Cet article traite le cas d'un marché d'actions dont les rendements sont susceptibles d'être expliqués par une structure factorielle. Sur le marché américain, il est montré que des risques idiosyncratiques élevés existent pour la plupart des actions quelque soit le modèle d'évaluation utilisé (CAPM ou APT). La présence de ces risques idiosyncratiques élevés peut empêcher une évaluation correcte des facteurs générant les rendements, lorsqu'une méthode d'analyse factorielle classique est utilisée. Il est ici proposé d'utiliser la méthode de l'Analyse en Composantes Indépendantes (INCA), reposant sur les réseaux neuronaux, pour parvenir à une évaluation correcte des facteurs; cette méthode permet de prendre en compte la majeure partie de l'information contenue dans les distributions des rendements des actions, en utilisant les moments d'ordre élevé de ces distributions. ¸ l'aide de simulations de marchés artificiels, pour lesquels différentes hypothèses des processus de générations des rendements sont retenus, il est montré que la méthode de l'INCA permet une amélioration significative de l'estimation de la structure factorielle, en particulier lorsque des composantes idiosyncratiques élevées sont présents dans les les rendements des actions. Dans ce dernier cas, une méthode classique d'analyse factorielle, comme l'Analyse en Composantes Principales, peut échouer totalement dans l'estimation des facteurs.

Voir le document

Dernières publications

2017MO-03 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 2
Marcel Boyer
Voir le document

2017MO-02 MO
Méthodes avancées d’évaluation d’investissements / Advanced Methods of Investment Evaluation - Tome 1
Marcel Boyer
Voir le document

2017s-08 CS
An experimental investigation of rating-market regulation
Claudia Keser, Asri Özgümüs, Emmanuel Peterlé et Martin Schmidt
Voir le document

2017s-07 CS
Statistical tests of the demand for insurance: an “all or nothing” decision
Anne Corcos, François Pannequin et Claude Montmarquette
Voir le document

2017RP-02 RP
Politiques favorables à l’innovation en santé
Nadia Benomar, Joanne Castonguay, Marie-Hélène Jobin et François Lespérance
Voir le document


Centre interuniversitaire de recherche en analyse des organisations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. Tous droits réservés.



Partenaire de :