Geography, Search Frictions and Endogenous Trade Costs

Giulia Brancaccio, Myrto Kalouptsidi and Theodore Papageorgiou

 Princeton, Harvard, McGillFriday, December $1^{\text {st }}, 2017$

Global Trade and Shipping

 Introduction- 80% of global trade by volume is carried out by ships

Global Trade and Shipping

 Introduction- 80% of global trade by volume is carried out by ships
- Large price differentials across space, e.g.
- shipping price from China to Australia: $\$ 7,400$
- shipping price from Australia to China: $\$ 10,000$

Global Trade and Shipping

 Introduction- 80% of global trade by volume is carried out by ships
- Large price differentials across space, e.g.
- shipping price from China to Australia: $\$ 7,400$
- shipping price from Australia to China: $\$ 10,000$
- 45% of ships currently in transit are without cargo (ballast)

What We Do

- Laboratory that models behavior of both exporters and transportation agents (ships)
- This spatial equilibrium determines world trade

What We Do

- Laboratory that models behavior of both exporters and transportation agents (ships)
- This spatial equilibrium determines world trade
- Showcase that:
- trade costs are endogenous and determined jointly with trade flows
- standard trade models predict trade costs $->$ trade flows

What We Do

- Laboratory that models behavior of both exporters and transportation agents (ships)
- This spatial equilibrium determines world trade
- Showcase that:
- trade costs are endogenous and determined jointly with trade flows
- standard trade models predict trade costs $->$ trade flows
- entire network of countries matters
- rather than just bilateral distances

What We Do

- Laboratory that models behavior of both exporters and transportation agents (ships)
- This spatial equilibrium determines world trade
- Showcase that:
- trade costs are endogenous and determined jointly with trade flows
- standard trade models predict trade costs $->$ trade flows
- entire network of countries matters
- rather than just bilateral distances
- search frictions between exporters and ships can limit trade flows

How

- We collect a unique dataset of
- bilateral shipping contracts
- global vessel movements (ship location every 5 min+draft)
- Estimate dynamic spatial search model
- Recover matching process between exporters and ships
- flexibly obtain both the matching function and potential exporters
- Recover ship costs, exporters' valuations and costs

Objective

- Use the framework for following questions:
- Impact of improvement shipping efficiency on trade
- Propagation of shocks: Chinese slow-down
- Opening of the Northwest Passage
- Loss due to search frictions

Related Literature

- Trade Costs - Gravity
- Anderson and van Wincoop (2003), Hummels and Skiba (2004), Hummels, Lugovskyy and Skiba (2008), Eaton and Kortum (2002), Waugh (2010), Ishikawa and Tarui (2015), Asturias (2016), Wong (2017) and many others
- Trade and Economic Geography
- Krugman (1991), Head and Mayer (2004), Allen and Arkolakis (2014, 2016), Donaldson (2012)
- Search and Matching
- Diamond (1982), Mortensen and Pissarides (1994), Lagos (2000) Petrongolo and Pissarides (2001)
- Taxis: Lagos (2003), Buchholz (2016), Frechette, Lizzeri and Salz (2016)
- Industry Dynamics
- Hopenhayn (1992), Ericson and Pakes (1995), Kalouptsidi $(2014,2017)$

Outline

1. Industry Description, Data, Facts
2. Model
3. Estimation
4. Counterfactuals

Industry Description, Data, Facts

Industry

Bulk shipping

- Homogeneous unpacked dry/liquid cargo, for individual shippers on non-scheduled routes
- Transports raw materials (iron ore, grain, coal, steel, etc.)
- Operate like "taxi drivers, not buses"
- Contracts through brokers
- Unconcentrated industry, homogeneous good

Vessel Movements: Message Count in 10 Days

HDE: 20151111095129_3012

10000

Trade Imbalances

- Most countries are either net importers or net exporters

Prices \& Geography

- High probability of ballast in destination $j->$ higher price to ship to j

	I	II	III	IV
	\log (price)			
Handyamax	$-0.148^{* *}$	$-0.136^{* *}$	$-0.123^{* *}$	0.027
	(0.014)	(0.014)	(0.014)	(0.120)
Handysize	$-0.397^{* *}$	$-0.330 * *$	$-0.343^{* *}$	$-0.209^{* *}$
	(0.017)	(0.018)	(0.017)	(0.124)
Panamax		-0.214^{*}	$-0.212^{* *}$	-0.117
	(0.013)	(0.013)	(0.013)	(0.119)
Coal				$0.088^{* *}$
				(0.045)
Fertilizer				0.245^{+*}
				(0.051)
Grain				$0.131^{* *}$
				(0.048)
Ore				$0.124^{* *}$
				(0.045)
Steel				$0.135^{* *}$
				(0.049)
Probability of ballast			$0.234^{* *}$	$0.556^{* *}$
			(0.030)	(0.081)
Average duration of ballast trip (log)			$0.166^{* *}$	$0.065{ }^{* *}$
			(0.014)	(0.032)
Constant				$8.915^{* *}$
	(0.068)	(0.103)	(0.099)	(0.408)
Destination FE	No	Yes	No	No
Origin FE	Yes	Yes	Yes	Yes
Product FE	No	No	No	Yes
Quarter FE	Yes	Yes	Yes	Yes
Obs	$11,014$	$11,014$	$11,011$	$1,662$
R^{2}	0.663	0.694	0.674	0.664

Search Frictions

- In labor markets, evidence for search frictions:
- Wage dispersion
- Coexistence of unemployed workers and vacancies

Search Frictions

- In labor markets, evidence for search frictions:
- Wage dispersion
- Coexistence of unemployed workers and vacancies
- Here:
- Substantial price dispersion within time/origin/destination (coeff of variation 30%)
- Price also depends on value of good

Search Frictions

- In labor markets, evidence for search frictions:
- Wage dispersion
- Coexistence of unemployed workers and vacancies
- Here:
- Substantial price dispersion within time/origin/destination (coeff of variation 30%)
- Price also depends on value of good
- Evidence of unrealized matches

Search Frictions

- In labor markets, evidence for search frictions:
- Wage dispersion
- Coexistence of unemployed workers and vacancies
- Here:
- Substantial price dispersion within time/origin/destination (coeff of variation 30%)
- Price also depends on value of good
- Evidence of unrealized matches
- Matches < min \{ships, exporters\}

Search Frictions

- In labor markets, evidence for search frictions:
- Wage dispersion
- Coexistence of unemployed workers and vacancies
- Here:
- Substantial price dispersion within time/origin/destination (coeff of variation 30\%)
- Price also depends on value of good
- Evidence of unrealized matches
- Matches < min \{ships, exporters\}
- Simultaneous arrivals and departures of empty ships

Search Frictions

-Why do ships leave empty from exporting countries?

Search Frictions

Model

Model Overview

- Dynamic spatial search model
- There are I regions in the world
- different trip durations between regions
- Agents:
- Exporters (freights)
- Ships

Environment
 Exporters (Freights)

- In each region i there are f_{i} freights awaiting transportation
- Freights are heterogeneous in

1. value of delivery, v
2. destination, j

Environment

Ships

- Homogeneous ships can carry at most one freight
- In every period a ship is either:
- Sailing toward a destination j, either full or empty at sailing cost c^{s}
- ship traveling from i to j arrives with prob $\xi_{i j}$ (avg trip duration $1 / \xi_{i j}$)

Environment

Ships

- Homogeneous ships can carry at most one freight
- In every period a ship is either:
- Sailing toward a destination j, either full or empty at sailing cost c^{s}
- ship traveling from i to j arrives with prob $\xi_{i j}$ (avg trip duration $1 / \xi_{i j}$)
- Waiting in port i at a $\operatorname{cost} c_{i}^{U}$
- randomly matches with an exporter
- if unmatched choose where to search (either wait at port again, or ballast to another region)

Environment

Matching Process

- Exporters and ships search for each other
- $m_{i}\left(f_{i}, s_{i}\right)$ new matches
- s_{i} unmatched ships and f_{i} unmatched freights in region i
- probability of ship finding a freight is λ_{i}
- Search frictions generate rents to be split
- price $\tau_{i j v}$ determined by Nash bargaining

Behavior

Ships

- Traveling ship:

$$
W_{i j}=-c^{s}+\xi_{i j} \beta U_{j}+\left(1-\xi_{i j}\right) \beta W_{i j}
$$

Behavior

Ships

- Traveling ship:

$$
W_{i j}=-c^{s}+\xi_{i j} \beta U_{j}+\left(1-\xi_{i j}\right) \beta W_{i j}
$$

- Ship at port start of period (unmatched):

$$
U_{i}=-c_{i}^{u}+\lambda_{i} E_{j, v} V_{i j v}+\left(1-\lambda_{i}\right) J_{i}
$$

Behavior

Ships

- Traveling ship:

$$
W_{i j}=-c^{s}+\xi_{i j} \beta U_{j}+\left(1-\xi_{i j}\right) \beta W_{i j}
$$

- Ship at port start of period (unmatched):

$$
U_{i}=-c_{i}^{u}+\lambda_{i} E_{j, v} V_{i j v}+\left(1-\lambda_{i}\right) J_{i}
$$

- Matched ship:

$$
V_{i j v}=\tau_{i j v}+W_{i j}
$$

Behavior

Ships

- Traveling ship:

$$
W_{i j}=-c^{s}+\xi_{i j} \beta U_{j}+\left(1-\xi_{i j}\right) \beta W_{i j}
$$

- Ship at port start of period (unmatched):

$$
U_{i}=-c_{i}^{u}+\lambda_{i} E_{j, v} V_{i j v}+\left(1-\lambda_{i}\right) J_{i}
$$

- Matched ship:

$$
V_{i j v}=\tau_{i j v}+W_{i j}
$$

- Ship that remained unmatched:

$$
J_{i}=\max \left\{\beta U_{i}+\sigma \epsilon_{i i}, \max _{j \neq i} W_{i j}+\sigma \epsilon_{i j}\right\}
$$

Behavior

Exporters (Freights)

- Value of unmatched freight:

$$
J_{i j v}^{f}=\lambda_{i}^{f} V_{i j v}^{f}+\left(1-\lambda_{i}^{f}\right) \delta \beta J_{i j v}^{f}
$$

- Value of matched freight:

$$
V_{i j v}^{f}=v-\tau_{i j v}
$$

Behavior

Prices

- Surplus sharing condition

$$
\gamma\left(V_{i j v}-J_{i}\right)=(1-\gamma)\left(V_{i j v}^{f}-J_{i j v}^{f}\right)
$$

where γ is the exporter's bargaining power

Behavior

Prices

- Surplus sharing condition

$$
\gamma\left(V_{i j v}-J_{i}\right)=(1-\gamma)\left(V_{i j v}^{f}-J_{i j v}^{f}\right)
$$

where γ is the exporter's bargaining power

- Solve for price:

$$
\tau_{i j v}=\frac{(1-\gamma)(1-\beta \delta)}{1-\beta \delta \gamma\left(1-\lambda_{i}^{\boldsymbol{f}}\right)} \underbrace{v}_{\text {freight valuation }}-\frac{\gamma\left(1-\beta \delta\left(1-\lambda_{\boldsymbol{i}}^{\boldsymbol{f}}\right)\right)}{1-\beta \gamma\left(1-\lambda_{\boldsymbol{i}}^{\boldsymbol{f}}\right)}(\underbrace{W_{i j}}_{\text {traveler } \mathrm{i}, \mathrm{j} \text { value }}-\underbrace{E_{\epsilon}\left(J_{\boldsymbol{i}}\right)}_{\text {ship outside option }})
$$

Behavior

Prices

- Surplus sharing condition

$$
\gamma\left(V_{i j v}-J_{i}\right)=(1-\gamma)\left(V_{i j v}^{f}-J_{i j v}^{f}\right)
$$

where γ is the exporter's bargaining power

- Solve for price:

$$
\tau_{i j v}=\frac{(1-\gamma)(\mathbf{1}-\beta \delta)}{1-\beta \delta \gamma\left(1-\lambda_{\boldsymbol{i}}^{\boldsymbol{f}}\right)} \underbrace{v}_{\text {freight valuation }}-\frac{\gamma\left(\mathbf{1}-\beta \delta\left(1-\lambda_{\boldsymbol{i}}^{\boldsymbol{f}}\right)\right)}{1-\beta \gamma\left(1-\lambda_{\boldsymbol{i}}^{\boldsymbol{f}}\right)}(\underbrace{W_{i \boldsymbol{j}}}_{\text {traveler } \mathbf{i}, \mathrm{j} \text { value }}-\underbrace{\boldsymbol{E}_{\epsilon}\left(J_{\boldsymbol{i}}\right)}_{\text {ship outside option }})
$$

- price depends on v
- price depends distance, conditions at destination, travel cost
- since $W_{i j}=-\frac{c^{s}}{1-\left(1-\xi_{i j}\right) \beta}+\frac{\xi_{i j} \beta}{1-\left(1-\xi_{i j}\right) \beta} U_{j}$
- price depends on all markets not just i, j

Entry of New Freights

- \mathcal{E}_{i} ex ante homogeneous potential exporters in market i
- choose whether and where to export, then draw v
- Potential entrant exporter:

$$
J_{i}^{e f}=\max \left\{\epsilon_{0}^{f}, \max _{j \neq i}\left\{E_{v} J_{i j v}^{f}-\kappa_{i j}+\epsilon_{j}^{f}\right\}\right\}
$$

where $\kappa_{i j}$ is the production and exporting cost

Model Estimation

Estimation Outline

- Obtain primitives:
- matching function and freights
- travel and port costs, $\left\{c_{1}^{\mu}, \ldots, c_{l}^{\mu}\right\}$
- distribution of freight values, v
- production and exporting costs, $\kappa_{i j}$
- Use data on:
- number of ships and number of matches
- prices
- ballast choices
- trade flows

Matching Function

- Matching function estimation in the literature
- Labor Markets: unemployed workers, vacancies, matches observed
- Taxi Cabs: taxis, matches observed, passengers unobserved
- This literature:

1. Takes stance on presence of search frictions and
2. Imposes strong functional form assumptions (matters for welfare)

Matching Function: Existing Lit

- Presence of search frictions:
- No search frictions:

$$
\begin{equation*}
\underbrace{m_{i t}}_{\text {matches }}=\underbrace{\min \left(f_{i t}, s_{i t}\right)}_{\min (\text { freights,ships })} \tag{1}
\end{equation*}
$$

- Search frictions:

$$
\begin{equation*}
\underbrace{m_{i t}}_{\text {matches }}=\underbrace{m_{i}\left(f_{i t}, s_{i t}\right)}_{m(\text { freights,ships })} \leq \min \left(f_{i t}, s_{i t}\right) \tag{2}
\end{equation*}
$$

Matching Function: Existing Lit

- Presence of search frictions:
- No search frictions:

$$
\begin{equation*}
\underbrace{m_{i t}}_{\text {matches }}=\underbrace{\min \left(f_{i t}, s_{i t}\right)}_{\min (\text { freights,ships })} \tag{1}
\end{equation*}
$$

- Search frictions:

$$
\begin{equation*}
\underbrace{m_{i t}}_{\text {matches }}=\underbrace{m_{i}\left(f_{i t}, s_{i t}\right)}_{m(\text { freights,ships })} \leq \min \left(f_{i t}, s_{i t}\right) \tag{2}
\end{equation*}
$$

- How do we distinguish (1) from (2), if one side unobserved/mismeasured?

Matching Function: Search Frictions

- Reduced-form evidence for search frictions
- Consider markets with $\min \{s, f\}=f$
- Then:
- If $m=\min \{s, f\}$, changing s exogenously doesn't affect m
- If $m \leq \min \{s, f\}$, changing s exogenously can affect m
- Weather exogenously changes s - does it affect m ?
- Matches affected by weather in all markets

Matching Function

- Use lit on nonparametric identification (Matzkin 2003)
- Intuition:

$$
\underbrace{m_{i t}}_{\text {matches }}=\underbrace{m_{i}\left(s_{i t}, f_{i t}\right)}_{m(\text { ships,freights })}
$$

- Independence $s_{i t}, f_{i t}$: Correlation between $m_{i t}$ and $s_{i t}$ is informative about $\frac{\partial m_{i}}{\partial s}$
- Assume homogeneity of degree 1: knowing $\frac{\partial m_{i}}{\partial s}$ we also know $\frac{\partial m_{i}}{\partial f}$
- Instrument: sea weather (wind speed) exogenously shocks ship arrivals

Matching Function: Results

Freights

Number of exporters 20406080

Matching Function: Results

Frictions

- Unrealized matches $\frac{\min \{f, s\}-m}{\min \{f, s\}}$

Fraction of unrealized matches
0.10 .150 .2

Estimation of Ship Costs, Exporter Valuations and Costs

- Ship costs, $\left\{c_{1}^{\mu}, \ldots, c_{l}^{\mu}\right\}$:
- From observed choice probabilities (Rust-like)
- Exporter valuations, v
- Price equation
- Each contract price gives us the corresponding valuation point-wise

```
- Details
```

- Production and Exporting Costs, $\kappa_{i j}$

```
Details
```

- Trade flows

Results: Freight Valuations

Exporters valuations
(million \$)

Results: Freight Valuations and Grain Exports

All Results

	$\begin{aligned} & \text { Port Costs } \\ & \qquad c_{u} \end{aligned}$	Cost of Travelling C_{s}	Exporters Valuations μ_{v}	Preference Shock σ
North America West Coast	2.458	0.693	79.605	
	(0.07)	(0.002)	(2.038)	
North America East Coast	2.271	0.691	103.145	
	(0.021)	(0)	(2.229)	
Central America	1.846	0.693	73.161	
	(0.022)	(0.002)	(3.007)	
South America West Coast	1.996			
	(0.026)	(0.002)	(1.679)	
South America East Coast	2.563	0.691	125.877	
	(0.027)	(0)	(3.001)	
West Africa				
	(0.015)	(0.002)	(2.658)	
Mediterranean	1.637	0.568	59.87	
	(0.018)	(0.003)	(2.475)	
Baltic States				
	(0.009)	(0.003)	(1.959)	
South Africa	2.478	0.64	99.074	
	(0.035)	(0.002)	(2.907)	
Middle East				
	(0.007)	(0.003)	(2.355)	
India	1.48	0.624	84.722	
	(0.014)	(0.003)	(4.2)	
South East Asia				
	(0.008)	(0.002)	(3.324)	
China	1.438	0.558	66.382	
	(0.01)	(0.002)	(3.61)	
Australia	2.635	0.56	70.507	
	(0.025)	(0.002)	(2.543)	
Japan-Korea	$\begin{gathered} 1.53 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.558 \\ (0.002) \end{gathered}$	$\begin{aligned} & 55.589 \\ & (2.514) \end{aligned}$	
				$\begin{gathered} 0.117 \\ (0.0008) \end{gathered}$

Counterfactuals

Improvement in Shipping Efficiency

- Decreasing travel cost c^{s} by 10%

Percentage change in exporting \square

- ships ballast to higher value regions

Improvement in Shipping Efficiency

- Decreasing travel cost c^{s} by 10%
- Prices fall ->
- Freights enter, exporting increases
- Ships' outside option, J, increases; ballasting less costly
- Push price up, exporting down for net importers
- Big and high value exporters benefit more ("polarization")

Chinese Slow-down

- Chinese slow-down (10% decrease in $\mu_{i, \text { china }}$)?
- China itself:

Percentage change
in exporting

Chinese Slow-down

- China's neighbors:

Percentage change
in exporting
$-35-30-25-20$

Chinese Slow-down

- Everyone:

Percentage change
in exporting
$-30-20-10$

Chinese Slow-down

- Effect on China itself:
- Import-Export Complementarity
- Neighboring countries:
- Direct effect: lose big trading partner
- Also: lose ship "glut" in region
- Distant countries:
- Direct effect: lose big trading partner
- Also: benefit from increased supply of ships (Brazil, North America)

Northwest Passage

- Reduction in travel cost between east cost N America and Far East

Northwest Passage

Northwest Passage

Northwest Passage

- N America sees exporting increase
- China/Japan-Korea exports fall: ships' outside option higher and don't stay
- Other countries: also affected by distant and local shock
- Higher outside option of ships: increases price, decreases exports
- Geography:
- Exporters close to North America (e.g. Brazil) disproportionately hurt
- Other exporters (e.g. Australia) shielded by closeness to China/India.

No Search Frictions

No Search Frictions

- No search frictions: naturally trade \uparrow
- Heterogeneous response, "Polarization"
- Search is an impediment to trade
- Now ship ballast to big exporters, exporting rises more there

Take Aways

- Counterfactuals showcase 3 key mechanisms:
- Shocks also affect ships' outside option => indirect impact on prices \& exports
- Change in trade costs depends on trading network and geographical proximity to large net exporters/importers
- Reductions in impediments to trade disproportionally benefit large, high value exporters (polarization)
- ships more likely to reallocate there

Conclusion

- Microfound a portion of total trade costs
- Quantitative important that transport sector:
- reacts to trade conditions (endogeneity)
- suffers from search frictions
- What next?
- Dig deeper into search aspect
- Go broader in the trade aspect

Conclusion

- Comments most welcome, thanks!!

Appendix

Shipowner Size Distribution

Handysize firm size distribution

Figure 1. Fleet and Fleet Shares of Shipowning Firms

Weather Data

Vessel Movements: One Ship's Path

Ballast

Most Popular Ballast Routes

. Go Back

Search Frictions

- "Dispatcher" Simulation:

Matching Function

- We show how to estimate $m_{i}\left(f_{i t}, s_{i t}\right)$ nonparametrically and recover unobserved freights $f_{i t}$
- use lit on nonparametric identification (Matzkin 2003)

$$
Y=m(X, \epsilon)
$$

- Can I recover both $m(\cdot)$ and "shock" ϵ ?

Matching Function

- We show how to estimate $m_{i}\left(f_{i t}, s_{i t}\right)$ nonparametrically and recover unobserved freights $f_{i t}$
- use lit on nonparametric identification (Matzkin 2003)

$$
Y=m(X, \epsilon)
$$

- Can I recover both $m(\cdot)$ and "shock" ϵ ?
- necessary assumptions
- $m(X, \epsilon)$ str. increasing in ϵ
- $X \perp \epsilon$, or a valid instrument (sea weather)

Matching Function

- We show how to estimate $m_{i}\left(f_{i t}, s_{i t}\right)$ nonparametrically and recover unobserved freights $f_{i t}$
- use lit on nonparametric identification (Matzkin 2003)

$$
Y=m(X, \epsilon)
$$

- Can I recover both $m(\cdot)$ and "shock" ϵ ?
- necessary assumptions
- $m(X, \epsilon)$ str. increasing in ϵ
- $X \perp \epsilon$, or a valid instrument (sea weather)
- flexible approach, up to a choosing the monotonic transformation
- assume $m(\cdot)$ is homogeneous of degree 1

Matching Function (Details)

- Matzkin notation:

$$
\begin{aligned}
F_{Y \mid X}(y \mid X=x) & =F_{Y \mid X}(m(x, e) \mid X=x)=\operatorname{Pr}(Y \leq m(x, e) \mid X=x) \\
\text { monotonicity } & =\operatorname{Pr}\left(e \leq m^{-1}(x, y) \mid X=x\right) \\
\text { independence } & =\operatorname{Pr}\left(e \leq m^{-1}(x, y)\right) \\
& =F_{\epsilon}(e)
\end{aligned}
$$

- Solution 1: assume F_{ϵ} (e.g. uniform) gives us both $m(\cdot)$ and ϵ point-wise

Matching Function (Details)

- Matzkin notation:

$$
\begin{aligned}
F_{Y \mid X}(y \mid X=x) & =F_{Y \mid X}(m(x, e) \mid X=x)=\operatorname{Pr}(Y \leq m(x, e) \mid X=x) \\
\text { monotonicity } & =\operatorname{Pr}\left(e \leq m^{-1}(x, y) \mid X=x\right) \\
\text { independence } & =\operatorname{Pr}\left(e \leq m^{-1}(x, y)\right) \\
& =F_{\epsilon}(e)
\end{aligned}
$$

- Solution 2:
- Homogeneity: $m(\alpha x, \alpha \epsilon)=\alpha y$
- Suppose we know $m\left(\alpha x^{*}, \alpha \epsilon^{*}\right)=\alpha y^{*}$, some $\left(y^{*}, x^{*}, \epsilon^{*}\right)$
- Then,

$$
F_{\epsilon}\left(\alpha \epsilon^{*}\right)=F_{Y \mid X}\left(\alpha y^{*} \mid X=\alpha x\right)
$$

and move α

- Set $1=m\left(1, x^{*}\right), x^{*}$ such that in all markets $m_{i} \leq f_{i}$ (conservative wrt search frictions)

Matching Function: Search Frictions

- Reduced-form evidence for search frictions
- Consider markets with $\min \{s, f\}=f$
- Then:
- If $m=\min \{s, f\}$, changing s exogenously doesn't affect m
- If $m \leq \min \{s, f\}$, changing s exogenously can affect m
- Weather exogenously changes s - does it affect m ?

Matching Function: Search Frictions

	N	R^{2}	Joint Significance	$\frac{s}{m}$
North America West Coast	193	0.146	0	2.706
North America East Coast	200	0.17	0.013	3.172
Central America	199	0.272	0	3.451
South America West Coast	198	0.246	0	2.913
South America East Coast	200	0.269	0	4.083
West Africa	200	0.261	0	5.862
Mediterranean	200	0.358	0	4.244
Baltic States	200	0.23	0	3.577
South Africa	200	0.083	0.01	2.862
Middle East	200	0.147	0.001	3.86
India	200	0.12	0.018	8.58
South East Asia	200	0.18	0.005	3.334
China	200	0.177	0	6.194
Australia	187	0.17	0.008	2.457
Japan-Korea	200	0.16	0.003	5.311

First Stage Regression

N $\quad R^{2}$ Joint Significance

North America West Coast	200	0.101	0.004
North America East Coast	200	0.106	0.0002
Central America	200	0.175	0.0007
South America West Coast	198	0.418	0
South America East Coast	200	0.178	0
West Africa	200	0.138	0.0001
Mediterranean	200	0.181	0
North Europe	200	0.138	0.0003
South Africa	200	0.066	0.064
Middle East	200	0.162	0.0012
India	200	0.157	0.0001
South East Asia	200	0.081	0.0008
China	200	0.176	0
Australia	200	0.049	0.02
Japan-Korea	200	0.036	0.12

Matching Function: Search Frictions

By Port and Ship Type

Ship Heterogeneity?

- How much ship heterogeneity is there?
- Ships carry most products
- Ships go to most regions
- Ship fixed effects don't explain ballast
- Ship fixed effects don't explain prices
- Prior evidence (Kalouptsidi 2014, 2017): ship prices mostly explained by aggregates, ship size and ship age

Ship Heterogeneity?

Ship Heterogeneity?

Price Dispersion

- Price dispersion and concentration of freight owners

Estimation of Travel and Port Costs

- Use ship choices to get travel cost c^{s}, port costs c_{i}^{μ}, and σ

Estimation of Travel and Port Costs

- Use ship choices to get travel cost c^{s}, port costs c_{i}^{μ}, and σ
- Maximum Likelihood (ships' observed choices)
- Conditional choice probabilities depend on value functions
- Probability of staying at port i :

$$
p_{i i}=\frac{\exp \beta U_{i} / \sigma}{\exp \beta U_{i} / \sigma+\sum_{j \neq i} \exp W_{i j} / \sigma}
$$

Estimation of Travel and Port Costs

- Use ship choices to get travel cost c^{s}, port costs c_{i}^{μ}, and σ
- Maximum Likelihood (ships' observed choices)
- Conditional choice probabilities depend on value functions
- Probability of staying at port i :

$$
p_{i i}=\frac{\exp \beta U_{i} / \sigma}{\exp \beta U_{i} / \sigma+\sum_{j \neq i} \exp W_{i j} / \sigma}
$$

- Probability of ballasting to port j :

$$
p_{i j}=\frac{\exp W_{i j} / \sigma}{\exp \beta U_{i} / \sigma+\sum_{j \neq i} \exp W_{i j} / \sigma}
$$

Estimation of Travel and Port Costs

- Use ship choices to get travel cost c^{s}, port costs c_{i}^{μ}, and σ
- Maximum Likelihood (ships' observed choices)
- Conditional choice probabilities depend on value functions
- Probability of staying at port i :

$$
p_{i i}=\frac{\exp \beta U_{i} / \sigma}{\exp \beta U_{i} / \sigma+\sum_{j \neq i} \exp W_{i j} / \sigma}
$$

- Probability of ballasting to port j :

$$
p_{i j}=\frac{\exp W_{i j} / \sigma}{\exp \beta U_{i} / \sigma+\sum_{j \neq i} \exp W_{i j} / \sigma}
$$

- For given set of parameters, solve value functions (nested fixed point), compute CCPs, calculate likelihood

Estimation of Freight Valuations

- Solve for equilibrium price for trip from i to j and valuation v :

- Once costs are known, W, J are known too (given observed prices).
- Obtain valuations v pointwise and their distribution non-parametrically

Estimation of Travel and Port Costs

- Details of implementation:
- Restriction: use industry estimates for sailing cost c^{s}
- Use observed, not equilibrium prices
- Estimate probability of freights moved from i to j (frequencies)
- Construct 15 regions by minimizing port distances (ignore inter-regional trips)
\rightarrow Regions \rightarrow Go Back

Production and Exporting Costs

- \mathcal{E}_{i} potential exporters in market i
- Exporting destination choice prob:

$$
G_{i j}=\frac{\exp \left(J_{i j}^{f}-\kappa_{i j}\right)}{1+\sum_{l \neq i} \exp \left(J_{i l}^{f}-\kappa_{i l}\right)}
$$

with $J_{i j}^{f}$ known:

$$
J_{i j}^{f}=\frac{\lambda_{i}^{f}\left(\mu_{i j}-\tau_{i j}\right)}{1-\beta \delta\left(1-\lambda_{i}^{f}\right)}
$$

Production and Exporting Costs

- \mathcal{E}_{i} potential exporters in market i
- Exporting destination choice prob:

$$
G_{i j}=\frac{\exp \left(J_{i j}^{f}-\kappa_{i j}\right)}{1+\sum_{l \neq i} \exp \left(J_{i l}^{f}-\kappa_{i l}\right)}
$$

with $J_{i j}^{f}$ known:

$$
J_{i j}^{f}=\frac{\lambda_{i}^{f}\left(\mu_{i j}-\tau_{i j}\right)}{1-\beta \delta\left(1-\lambda_{i}^{f}\right)}
$$

- model reminder
- Can recover $\kappa_{i j}$ from $G_{i j}$ (Berry 94)

$$
\ln G_{i j}-\ln G_{i 0}=J_{i j}^{f}-\kappa_{i j}
$$

- \mathcal{E}_{i} : total commodity production by country (EIA, FAO, etc.)

Costs Estimation: Details

- Maximum Likelihood:

$$
\mathcal{L}=\sum_{i} \sum_{j} \sum_{n} y_{i j n} \log P_{i j}\left(c^{u}, c^{s}\right)
$$

- Inside likelihood solve for $U_{i}, W_{i j}$ via fixed point
- Using observed average prices.
- Value Functions
- Alternative: add prices directly in the likelihood

```
> Go Back
```


Distribution of Freight Destinations

Valuations Alternative

- Alternative: we can get valuations "offline:
- Solve for equilibrium price for trip from i to j and valuation v :

$$
\tau_{i j v}=\frac{(1-\gamma)(1-\beta)}{1-\beta \gamma\left(1-\lambda_{i}^{f}\right)} v-\frac{\gamma\left(1-\beta\left(1-\lambda_{i}^{f}\right)\right)}{1-\beta \gamma\left(1-\lambda_{i}^{f}\right)}\left(W_{i j}-J_{i}\right)
$$

- Turns out that $W_{i j}-J_{i}$ is directly observed since

$$
W_{i j}-J_{i}=-\log p_{i j}+\gamma^{e u l e r}
$$

and $p_{i j}$ is the probability that an unmatched ship ballasts to j

Valuations Alternative

- Alternative: we can get valuations "offline:
- Solve for equilibrium price for trip from i to j and valuation v :

$$
\tau_{i j v}=\frac{(1-\gamma)(1-\beta)}{1-\beta \gamma\left(1-\lambda_{i}^{f}\right)} v-\frac{\gamma\left(1-\beta\left(1-\lambda_{i}^{f}\right)\right)}{1-\beta \gamma\left(1-\lambda_{i}^{f}\right)}\left(W_{i j}-J_{i}\right)
$$

- Turns out that $W_{i j}-J_{i}$ is directly observed since

$$
W_{i j}-J_{i}=-\log p_{i j}+\gamma^{e u l e r}
$$

and $p_{i j}$ is the probability that an unmatched ship ballasts to j

- Therefore, we immediately obtain valuations v pointwise

Exporting Costs

- Outside share by origin

Exporting Costs- Estimates

- Estimates

	North America West Coass	North Anerica East Const	Ceniral America	South America West Cast	South America East Const	West Afriea	Mediterranean	Balke States	South Africa	Middle East	Indla	South East Asis	China	Avstrala	Japan-Kores
North Americs West Coast	-	33.663	41.074	43.985	45.98	45.724	28.823	43.771	43.008	34.183	34.45	40.294	64.314	49.886	${ }^{78.411}$
North America East Coast	80.025		62.8	53.333	47.632	62.12	81.898	50.915	91.138	72.197	115.42	129.625	121.367	154.431	122.639
Central Amerias	78.992	29.5996		61.767	36.3s6	6.0.038	75.297	48.045	57.918	67.747	17.147	77.929	${ }^{\text {77.637 }}$	55.848	${ }^{41.056}$
Scuth Amerios West Const	33.966	25.83	22.962	.	41.762	18.996	25.692	24.781	41.504	41.579	37.42	47.853	77.888	53.216	39.898
South Americs East Coast	160.227	53.656	48.002	86.18	-	54.774	71.481	61.266	111.676	82.725	95, 208	143.302	182592	106.960	148.188
West Africa	45,796	45.586	40.61	44.195	66.504	.	34.14	38.054	22.985	24.791	32.127	25.850	111.83	49.21	21,532
Mediterramean	45.253	39.52	41.57	36.206	49.292	16.076		49.027	22.265	35.765	62.201	66.217	58.062	53.792	49.498
Baltic States	40.238	42.04	85.78	16.925	33.167	29.239	28.959	,	25.809	17.995	43.685	47.631	41.286	17.244	49.242
Scuth Africn	72.097	24.675	68.84	70.212	55.954	57.475	61.767	65.535	-	55.897	68.309	126.95	59.706	76.572	83.362
Midile Eust	48.721	20.649	74.854	28.596	45.578	27.452	37.717	20.408	5.28	-	14.438	31.089	22.128	34.55	18.792
India	60.443	8.886	58.2386	108.131	${ }^{46.807}$	27.935	19.817	${ }^{46.674}$	41.175	${ }^{47.548}$	\checkmark	86.373	${ }^{91.111}$	116.788	65.769
Scuth East Asia	23.876	31.095	106,843	38.733	37.298	39.327	4.331	63.438	47.724	35.735	${ }^{26.217}$	-	32.864	${ }^{11.962}$	41.772
China	108.295	19.927	33.139	24.171	38.845	26.598	31.365	13.614	22.472	22.18	30.9	34.333	-	51.992	${ }^{38} 8.786$
Australin	44.108	49.683	61.446	29.792	16.778	35.146	53.023	25.122	40.598	44.227	47.854	33.735	55.893	.	62.862
Japan-Koces	61.359	5.83	23.167	25.923	32.013	5834	28.949	13.263	29,205	19.736	18.389	30.673	27.55	44.528	,

. Go Back

Transport Cost Elasticity

Transport Cost Elasticity

Role of Distance

- It takes one week to go anywhere
- Cheaper to transport cargoes
- Prices fall
- Export increase
- Ballasting is cheaper
- Exporters loose monopoly over ships in the market: ships are in a better bargaining position
- Prices increase
- Countries close to China hit hardest

Environment

Timing

In every t and i :

1. Ships and freights match
2. Unmatched ships draw preference shocks ϵ and decide whether
2.1 stay in current region and wait for freight or
2.2 where to ballast
3. Unmatched ships that decided to ballast away begin traveling. All ships traveling from i to j arrives with probability $\xi_{i j}$. Existing exporters survive with probability δ
4. Potential exporters choose whether to export and if so their destination

Market Definition

- Australia
- Central America
- China
- India
- Japan-Korea
- Mediterranean
- Middle East

North America EC

- North America WC
- North Europe

South Africa

- South America EC
- South America WC
- South East Asia
- West Africa

Search Frictions

- In labor markets, evidence pointing to the existence of search frictions:
- Wage inequality among observationally identical workers
- Coexistence of unemployed workers and vacancies

Search Frictions

- In labor markets, evidence pointing to the existence of search frictions:
- Wage inequality among observationally identical workers
- Coexistence of unemployed workers and vacancies
- In shipping market we observe:
- Substantial price dispersion within quarter / origin / destination triplet (coeff of variation 30%)
- Price also depends on value of good
- Simultaneous arrivals and departures of empty ships in net exporters

Data

- Shipping contracts (Clarksons), 2001-2015
- price per day, origin, destination, signing and loading date
- Ship movements for 5,000 vessels (ExactEarth), 2009-2015
- Exact location: Satellite tracking every 5 min
- Speed, draft: water displacement indicates if ship is loaded
- Daily wind speed from oceanic stations (NDBC)

Steady State

- Compute steady state distribution (s, f)
- Steady State equations:
- Ships:

$$
s_{i}=\sum_{j} P_{j i}\left(s_{j}-m_{j}\left(f_{j}, s_{j}\right)\right)+\sum_{j} G_{j i} m_{j}\left(f_{j}, s_{j}\right)
$$

Steady State

- Compute steady state distribution (s, f)
- Steady State equations:
- Ships:

$$
s_{i}=\sum_{j} P_{j i}\left(s_{j}-m_{j}\left(f_{j}, s_{j}\right)\right)+\sum_{j} G_{j i} m_{j}\left(f_{j}, s_{j}\right)
$$

- freight free entry condition

$$
E_{j v} \frac{\delta \beta \lambda_{i}^{f}(s, f)\left(v-\pi_{i j v}(s, f)\right)}{1-\delta \beta\left(1-\lambda_{i}^{f}(s, f)\right)}=\kappa_{i}
$$

Steady State

- Compute steady state distribution (s, f)
- Steady State equations:
- Ships:

$$
s_{i}=\sum_{j} P_{j i}\left(s_{j}-m_{j}\left(f_{j}, s_{j}\right)\right)+\sum_{j} G_{j i} m_{j}\left(f_{j}, s_{j}\right)
$$

- freight free entry condition

$$
E_{j v} \frac{\delta \beta \lambda_{i}^{f}(s, f)\left(v-\pi_{i j v}(s, f)\right)}{1-\delta \beta\left(1-\lambda_{i}^{f}(s, f)\right)}=\kappa_{i}
$$

- Get freight inflow from:

$$
f_{i}=\delta_{i}\left(f_{i}-m_{i}\left(f_{i}, s_{i}\right)\right)+d_{i}
$$

