Regression models sometimes contain a linear parametric part and a part obtained by reducing the dimension of a larger set of data. This paper considers properties of estimates of the interpretable parameters of the model, in a general setting in which a potentially unbounded set of other variables may be relevant, and where the number of included factors or components representing these variables can also grow without bound as sample size increases. We show that consistent (and asymptotically normal, given further restrictions) estimation of a parameter of interest is possible in this setting. We examine selection of the particular orthogonal directions, using a criterion which takes into account both the magnitude of the eigenvalue and the correlation of the eigenvector with the variable of interest. Simulation experiments show that an implementation of this method may have good finite-sample performance.

Voir le document

Dernières publications

2017s-08 CS
An experimental investigation of rating-market regulation
Claudia Keser, Asri Özgümüs, Emmanuel Peterlé et Martin Schmidt
Voir le document

2017s-07 CS
Statistical tests of the demand for insurance: an “all or nothing” decision
Anne Corcos, François Pannequin et Claude Montmarquette
Voir le document

2017RP-02 RP
Politiques favorables à l’innovation en santé
Nadia Benomar, Joanne Castonguay, Marie-Hélène Jobin et François Lespérance
Voir le document

2017RP-01 RP
Évaluation économique du service de premiers répondants sur le territoire de l’agglomération de Montréal
Nathalie de Marcellis-Warin, François Vaillancourt, Ingrid Peignier, Brigitte Bouchard-Milord et Alain Vaillancourt
(document non-disponible)

2017MO-02 MO
Perception des risques - Baromètre Cirano 2017
Nathalie de Marcellis-Warin et Ingrid Peignier
Voir le document

Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039

© 2017 CIRANO. Tous droits réservés.

Partenaire de :