Nous proposons une approche unifiée pour analyser la méthode de bootstrap appliquée aux estimateurs de pseudo-maximum de vraisemblance dans le contexte de modèles non linéaires dynamiques où les données sont caractérisées par une dépendance d'époque proche. Nous appliquons nos résultats à la méthode de bootstrap de blocs mouvants de Künsch (1989) et Liu et Singh (1992) et nous démontrons la validité asymptotique de premier ordre de l'approximation du bootstrap à la distribution asymptotique de l'estimateur de pseudo-maximum de vraisemblance. Nous considérons aussi l'application du bootstrap à la réalisation de tests d'hypothèses. En particulier, nous démontrons la validité asymptotique des versions de bootstrap des tests de Wald et du multiplicateur de Lagrange.

Voir le document

Dernières publications

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document

2017MO-04 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :