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Introduction

• A monotone persuasion problem is the Bayesian persuasion

problem of Kamenica-Gentzkow (2011) with

• Interval state space

• Monotone partitional experiments
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Why Monotone Persuasion?

• Monotone experiments constitute an important subclass of
persuasion mechanisms:

– credit rating of financial institutions

– consumer rating of services on AirBnB, Tripadvisor, Uber,...

– hygiene certification of restaurants

– grade conversion schemes from 100-point to ABC scale

• Two defining features of monotone experiments:
Determinism and Monotonicity

• Conditions for optimality of monotone experiments:
Ivanov (2016), Mensch (2016), Dworczak-Martini (2017),
Inostroza-Pavan (2017)
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Preview of Results

• We show equivalence of a monotone persuasion problem and

a constrained delegation problem

• Why is it interesting?

– Delegation problem is more intuitive and better under-

stood

– There are developed techniques how to address and solve

delegation problems
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Outline

• Description of monotone persuasion and constrained delega-

tion problems

• Equivalence result

• Sketch of proof

• Illustration of how the existing techniques in delegation can

be applied to address the persuasion problem
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A Problem

• Principal (she) and Agent (he)

• Agent must make a decision y ∈ [0,1]

• Payoffs depend on the state ω ∈ [0,1]

• No one observes ω; its distribution F is common knowledge
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Payoffs

• Agent’s and Principal’s payoffs, U(ω, y) and V (ω, y), are twice

continuously differentiable

• Agent’s payoff function satisfies

∂

∂y
U(ω, y)

∣∣∣∣∣
y=ω

= 0,
∂2

∂y2
U(ω, y) < 0, and

∂2

∂ω∂y
U(ω, y) > 0.

• Distribution of states F admits a positive density f

• A triple (U, V, F ) is called a primitive

• P is the set of primitives that satisfy the above assumptions
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Monotone Persuasion Problem

• Principal chooses a monotone experiment π : [0,1] → R,
where π is nondecreasing

• W.l.o.g., we focus on diagonalized experiments:
π(ω) = inf{t : π(t) = π(ω)} and π(1) = 1

• Denote by Π∗ the set of monotone diagonalized experiments

• Given a message m of an experiment π, Agent chooses

y∗π(m) ∈ arg max
y∈[0,1]

E[U(ω, y) | π(ω) = m]

• Principal’s problem:

max
π∈Π∗

E[V (ω, y∗π(π(ω)))]
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Constrained Delegation Problem

• Principal chooses a compact subset X ⊂ [0,1] of decisions

such that X contains extreme decisions {0,1}

• Denote by X ∗ the set of all such delegation sets

• Agent observes ω̃, and then chooses a decision from X

y∗X(ω̃) ∈ arg max
y∈X

Ũ(ω̃, y)

• Principal chooses a delegation set X ∈ X ∗ to maximize her

expected payoff

max
X∈X ∗

E[Ṽ (ω̃, y∗X(ω̃))]
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Constrained Delegation Problem: An Interpretation

• A contractual relationship between Principal and Agent:

Agent can always keep the contract unchanged or terminate

the contract, but any other alterations must be permitted by

Principal
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Main Result

The monotone persuasion problem and the constrained delega-

tion problem are “equivalent.”
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Equivalence

• Consider a one-to-one mapping µ : Π∗ → X ∗ that maps each

experiment π into a unique delegation set X = µ(π).

• Primitives (U, V, F ) and (Ũ , Ṽ , F̃ ) are equivalent under µ,

(U, V, F ) ∼µ (Ũ , Ṽ , F̃ ),

if, for all π ∈ Π∗,

EF
[
V (ω, y∗π(ω))

]
= EF̃

[
Ṽ (ω̃, y∗µ(π)(ω̃))

]
.
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Equivalence

Theorem: Let

µ(π) = π([0,1]).

Consider any primitives (U, V, F ) ∈ P and (Ũ , Ṽ , F̃ ) ∈ P.

If, for all (ω, ω̃) ∈ [0,1]2,

U ′2(ω, ω̃)f(ω) = −Ũ ′2(ω̃, ω)f̃(ω̃),

V ′2(ω, ω̃)f(ω) = −Ṽ ′2(ω̃, ω)f̃(ω̃),

V (ω,0) = Ṽ (ω,1),

then (U, V, F ) ∼µ (Ũ , Ṽ , F̃ ).
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Monotone Persuasion with a Privately Informed Agent

• Agent has private type ω̃ ∈ [0,1]

• There is an unobserved state ω ∈ [0,1]

• Principal chooses a monotone experiment π ∈ Π∗

• State ω realizes; Agent receives message m = π(ω)

• Agent decides between actions a = 1 and a = 0
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Assumptions

• Principal and Agent’s payoffs are v(ω, ω̃) and u(ω, ω̃) if a = 1

and zero if a = 0

• We assume that

∂

∂ω̃
u(ω, ω̃) < 0 and

∂

∂ω̃
u(ω, ω̃) > 0

and

u(ω, ω) = 0 for all ω ∈ [0,1]

• ω and ω̃ are independently distributed, with distributions F

and F̃ that admit positive densities f and f̃
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Equivalence to Monotone Persuasion

• Change the order:
– Agent observes message m = π(ω)
– Agent makes decision
– Agent learns type ω̃

• Decision is a threshold type y, so a = 1 iff ω̃ ≤ y

• Agent’s payoff (before learning the type) is

EF̃ [u(ω, ω̃) · 1{ω̃≤y}] =
∫ y

0
u(ω, ω̃)dF̃ (ω̃) =: U(ω, y)

Principal’s payoff is

EF̃ [v(ω, ω̃) · 1{ω̃≤y}] =
∫ y

0
v(ω, ω̃)dF̃ (ω̃) =: V (ω, y)

The problem (U, V, F ) is a monotone persuasion problem.
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Monotone Experiments as Menus of Cutoff Experiments

• A monotone experiment π can be described as a set

X = π([0,1])

• X consists of the intervals where π continuously increases,
the discontinuity points of π, and the endpoints 0 and 1.

• Principal offers a menu X ∈ X ∗ of cutoff experiments

• Agent chooses a cutoff x ∈ X and is informed whether ω ≥ x
or ω < x.

• Key observation: Agent of type ω̃ is indifferent between ob-
serving a preferred cutoff x∗X(ω̃) or observing experiment π
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Agent’s Decision

• W.l.o.g., for a given x ∈ X, Agent chooses a∗(x, ω) = 1{ω≥x}

• The decision of Agent boils down to a choice of x ∈ X

x∗X(ω̃) ∈ arg max
x∈X

Eω
[
u(ω, ω̃) · 1{ω≥x}

]

• Principal chooses X ∈ X ∗ to maximize

max
X∈X ∗

EF̃
[
Eω
[
v(ω, ω̃) · 1{ω≥x∗X(ω̃)}

]]
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Equivalence to Constrained Delegation

• For a given X ∈ X ∗, and a given cutoff x ∈ X, Agent obtains

Eω
[
u(ω, ω̃) · 1{ω≥x}

]
=
∫ 1

x
u(ω, ω̃)dF (ω) := Ũ(ω̃, x).

• Principal obtains

Eω
[
v(ω, ω̃) · 1{ω≥x}

]
=
∫ 1

x
v(ω, ω̃)dF (ω) := Ṽ (ω̃, x).

The problem (Ũ , Ṽ , F̃ ) is a constrained delegation problem.
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Equivalence: Summary

• The mapping µ between experiments and delegations sets

µ(π) = π
(
[0,1]

)

• (U, V, F ) ∼µ (Ũ , Ṽ , F̃ ) if

∂

∂ω̃
U(ω, ω̃) · f(ω) = −

∂

∂ω
Ũ(ω̃, ω) · f̃(ω)

and
∂

∂ω̃
V (ω, ω̃) · f(ω) = −

∂

∂ω
Ṽ (ω̃, ω) · f̃(ω)

for all (ω, ω̃) ∈ [0,1]2, with the initial condition

V (ω,0) = Ṽ (ω,1) = 0.
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Linear Persuasion Problem

• If Principal’s payoff depends only on the expected state as in

Gentzkow-Kamenica (2016), then wlog, we can set

U(ω, y) = −(ω − y)2 and V (ω, y) = V (y).

• For such (U, V, F ), we can construct equivalent (Ũ , Ṽ , F̃ ) that

satisfy Amador-Bagwell (2013) assumptions.

• We adapt their techniques to study constrained delegation.
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Linear Persuasion Problem

Consider (U, V, F ) where

U ′2(ω, y) = α(y)ω + α0(y),

V ′2(ω, y) = cγ(y)ω + γ0(y),

such that U ′′22 < 0, U ′′12 > 0, and U ′2(ω, ω) = 0.

Further, assume

γ(y) > 0 and c ≥ 0.

Finally, w.l.o.g., we assume that F is uniform.
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Separable constrained delegation.

Consider (Ũ , Ṽ , F̃ ) where

Ũ ′2(ω̃, y) = D(ω̃)− β(y)

Ṽ ′2(ω̃, y) = C(ω̃)−Aβ(y),

such that

Ũ ′′22 < 0, Ũ ′′12 > 0, and Ũ ′2(ω̃, ω̃) = 0.

(The problem of Amador and Bagwell, ECMA 2013)
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Characterization of Interval Disclosure

Denote Ṽ (ω̃) := Ṽ (ω̃, ω̃).

Denote mL = E[ω̃|ω̃ ≤ ω̃L] and mH = E[ω̃|ω̃ > ω̃H]

Proposition An optimal monotone experiment is interval disclo-

sure with cutoffs ω̃L < ω̃H iff

Ṽ (ω̃) is convex for all ω̃ ∈ (ω̃L, ω̃H)

Ṽ (ω̃) ≤ Ṽ (mL) + Ṽ ′(mL)(ω̃ −mL) for all ω̃ ∈ [0, ω̃L] w/eqty at ω̃L
Ṽ (ω̃) ≤ V (mH) + V ′(mH)(ω̃ −mH) for all ω̃ ∈ [ω̃H ,1] w/eqty at ω̃H

• Can Principal do better with non-monotone experiments un-

der these conditions? — No
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Conclusion

• The monotone persuasion problem is equivalent to the con-

strained delegation problem

• Both are equivalent to a monotone persuasion problem with

an informed Agent who chooses between two actions

• Known techniques for the delegation problem can be adapted

and applied to solve the monotone persuasion problem
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THANK YOU!
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