G_S^\omega(\cdot)$.

$$W_B(t_B, t_S, n) = \sum_{\omega=L,H} \pi_B^\omega(t_B, t_S, n) \frac{\alpha_B^\omega}{\delta + \alpha_B^\omega} \mathbb{E}[e^{-rT_B} q_B(t_B + T_B, t_S, n; T_S)|\omega]$$

where $q_B(t_B + T_B, t_S, n; T_S) \equiv \beta_B \max \{1 - W_S(t_B + T_B, T_S, 1), W_B(t_B + T_B, t_S + T_S, n + 1)\} + \beta_S \max \{W_B(t_B + T_B, T_S, 1), W_B(t_B + T_B, t_S + T_S, n + 1)\}$

Similarly for $W_S(t_B, t_S, n)$.
Given $\alpha_B^\omega, \alpha_S^\omega, G_B^\omega(\cdot), G_S^\omega(\cdot), \pi_B^\omega(\cdot), \pi_S^\omega(\cdot)$ derived above, full trade (market) equilibrium (FTE) can be redefined as functions

$$W_B, W_S : \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{N} \to [0, 1]$$

that solve buyers’ and sellers’ Bellman equations and such that the trading condition

$$W_B(t_B, t_S, 1) + W_S(t_B, t_S, 1) \leq 1$$

holds for every (t_B, t_S).

Transaction prices on equilibrium path are:
- either $W_S(t_B, t_S, 1)$ when buyer proposes
- or $1 - W_B(t_B, t_S, 1)$ when seller proposes
Suppose true state \(\omega \) is commonly known \((\phi^\omega = 1) \).

- \(W_B, W_S \) become constants

\[
\overline{W}_B^\omega = \frac{\beta_B \alpha_B^\omega}{r + \delta + \beta_B \alpha_B^\omega + \beta_S \alpha_S^\omega},
\]
\[
\overline{W}_S^\omega = \frac{\beta_S \alpha_S^\omega}{r + \delta + \beta_B \alpha_B^\omega + \beta_S \alpha_S^\omega}.
\]

- \(\overline{W}_B^\omega + \overline{W}_S^\omega < 1 \)
- \(\overline{W}_B^H, 1 - \overline{W}_S^H, 1 - \overline{W}_B^L, \overline{W}_S^L = O(r + \delta) \)
 - because \(\alpha_B^L = \alpha_S^H = \mu \) and \(\alpha_B^H, \alpha_S^L = O(\delta) \)
Proposition 1. If true state ω is commonly known,

- $\forall (r, \delta) \in \mathbb{R}_+ \times \mathbb{R}_{++}$, \exists a unique FTE.
- $\exists C_0, C_1 > 0$, not depending on r, δ, s.t. when $r + \delta > 0$ is sufficiently small,

$$C_0 \cdot (r + \delta) \leq \frac{1 - W_B^H}{1 - W_B^L} \leq C_1 \cdot (r + \delta),$$

i.e., discrepancy between equilibrium transaction prices and Walrasian price is of order $r + \delta$.

Existence, uniqueness, rate of convergence under certainty
Uniqueness

Return to the aggregate uncertainty case \((\phi^L, \phi^H \in (0, 1))\)

- Neglect the trading condition: FTE candidate defined only by a pair of Bellman equations

Proposition 2 (Uniqueness). \(\forall (r, \delta) \in \mathbb{R}_+ \times \mathbb{R}_{++},\) there is at most one FTE.

Sketch of proof: Apply Contraction Mapping Theorem to show that the system of Bellman equations has a unique solution.
Proposition 3. In any FTE,

- \(\pi_L^B(t_B, t_S, n) \) and \(W_B(t_B, t_S, n) \) are continuous in \((t_B, t_S)\),
 nonincreasing in \(t_B \), and nondecreasing in \(t_S \);
- \(\pi_H^S(t_B, t_S, n) \) and \(W_S(t_B, t_S, n) \) are continuous in \((t_B, t_S)\),
 nondecreasing in \(t_B \), and nonincreasing in \(t_S \);
- \(\forall (t_B, t_S, n) \in \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{N}, \)
 \[
 W_H^B \leq W_B(t_B, t_S, n) \leq W_L^B,
 \]
 \[
 W_L^S \leq W_S(t_B, t_S, n) \leq W_H^S.
 \]
Belief convergence

- Traders’ bargaining values (on equilibrium path) depend on their outside option values.
- Their outside option values depend on their first-order beliefs and their bargaining values of off-equilibrium future bargaining.
- Values of off-equilibrium future bargaining depend on second-level outside option values, which in turn depend on second-order beliefs and bargaining values of second-level off-equilibrium future bargaining; and so on.
- In a off-equilibrium bargaining, buyer and seller do not have symmetric info; one or both of their beliefs are formed based on wrong info about n.
- However, all these on- and off-equilibrium beliefs become asymptotically precise in expectation.
Belief convergence

Let T_{Bi}’s and T_{Si}’s be *independent* random copies of T_B and T_S respectively.

Lemma 3. For $j = B, S$,

$$\max_{1 \leq k_1, k_2, k_3 \leq n} \left\{ \mathbb{E} \left[\pi_{j}^L \left(\sum_{i=1}^{k_1} T_{Bi}, \sum_{i=1}^{k_2} T_{Si}, k_3 \right) \mid H \right] \right\} \leq (c_1 + c_2 n) \cdot \delta,$$

$$\max_{1 \leq k_1, k_2, k_3 \leq n} \left\{ \mathbb{E} \left[\pi_{j}^H \left(\sum_{i=1}^{k_1} T_{Bi}, \sum_{i=1}^{k_2} T_{Si}, k_3 \right) \mid L \right] \right\} \leq (c_1 + c_2 n) \cdot \delta,$$

where c_1, c_2 are constants not depending on r, δ, n.
Intuition:

- Say true state is H, and let $\delta \to 0$.
- Recall that $\alpha^H_S = \mu$ but $\alpha^H_B = O(\delta)$.
- Buyers’ random searching time $T_B \to \infty$ in probability, but T_S does not.
- The reverse is true if true state is L.
- Realizations of T_B, T_S are more and more informative as $\delta \to 0$.
Convergence of prices
To no uncertainty benchmark

Proposition 4. In any FTE,

\[0 \leq \begin{align*}
 \mathbb{E}[W_B(T_B, T_S, 1)|H] - W_B^H, \\
 W_B^H - \mathbb{E}[W_S(T_B, T_S, 1)|H], \\
 \mathbb{E}[W_S(T_B, T_S, 1)|L] - W_S^L
\end{align*} \leq C \cdot \delta, \]

where \(C \) is a constant that does not depend on \(r, \delta \).

- Convergence in expectation (Recall that \(\forall (t_B, t_S) \)
 \(W_B^H \leq W_B(t_B, t_S, 1) \leq W_B^L \) and \(W_S^L \leq W_S(t_B, t_S, 1) \leq W_S^H)

- expected discrepancy between equilibrium transaction prices and true-state no uncertainty benchmark price is of order \(\delta \).
Convergence of prices
To true-state Walrasian price

Main Theorem: \(\exists \) constants \(C_0, C_1 > 0 \) not depending on \(r, \delta \) s.t. if \(r + \delta > 0 \) is sufficiently small, any FTE satisfies

\[
C_0 \cdot (r + \delta) \leq
\begin{align*}
\mathbb{E} [W_B(T_B, T_S, 1) \mid H], \\
1 - \mathbb{E} [W_S(T_B, T_S, 1) \mid H], \\
1 - \mathbb{E} [W_B(T_B, T_S, 1) \mid L], \\
\mathbb{E} [W_S(T_B, T_S, 1) \mid L],
\end{align*}
\leq C_1 \cdot (r + \delta),
\]

i.e., expected discrepancy between equilibrium transaction prices and the true-state Walrasian price is of order \(r + \delta \).
Existence

Proposition 5. \(\forall r > 0, \exists \delta > 0 \) s.t. whenever \(r \geq r \) and \(0 < \delta \leq \delta \), the FTE candidate satisfies

\[
W_B(t_B, t_S, 1) + W_S(t_B, t_S, 1) \leq 1 \quad \forall (t_B, t_S) \in \mathbb{R}_+ \times \mathbb{R}_+.
\]

Corollary 3. For any level \(\tau > 0 \), \(\exists (r, \delta) \in \mathbb{R}_+ \times \mathbb{R}_{++} \) with \(r + \delta = \tau \) s.t. a FTE exists under \((r, \delta)\).
Summary

- Study dynamic model of a market with search friction and bilateral random-proposer take-it-or-leave-it bargaining
- Two possible states:
 - at H state, more buyers than sellers
 - at L state, more sellers than buyers
- The only info transmitted in a meeting is the time a trader spent on the market
- As search frictions vanish, the market discovers the true-state competitive price quickly
 - Transaction prices converge to the true-state Walrasian price in expectation
 - Rate of convergence is linear in the total search friction, the same as it would be if the state were commonly known.