GARCH models and their variants are usually estimated using quasi-Maximum Likelihood (QML). Recent work has shown that by using estimates of quadratic variation, for example from the daily realized volatility, it is possible to estimate these models in a different way which incorporates the additional information. Theory suggests that as the precision of estimates of daily quadratic variation improves, such estimates (via LAD- ARCH approximation) should come to equal and eventually dominate the QML estimators. The present paper investigates this using a five-year sample of data on returns from all 466 S&P 500 stocks which were present in the index continuously throughout the period. The results suggest that LAD-ARCH estimates, using realized volatility on five-minute returns over the trading day, yield measures of 1-step forecast accuracy comparable or slightly superior to those obtained from QML estimates. Combining the two estimators, either by equal weighting or weighting based on cross-validation, appears to produce a clear improvement in forecast accuracy relative to either of the two different forecasting methods alone.

Voir le document

Dernières publications

2017s-12 CS
Policy relevance of applied economist: Examining sensitivity and inferences
Maurice Doyon, Stéphane Bergeron et Lota Dabio Tamini
Voir le document

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document

Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039

© 2017 CIRANO. Tous droits réservés.

Partenaire de :