Discussion of "Strategic Sample Selection"

Di Tillio, Ottaviani, and Sørensen

Montreal, October 2017

René Kirkegaard (University of Guelph)

Strategic Sample Selection

Montreal, October 2017 1 / 9

Strategic Sample Selection

• An evaluator makes a decision (accept/reject) based on an *experiment* conducted by a researcher.

- An evaluator makes a decision (accept/reject) based on an *experiment* conducted by a researcher.
- Two possible states, θ_H and θ_L . Noise ε , with CDF F.

- An evaluator makes a decision (accept/reject) based on an experiment conducted by a researcher.
- Two possible states, θ_H and θ_L . Noise ε , with CDF F.
- The outcome is x(θ, ε). Is the evaluator better off with a random experiment or a selected experiment? Good question!

- An evaluator makes a decision (accept/reject) based on an experiment conducted by a researcher.
- Two possible states, θ_H and θ_L . Noise ε , with CDF F.
- The outcome is x(θ, ε). Is the evaluator better off with a random experiment or a selected experiment? Good question!
- You can think of the evaluator as minimizing a weighed average of Type I and Type II errors.

- An evaluator makes a decision (accept/reject) based on an experiment conducted by a researcher.
- Two possible states, θ_H and θ_L . Noise ε , with CDF F.
- The outcome is x(θ, ε). Is the evaluator better off with a random experiment or a selected experiment? Good question!
- You can think of the evaluator as minimizing a weighed average of Type I and Type II errors.
- The experiment is a *location experiment*: $x(\theta, \varepsilon) = \theta + \varepsilon$.

- An evaluator makes a decision (accept/reject) based on an experiment conducted by a researcher.
- Two possible states, θ_H and θ_L . Noise ε , with CDF F.
- The outcome is x(θ, ε). Is the evaluator better off with a random experiment or a selected experiment? Good question!
- You can think of the evaluator as minimizing a weighed average of Type I and Type II errors.
- The experiment is a *location experiment*: $x(\theta, \varepsilon) = \theta + \varepsilon$.
 - The term "location experiment" is used only in the abstract.

- An evaluator makes a decision (accept/reject) based on an experiment conducted by a researcher.
- Two possible states, θ_H and θ_L . Noise ε , with CDF F.
- The outcome is x(θ, ε). Is the evaluator better off with a random experiment or a selected experiment? Good question!
- You can think of the evaluator as minimizing a weighed average of Type I and Type II errors.
- The experiment is a *location experiment*: $x(\theta, \varepsilon) = \theta + \varepsilon$.
 - The term "location experiment" is used only in the abstract.
 - It is left to the reader to decide how important or realistic this assumption is.

• Example: Assume ε is uniformly distributed on [0, 1].

- Example: Assume ε is uniformly distributed on [0, 1].
- With a location experiment $(x = \theta + \varepsilon)$ there is no "global" ranking between the random and the selected experiment; the evaluator's preferences matter.

- Example: Assume ε is uniformly distributed on [0, 1].
- With a location experiment $(x = \theta + \varepsilon)$ there is no "global" ranking between the random and the selected experiment; the evaluator's preferences matter.
- But with a scale experiment $(x = \theta \varepsilon)$, it can be shown that the selected experiment is globally better than the random experiment.

- Example: Assume ε is uniformly distributed on [0, 1].
- With a location experiment (x = θ + ε) there is no "global" ranking between the random and the selected experiment; the evaluator's preferences matter.
- But with a scale experiment $(x = \theta \varepsilon)$, it can be shown that the selected experiment is globally better than the random experiment.
- Conclusion: The nature of the experiment matters.

- Example: Assume ε is uniformly distributed on [0, 1].
- With a location experiment (x = θ + ε) there is no "global" ranking between the random and the selected experiment; the evaluator's preferences matter.
- But with a scale experiment $(x = \theta \varepsilon)$, it can be shown that the selected experiment is globally better than the random experiment.
- Conclusion: The nature of the experiment matters.
 - If the empirical relevance of log(- log F) is to be a selling point, then it is important to argue that location experiments are realistic.

- Example: Assume ε is uniformly distributed on [0, 1].
- With a location experiment $(x = \theta + \varepsilon)$ there is no "global" ranking between the random and the selected experiment; the evaluator's preferences matter.
- But with a scale experiment $(x = \theta \varepsilon)$, it can be shown that the selected experiment is globally better than the random experiment.
- Conclusion: The nature of the experiment matters.
 - If the empirical relevance of log(- log F) is to be a selling point, then it is important to argue that location experiments are realistic.
- NB: In the scale experiment, log x = log θ + log ε, where the distribution of log ε satisfies log(-log F) convex.

• A main insight of the paper: To rank the random and the selected experiments, it is important to compare the *dispersion* of the corresponding distribution functions, F and $G = F^k$.

- A main insight of the paper: To rank the random and the selected experiments, it is important to compare the *dispersion* of the corresponding distribution functions, F and $G = F^k$.
- Location experiments are "special":

- A main insight of the paper: To rank the random and the selected experiments, it is important to compare the *dispersion* of the corresponding distribution functions, F and $G = F^k$.
- Location experiments are "special":
 - The distribution of x in state θ is $H(x|\theta) = F(x \theta)$.

- A main insight of the paper: To rank the random and the selected experiments, it is important to compare the *dispersion* of the corresponding distribution functions, F and $G = F^k$.
- Location experiments are "special":
 - The distribution of x in state θ is $H(x|\theta) = F(x \theta)$.
 - Knife-edge: $H(x|\theta)$ is "equally disperse" regardless of θ if and only if the experiment is a location experiment (the CDF shifts horizontally).

- A main insight of the paper: To rank the random and the selected experiments, it is important to compare the *dispersion* of the corresponding distribution functions, F and $G = F^k$.
- Location experiments are "special":
 - The distribution of x in state θ is $H(x|\theta) = F(x \theta)$.
 - Knife-edge: H(x|θ) is "equally disperse" regardless of θ if and only if the experiment is a location experiment (the CDF shifts horizontally).
 - In other words dispersion is, conveniently, "held constant" across states. Note that - log(- log H(x|θ)) has the same curvature for all θ.

- A main insight of the paper: To rank the random and the selected experiments, it is important to compare the *dispersion* of the corresponding distribution functions, F and $G = F^k$.
- Location experiments are "special":
 - The distribution of x in state θ is $H(x|\theta) = F(x \theta)$.
 - Knife-edge: $H(x|\theta)$ is "equally disperse" regardless of θ if and only if the experiment is a location experiment (the CDF shifts horizontally).
 - In other words dispersion is, conveniently, "held constant" across states. Note that - log(- log H(x|θ)) has the same curvature for all θ.
 - Thus, we only have to worry about relative dispersion of F and G.

 Proposition 2: The selected experiment is globally preferred to the random experiment if and only if - log(- log F) is convex.

- Proposition 2: The selected experiment is globally preferred to the random experiment if and only if - log(- log F) is convex.
- Can a weaker version be obtained, e.g.:

- Proposition 2: The selected experiment is globally preferred to the random experiment if and only if - log(- log F) is convex.
- Can a weaker version be obtained, e.g.:
 - The selected experiment is globally preferred if $(i) \log(-\log H(x|\theta))$ is convex for all θ and $(ii) H(x|\theta_H)$ is more disperse than $H(x|\theta_L)$??

- Proposition 2: The selected experiment is globally preferred to the random experiment if and only if - log(- log F) is convex.
- Can a weaker version be obtained, e.g.:
 - The selected experiment is globally preferred if $(i) \log(-\log H(x|\theta))$ is convex for all θ and $(ii) H(x|\theta_H)$ is more disperse than $H(x|\theta_L)$??
 - Or (equivalently?) if (i) log(-log F) is convex and (ii) the transformation from x(θ_L, ε) to x(θ_H, ε) satisfies some condition.

• It matters greatly if the support is bounded or not. An explicit discussion of this fact would be welcome.

- It matters greatly if the support is bounded or not. An explicit discussion of this fact would be welcome.
- Recall that F and G have the same support.

- It matters greatly if the support is bounded or not. An explicit discussion of this fact would be welcome.
- Recall that F and G have the same support.
 - However, two CDFs with the same **bounded** support can **never** be ranked in terms of the dispersive order.

- It matters greatly if the support is bounded or not. An explicit discussion of this fact would be welcome.
- Recall that F and G have the same support.
 - However, two CDFs with the same **bounded** support can **never** be ranked in terms of the dispersive order.
 - Direct implication: There can be no global ranking of the random and selected experiments if the support of ε is bounded.

- It matters greatly if the support is bounded or not. An explicit discussion of this fact would be welcome.
- Recall that F and G have the same support.
 - However, two CDFs with the same **bounded** support can **never** be ranked in terms of the dispersive order.
 - Direct implication: There can be no global ranking of the random and selected experiments if the support of ε is bounded.
- I assume log(- log F) can be neither convex nor concave when the support is bounded?

- It matters greatly if the support is bounded or not. An explicit discussion of this fact would be welcome.
- Recall that F and G have the same support.
 - However, two CDFs with the same **bounded** support can **never** be ranked in terms of the dispersive order.
 - Direct implication: There can be no global ranking of the random and selected experiments if the support of ε is bounded.
- I assume log(- log F) can be neither convex nor concave when the support is bounded?
 - Hence, the relevance of $-\log(-\log F)$ convex relies on (*i*) location experiments and (*ii*) unbounded support.

- It matters greatly if the support is bounded or not. An explicit discussion of this fact would be welcome.
- Recall that F and G have the same support.
 - However, two CDFs with the same **bounded** support can **never** be ranked in terms of the dispersive order.
 - Direct implication: There can be no global ranking of the random and selected experiments if the support of ε is bounded.
- I assume log(- log F) can be neither convex nor concave when the support is bounded?
 - Hence, the relevance of $-\log(-\log F)$ convex relies on (*i*) location experiments and (*ii*) unbounded support.
 - Explicitly state and justify/discuss both assumptions.

• Another way to think about this: With bounded support, it is possible to *eliminate* Type I or Type II errors; corner solutions.

 Another way to think about this: With bounded support, it is possible to *eliminate* Type I or Type II errors; corner solutions.

• x = 0.5: Zero Type II errors ($\beta = 0$). By FOSD blue has fewer Type I errors than red.

• Another way to think about this: With bounded support, it is possible to *eliminate* Type I or Type II errors; corner solutions.

- x = 0.5: Zero Type II errors ($\beta = 0$). By FOSD blue has fewer Type I errors than red.
- x = 1.5: Zero Type 1 errors ($\alpha = 0$). By FOSD, red has fewer Type II errors than blue.

René Kirkegaard (University of Guelph)

• When moving from random to selected experiments, with F symmetric: "by symmetry the loss associated to the increase in false positives (higher α) is exactly offset by the benefit associated to the reduction in false negatives (lower β)."

- When moving from random to selected experiments, with F symmetric: "by symmetry the loss associated to the increase in false positives (higher α) is exactly offset by the benefit associated to the reduction in false negatives (lower β)."
- This assumes an interior solution because α, β are the same for the random and the selected experiments at the corners.

- When moving from random to selected experiments, with F symmetric: "by symmetry the loss associated to the increase in false positives (higher α) is exactly offset by the benefit associated to the reduction in false negatives (lower β)."
- This assumes an interior solution because α, β are the same for the random and the selected experiments at the corners.
- Conclusion: The theory is "neater" when ε is unbounded both below and above (ensures α , β interior).