Regression models sometimes contain a linear parametric part and a part obtained by reducing the dimension of a larger set of data. This paper considers properties of estimates of the interpretable parameters of the model, in a general setting in which a potentially unbounded set of other variables may be relevant, and where the number of included factors or components representing these variables can also grow without bound as sample size increases. We show that consistent (and asymptotically normal, given further restrictions) estimation of a parameter of interest is possible in this setting. We examine selection of the particular orthogonal directions, using a criterion which takes into account both the magnitude of the eigenvalue and the correlation of the eigenvector with the variable of interest. Simulation experiments show that an implementation of this method may have good finite-sample performance.

Voir le document

Dernières publications

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document

2017MO-04 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :