Endogenous Risk-Exposure and Systemic Instability

Chong Shu

University of Southern California

8th Annual CIRANO-Sam M. Walton College of Business Workshop on Networks in Trade and Finance

Do highly connected financial networks contribute to systemic stability or systemic fragility?

Connected-Stability:

- ➤ Allen and Gale (2000) and Freixas et al. (2000)
- Provide a co-insurance mechanism against shocks.

Connected-Fragility:

- ➤ Acemoglu et al. (2015)
- Network also induces a propagation mechanism to spread the loss.

Motivation

- Network-Stability still under debate.
- Literature assumed exogenous shocks.
- They studied how shocks are propagated.

However, banks' exposure to which particular shock is an endogenous choice variable.

Motivation

- > safe borrowers vs subprime borrowers.
- exposure on asset-backed securities.

In this paper, I endogenize banks' ex-ante choice of risk However, banks' exposure to which particular exposure. shock is an endogenous choice variable.

Intuition

A stand-alone bank chooses one project

Suppose its counterparty fails

Model & Equilibrium

Model

- *N* risk neutral banks.
- *v*: retail deposits.

- \overline{d} : the interbank debt.
- choose one project Z_i .

$$ilde{e_i} = \left\{ egin{array}{ll} Z_i & ext{w.p} & P(Z_i) \ 0 & ext{w.p} & 1 - P(Z_i) \end{array}
ight.$$

P(Z) is decreasing in Z

Model -continued

• For each state of nature $\omega = (\omega_1, ..., \omega_N)$, the interbank payment $d^* = (d_1^*, ..., d_N^*)$ will be determined as:

$$d_i^*(\omega; \mathbf{Z}) = \left\{ \min \left[\sum_j \theta_{ij} d_j^*(\omega; \mathbf{Z}) + e_i(\omega_i, \mathbf{Z}_i) - \mathbf{v}, \overline{d}, \right] \right\}^+ \quad \forall i \in \mathcal{N} \quad \forall \omega \in \Omega$$
payment outflow
payment inflow
profit
deposit

Limited liability: pay whatever you have or whatever you owe

Model -continued

• After the interbank payment $d^*(\omega, \mathbf{Z})$, bank i's profit at the final date is

$$\Pi_i(\boldsymbol{\omega}; \boldsymbol{Z}) = \left(\sum_j \theta_{ij} d_j^*(\boldsymbol{\omega}) + e_i(\boldsymbol{Z}, \boldsymbol{\omega}) - v_i - d_i^*(\boldsymbol{\omega}; \boldsymbol{Z})\right)^+$$
payment inflow profit deposit payment outflow

• From backward induction, each bank chooses its risk exposure Z_i to maximize the expected payoff

$$Z_i^* = \operatorname{argmax}_{Z_i} \mathbb{E}\left[\Pi_i(\boldsymbol{\omega}; Z_i, \boldsymbol{Z_{-i}^*})\right] \quad \forall i \in \mathcal{N}$$

Timeline

choose Z_i

state $\omega \in \Omega$ realized payment $d^*(\omega; Z)$

 $\Pi(\boldsymbol{\omega}; \mathbf{Z})$ realized

Choose risk exposure

Project outcomes revealed

Interbank payment

Profit realized

$$Z_{i}^{*} = \operatorname{argmax}_{Z_{i}} \mathbb{E} \left[\Pi_{i}(\boldsymbol{\omega}; Z_{i}, \mathbf{Z}_{-i}^{*}) \right]$$

$$\tilde{e}_{i} = \begin{cases} Z_{i} & \text{w.p. } P(Z_{i}) \\ 0 & \text{w.p. } 1 - P(Z_{i}) \end{cases}$$

$$d_{i}^{*}(\boldsymbol{\omega}; \mathbf{Z}) = \left\{ \min \left[\sum_{j} \theta_{ij} d_{j}^{*}(\boldsymbol{\omega}; \mathbf{Z}) + e_{i}(\boldsymbol{\omega}_{i}, Z_{i}) - v, \overline{d}_{i} \right] \right\}^{+}$$

$$\Pi_{i}(\boldsymbol{\omega}; \mathbf{Z}) = \left(\sum_{i} \theta_{ij} d_{j}^{*}(\boldsymbol{\omega}) + e_{i}(\mathbf{Z}, \boldsymbol{\omega}) - v_{i} - d_{i}^{*}(\boldsymbol{\omega}; \mathbf{Z}) \right)^{+}$$

Network Distortion

We can rewrite the expected payoff as

$$\mathbb{E}\left[\Pi_{i}(\boldsymbol{\omega}; \mathbf{Z})\right] = P(Z_{i})(Z_{i} - v) - P(Z_{i})\mathcal{D}(\mathbf{Z}_{-i})$$
stand-alone $E(\Pi)$ network distortion

The network distortion has a clear interpretation

$$\mathcal{D}(\mathbf{Z}_{-i}) \equiv \sum_{\boldsymbol{\omega}_{-i}} \left(\overline{d} - \sum_{j} \theta_{ij} d_{j}^{*}(\boldsymbol{\omega}^{i=s}) \right) \cdot \Pr(\boldsymbol{\omega}_{-i}) > 0$$

net interbank payment (bailout amount)

 \triangleright The network distortion $\mathcal D$ is the -3 in the previous example

Supermodularity

Proposition

The choice of risk exposure Z is supermodular (strategically complementary) among all banks in the same financial network.

The intuition is as follows:

- if bank j chooses a greater exposure to risk, its project will be more likely to fail.
- When bank j's project fails, bank i's net interbank payments (bailout) to other banks will increase.
- To compensate this increased distortion, bank i will rationally choose a greater risk exposure.

 \triangleright When bank *j* succeeds (with probability p_i)

When bank *j* fails (with probability $1 - p_j$)

 \triangleright Bank *i* will choose safe project if

$$0.25 \cdot p_j + 0.10 \cdot (1 - p_j) > 0.24 \cdot p_j + 0.12 \cdot (1 - p_j)$$

$$p_j > 2/3$$

Risk-taking Externality

Proposition

Banks in any network structure will choose greater exposure to risks than stand-alone banks.

- Easy to see that the only equilibrium is (*Risky*, *Risky*) in the toy model.
- "too connected to fail": besides an ex-post loss contagion (Allen and Gale 2000; Acemoglu et al. 2015), the interbank network creates an ex-ante moral hazard for banks.
- A generalized result of Jensen and Meckling (1976), even though the net interbank liability is zero.

- size of interbank liabilities
- complete / ring
- number of counterparties
- central clearing counterparty

- size of the interbank liabilities

Proposition

Banks' choices of risk exposure Z_i^* are increasing in the size of interbank liabilities \bar{d} .

network completeness

Proposition

Banks' choices of risk exposure Z_i^* are larger in complete networks than in ring networks.

- In complete networks, each bank is exposed to the risk-taking externality of more other banks.
- The result stands in sharp contrast to the view of Allen and Gale (2000). They argue that a complete network is better at co-insurance and hence more robust.
- > But because of precisely this co-insurance, solvent banks will anticipate a greater amount of interbank payments to failed banks.

- number of counterparties

Proposition

Banks' choices of risk exposure Z_i^* are larger in networks with more counterparties.

- Central Clearing Counterparties

Proposition

In any network structure with a central clearing counterparty, the risk-taking equilibrium is equivalent to that of a complete network.

- Central Clearing Counterparties

Proposition

In any network structure with a central clearing counterparty, the risk-taking equilibrium is equivalent to that of a complete network.

- Through CCP, each bank is "forced" to connect to every other bank.
- Banks with a CCP hence becomes exposed to more risk-taking externalities.
- A CCP may increase originally loosely connected banks' risk-taking incentives.

Endogenous Correlation

Endogenous Correlation

• Besides choosing the risk exposure Z_i , each bank also chooses its project's correlation with other banks, λ_i

$$\lambda_{ij} \equiv Pr(\omega_i = s | \omega_j = s)$$

- The new equilibrium is defined as
 - 1. The vector of functions $d^*(\omega; \mathbf{Z})$ is a payment equilibrium for any \mathbf{Z} .

$$d_i^*(\boldsymbol{\omega}; \mathbf{Z}) = \left\{ \min \left[\sum_j \theta_{ij} d_j^*(\boldsymbol{\omega}; \mathbf{Z}) + e_i(\omega_i, Z_i) - v, \bar{d}_i \right] \right\}^+$$

2. For each bank $i \in \mathcal{N}$, (Z_i^*, λ_i^*) is optimal and solves the following equation, given $d^*(\omega; \mathbf{Z})$, \mathbf{Z}_{-i}^* and $\mathbf{\Lambda}_{-i}^*$

$$(Z_i^*, \lambda_i^*) = \operatorname{argmax}_{\substack{\underline{Z} \leq Z_i \leq \overline{Z} \\ 0 \leq \lambda_i \leq 1}} \mathbb{E} \left[\Pi_i(\omega; \mathbf{Z}_{-i}^*, \lambda_{-i}^*) \right]$$

3. The pairwise correlations are compatible among all banks. i.e. $\rho = [\rho_{ij}]$ is symmetric and positive semi-definite.

Endogenous Correlation

Proposition

The correlated risk-taking equilibrium exists and every bank's risk exposure is perfectly correlated: $\lambda_{ij}^* = 1$ for all $i, j \in \mathcal{N}$.

- each bank will endogenously align their project outcomes with other connected banks
- By doing so, there will be no downward distortion when the bank's project succeeds
- a financial crisis (or simultaneous failure of several banks) will be more likely to endogenously evolve in connected banking systems.

Policies

- Equity Buffers
- Government Bailout
- Deposit Insurance (skipped)
- Transparency (skipped)

Equity Buffer

Proposition

Banks' choices of risk exposure Z_i^* are decreasing in the size of equity buffers r.

with equity buffer *r*, bank's expected profit becomes

$$\mathbb{E}\left[\Pi_{i}(\boldsymbol{\omega}; \boldsymbol{Z})\right] = P(Z_{i})(Z_{i} + r_{i} - v) - P(Z_{i})\mathcal{D}(\boldsymbol{Z}_{-i}; \boldsymbol{r_{j}})$$
Jensen/Meckling Network Effect

Direct effect: banks won't gamble their own equity.

Network effect: the risk taking externality gets reduced.

Equity Buffer

Proposition

Banks' choices of risk exposure Z_i^* are decreasing in the size of equity buffers r.

Intuition:

- If a bank fails, its equity buffer will first be withdrawn to pay the deposits.
- The loss that may be otherwise propagated to other banks will now first be absorbed by this equity buffer.
- > As a result, the network risk-taking distortion (bailout) is reduced.

Government Bailout

• I define a government bailout (n, t) as a transfer t from the government to each failed bank if and only if the number of failed banks exceeds n.

$$t_i(\boldsymbol{\omega}) \equiv t \cdot \mathbb{1}(\omega_i = f) \cdot \mathbb{1}(\# \text{ failed banks} \geq n)$$

• The payment equilibrium becomes

$$d_i^*(oldsymbol{\omega}; oldsymbol{Z}) = \left\{ \min \left[\sum_j heta_{ij} d_j^*(oldsymbol{\omega}; oldsymbol{Z}) + e_i(oldsymbol{\omega}_i, Z_i) + t_i(oldsymbol{\omega}) - v, ar{d}_i
ight]
ight\}^+$$

Government Bailout

Proposition

Each bank's network risk-taking distortion and equilibrium risk exposure is reduced if there exists a government bailout.

- In contrast to the conventional wisdom, the above proposition states that a credible government bailout will discourage the ex-ante risk taking.
- With a government bailout, the loss will be curbed before spreading to successful banks in crisis times
- Ex ante, each bank will anticipate a smaller distortion if it succeeds.

Summary

- There exists a network risk-taking externality.
- Connected banks' choices of risk exposure are higher than stand-alone banks.
- > Particularly for banks in more densely connected networks.
- A CCP may increase banks' risk taking incentives
- Connected banks endogenously expose to correlated risks.

Policy Implications

- Equity buffer has a network effect and contributes to systemic stability.
- > A government bailout can reduce the network risk-taking externality.

Thanks!

chongshu@usc.edu