Le présent document propose une nouvelle catégorie de distributions asymétriques suivant la loi t de Student (Asymmetric Student-t Distribution - AST). Il en examine les propriétés, suggère des procédures d'estimation et propose des applications dans le domaine de l'économétrie financière. Nous établissons des expressions analytiques pour la fonction de distribution cumulative, la fonction quantile, les moments et les quantités, ces aspects étant utiles dans certaines applications liées à l'économétrie financière, par exemple l'estimation du manque à gagner prévu. Nous mettons aussi de l'avant une représentation stochastique de la distribution. Même si la densité suivant la loi t de Student ne répond pas aux conditions habituelles de régularité pour l'estimation du maximum de vraisemblance, nous établissons néanmoins la consistance, la normalité asymptotique et l'efficacité des estimateurs du maximum de vraisemblance et arrivons à une expression analytique explicite en ce qui concerne la matrice de covariance asymptotique. Une étude selon la méthode Monte Carlo indique généralement une bonne conformité des échantillons finis avec ces propriétés asymptotiques.

Voir le document

Dernières publications

2017s-08 CS
An experimental investigation of rating-market regulation
Claudia Keser, Asri Özgümüs, Emmanuel Peterlé et Martin Schmidt
Voir le document

2017s-07 CS
Statistical tests of the demand for insurance: an “all or nothing” decision
Anne Corcos, François Pannequin et Claude Montmarquette
Voir le document

2017RP-02 RP
Politiques favorables à l’innovation en santé
Nadia Benomar, Joanne Castonguay, Marie-Hélène Jobin et François Lespérance
Voir le document

2017RP-01 RP
Évaluation économique du service de premiers répondants sur le territoire de l’agglomération de Montréal
Nathalie de Marcellis-Warin, François Vaillancourt, Ingrid Peignier, Brigitte Bouchard-Milord et Alain Vaillancourt
(document non-disponible)

2017MO-02 MO
Perception des risques - Baromètre Cirano 2017
Nathalie de Marcellis-Warin et Ingrid Peignier
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :