La contribution de ce papier est double. Premièrement, nous dérivons les propriétés asymptotiques (convergence et normalité asymptotique) des estimateurs de moindre carrés ordinaires des paramètres autoregressifs dans le cadre de modèles autoregressifs d'ordre infini dont les innovations sont des différences de martingale possiblement hétéroscédastiques. Deuxièmement, nous démontrons la validité asymptotique d'une méthode de bootstrap dans ce contexte. Nos résultats justifient théoriquement l'utilisation de la loi asymptotique ou l'utilisation de la distribution de bootstrap comme méthodes d'inférence pour les paramètres autoregressifs ou les fonctions de ceux-ci.

Voir le document

Dernières publications

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document

2017MO-04 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :