This paper compares the performance of five classes of forecasting models in an extensive out-of-sample exercise. The types of models considered are standard univariate models, factor-augmented regressions, dynamic factor models, other data-rich models and forecast combinations. These models are compared using four types of data: real series, nominal series, the stock market index and exchange rates. Our findings can be summarized in a few points: (i) data-rich models and forecasts combination approaches are the best for predicting real series; (ii) ARMA(1,1) model predicts inflation change incredibly well and outperform data-rich models; (iii) the simple average of forecasts is the best approach to predict future SP500 returns; (iv) exchange rates can be predicted at short horizons mainly by univariate models but the random walk dominates at medium and long terms; (v) the optimal structure of forecasting equations changes much over time; and (vi) the dispersion of out-of-sample point forecasts is a good predictor of some macroeconomic and financial uncertainty measures as well as of the business cycle movements among real activity series.

Voir le document

Dernières publications

2017s-08 CS
An experimental investigation of rating-market regulation
Claudia Keser, Asri Özgümüs, Emmanuel Peterlé et Martin Schmidt
Voir le document

2017s-07 CS
Statistical tests of the demand for insurance: an “all or nothing” decision
Anne Corcos, François Pannequin et Claude Montmarquette
Voir le document

2017RP-02 RP
Politiques favorables à l’innovation en santé
Nadia Benomar, Joanne Castonguay, Marie-Hélène Jobin et François Lespérance
Voir le document

2017RP-01 RP
Évaluation économique du service de premiers répondants sur le territoire de l’agglomération de Montréal
Nathalie de Marcellis-Warin, François Vaillancourt, Ingrid Peignier, Brigitte Bouchard-Milord et Alain Vaillancourt
(document non-disponible)

2017MO-02 MO
Perception des risques - Baromètre Cirano 2017
Nathalie de Marcellis-Warin et Ingrid Peignier
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :