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The setting

An evaluator makes a decision (accept/reject) based on an
experiment conducted by a researcher.

Two possible states, θH and θL. Noise ε, with CDF F .

The outcome is x(θ, ε). Is the evaluator better o¤ with a random
experiment or a selected experiment? Good question!

You can think of the evaluator as minimizing a weighed average of
Type I and Type II errors.

The experiment is a location experiment: x(θ, ε) = θ + ε.

The term �location experiment� is used only in the abstract.
It is left to the reader to decide how important or realistic this
assumption is.
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Di¤erent types of experiment

Example: Assume ε is uniformly distributed on [0, 1].

With a location experiment (x = θ + ε) there is no �global� ranking
between the random and the selected experiment; the evaluator�s
preferences matter.

But with a scale experiment (x = θε), it can be shown that the
selected experiment is globally better than the random experiment.

Conclusion: The nature of the experiment matters.

If the empirical relevance of � log(� log F ) is to be a selling point,
then it is important to argue that location experiments are realistic.

NB: In the scale experiment, log x = log θ + log ε, where the
distribution of log ε satis�es � log(� log F ) convex.
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Location experiments and dispersion

A main insight of the paper: To rank the random and the selected
experiments, it is important to compare the dispersion of the
corresponding distribution functions, F and G = F k .

Location experiments are �special�:

The distribution of x in state θ is H(x jθ) = F (x � θ).

Knife-edge: H(x jθ) is �equally disperse� regardless of θ if and only if
the experiment is a location experiment (the CDF shifts horizontally).

In other words dispersion is, conveniently, �held constant�across
states. Note that � log(� logH(x jθ)) has the same curvature for all θ.

Thus, we only have to worry about relative dispersion of F and G .
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Location experiments and dispersion

Proposition 2: The selected experiment is globally preferred to the
random experiment if and only if � log(� log F ) is convex.

Can a weaker version be obtained, e.g.:

The selected experiment is globally preferred if (i) � log(� logH(x jθ))
is convex for all θ and (ii) H(x jθH ) is more disperse than H(x jθL)??

Or (equivalently?) if (i) � log(� log F ) is convex and (ii) the
transformation from x(θL, ε) to x(θH , ε) satis�es some condition.
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Peculiarities of the dispersive order

It matters greatly if the support is bounded or not. An explicit
discussion of this fact would be welcome.

Recall that F and G have the same support.

However, two CDFs with the same bounded support can never be
ranked in terms of the dispersive order.
Direct implication: There can be no global ranking of the random and
selected experiments if the support of ε is bounded.

I assume � log(� log F ) can be neither convex nor concave when the
support is bounded?

Hence, the relevance of � log(� log F ) convex relies on (i) location
experiments and (ii) unbounded support.
Explicitly state and justify/discuss both assumptions.
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Peculiarities of the dispersive order

Another way to think about this: With bounded support, it is possible
to eliminate Type I or Type II errors; corner solutions.
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x = 0.5: Zero Type II errors (β = 0). By FOSD blue has fewer Type I
errors than red.
x = 1.5: Zero Type 1 errors (α = 0). By FOSD, red has fewer Type II
errors than blue.
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Peculiarities of the dispersive order

Corner solutions are perhaps implicitly ignored at times?

When moving from random to selected experiments, with F symmetric:
�by symmetry the loss associated to the increase in false positives
(higher α) is exactly o¤set by the bene�t associated to the reduction in
false negatives (lower β).�

This assumes an interior solution because α, β are the same for the
random and the selected experiments at the corners.

Conclusion: The theory is �neater�when ε is unbounded both below
and above (ensures α, β interior).
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