Dans cet article, nous quantifions qualitativement et quantitativement la précision de la mesure de la volatilité intégrée par la volatilité réalisée quand la fréquence d'observations est fixée. Nous commençons par caractériser pour une diffusion générale la différence entre les volatilités réalisée et intégrée pour une fréquence d'observations donnée. Ensuite, nous calculons l'espérance et la variance de ce bruit ainsi que sa corrélation avec la volatilité intégrée en supposant que la diffusion est un modèle à volatilité stochastique par fonctions propres de Meddahi (2001a). Ce modèle contient, comme exemples particuliers, les modèles de diffusion log-normal, affine et GARCH. En utilisant certains résulats empiriques, nous montrons que l'écart-type du bruit n'est pas négligeable par rapport à la moyenne et à l'écart-type de la volatilité intégrée même si on considéré des rendements à cinq minutes. Nous proposons aussi une approche simple pour extraire l'information sur la volatilité intégrée contenue dans les rendements via l'effet de levier.

Voir le document

Dernières publications

2017RP-03 RP
La surqualification professionnelle chez les diplômés des collèges et des universités : État de la situation au Québec
Brahim Boudarbat et Claude Montmarquette
Voir le document

2017s-11 CS
The social cost of contestable benefits
Arye Hillman et Ngo Van Long
Voir le document

2017s-09 CS
Fiscal Surprises at the FOMC
Dean Croushore et Simon van Norden
Voir le document

2017MO-04 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :