Contagion in Complex Financial Networks: Which Network Structure is the Most Stable? CIRANO 2017

Abduraimova, K. ^{1,2} Nahai-Williamson, P. ²

¹Imperial College Business School

²Bank of England*

September, 29, 2017

^{*}Any views expressed are solely those of the authors and so cannot be taken to represent those of the Bank of England.

Outline

Motivation

Literature

3 Methodology and Data

- Solvency Distress Contagion Model
- Networks Generation

Preliminary Results

5 Next Steps

6 Appendix

The recent financial crisis has revealed:

- 'to safeguard against systemic risk, the financial system needs to be managed as a system' (Haldane, 2009)
- limited knowledge of financial network structure
- importance of understanding the relationship between network structure and financial contagion

Project contributions:

- study of relationship between contagion risk and
 - network topology
 - shock type
 - capital adequacy

- liquidity
- network size
- exposures size, etc.
- 2 measures for assessing/monitoring systemic risk

Theoretical studies: connectedness and diversification impact

Funding runs

 Complete networks allow for liquidity risk sharing and are more resilient to contagion than incomplete ones

Allen & Gale (2000): but for sufficiently large shocks the connections might become contagion channels

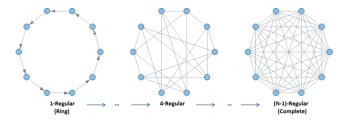
Freixas, Parigi & Rochet (2000): but the risk sharing leads to bad market discipline

- Default cascades
 - robust-yet-fragile: Gai & Kapadia (2010)
 - non-monotonic effects: Cont et al. (2010), Elliot et al. (2014), Acemoglu et al. (2015a)
 - clustered networks: Acemoglu et al. (2015a), Elliot & Hazel (2016)

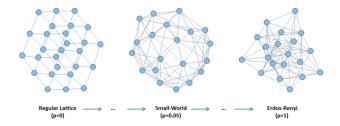
- *maximum entropy* reconstruction approach underestimates the contagion risk
- non-monotonic effect of higher connectivity depending on shock size, capital levels, etc
 - simulated exposures matrix (ME) Upper and Worms (2004) -Germany, Wells (2004) & Elsinger et al. (2006) - Austria, and Degryse & Nguyen (2007) - Belgium;
 - actual bilateral exposures Furfine (2003) US, Mistrulli (2007) -Italy, Cont et al. (2010) - Brazil, van Lelyveld & Veld (2012) and Craig & von Peter (2014) - Netherlands, Langfield, et al. (2014) - UK.

• Our paper:

- network resilience to solvency contagion channel
- wide range of network topologies considered
- comprehensive statistical review of UK banking network


Solvency Contagion model by Bardoscia, Barucca, Brinley Codd & Hill (2017)

- Creditors revalue exposures as counterparties default probabilities change
- Structural credit risk model in a complex network
- Valuation function: Black-Cox first passage model


k-Regular Networks

- edges are directed and have same weight
- every node has equal degree k (out and in)
- ring and complete graphs are extreme cases

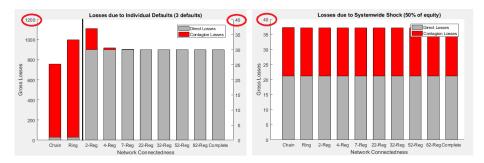
Small-World Networks

- generation: start with a regular lattice and assign probability p of rewiring the edges
- edges are directed and have same weight
- degree distribution becomes more bell-shaped as p increases
- lattice and random ER graphs are extreme cases

8 / 18

- both degree and link weights are heterogeneous
- density as in the UK interbank network (9% on average)
- marginals (TA and TL) are taken from actual UK data

• Scale-Free and Core-Periphery: robust to random shocks but fragile to targeted attacks

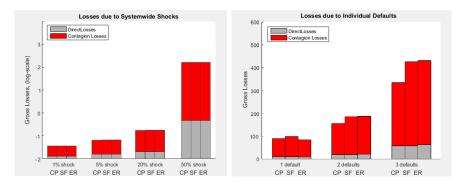

[†]generated following Gandy & Veraart (2015) Kumush Abduraimova (ICBS, BoE) Financial Contagion and Network Structure

Methodology Networks Generation: Initial Conditions

- 10 N = 100 banks with RWA = 100
- 2 CET1 requirement = 4.5% of RWA
- 3 Capital levels
 - CET1 = 12.3% of RWA (FSR, July 2016)
 - actual capital ratios (as robustness check)
- Exposures size:
 - homogeneous with fixed total exposures (10% of TRWA)
 - also, 15% of CET1 and heterogeneous cases
- Shocks:
 - system-wide shock of 1%, 5%, 20%, and 50% of buffer
 - individual defaults of 1, 2, and 3 banks.
- 500 simulations for each network

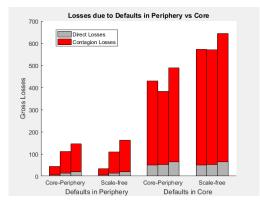
Preliminary Results: Impact of Connectedness

Regular networks with fixed total exposures



higher connectedness increases resilience to individual defaults

- stronger impact at lower connectedness levels
- no impact in case of equal shocks (exposure size reduces proportionally to #exposures)
- exponential increase for growing networks (15% exposures)

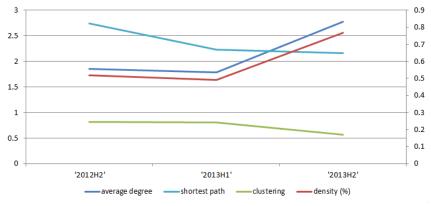

Preliminary Results: Impact of Heterogeneity

Heterogeneous Networks: core-periphery, scale-free, erdos-renyi

- System-wide shocks: similar for 3 networks (negligible for small shocks)
- Individual defaults: magnitudes larger than system-wide shocks and than homogeneous networks
- Scale-Free is the most susceptible

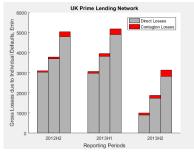
Preliminary Results: Impact of Heterogeneity Defaults in the Core

- average across shock realizations where at least 1 core bank defaults
- as expected, more prone to the shocks in the core
- larger losses (especially, amplification) for SF than CP:


Regression results (dependent variable - Gross Losses, shock = 1 default)

Network	Cluste- ring	Assorta- tivity	N of Defaults	Contagion dist (out)	Contagion dist (in)	Contagion dist (out)	•	Degree (out)	Degree (in)	Close- ness	Between- ness	KNN
	(network level)					(node level)						
Core Periphery	-7.47***	1.500**	34.61***	-49.83**	64.65***	-0.204	1.783**	-0.135	1.006**	-22.58	0.021	0.121
Scale-Free	-2.678**	-1.697***	38.43***	90.51	-69.088	-0.582**	0.657	0.747**	-0.28	-142.3*	0.017**	-0.030
Erdos-Renyi	3.564*	0.318	32.93***	-1.970	9.416	0.017	-0.648	0.141	0.885	-42.26	-0.048	-0.229

- node-level characteristics do not seem to explain contagion losses
- contagion distance highly significant at network level
- #defaults \uparrow losses $\uparrow \Rightarrow$ not due to 1 large bank default
- very small and insignificant coefficients for density and average degree (by construction)


Preliminary Results: UK interbank Network RRP Interbank Exposures Data

- exposures to top 20 bank counterparties + UK6 (if not in 20)
- around 180 banks, highly granular, semi-annual (2011, H2 2013, H2)
- incomplete network

UK Prime Lending Network

Preliminary Results: UK interbank Network

Contagion losses due to individual defaults.

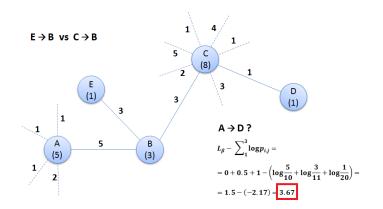
Columns within each time period correspond to 1, 2 and 3 defaults, respectively.

- Negligible direct losses and no contagion in case of small system-wide shock
- Magnitudes (10³) larger direct and contagion losses in case of default of individual banks
 - significantly decreased over time though

Are more connections good/bad?

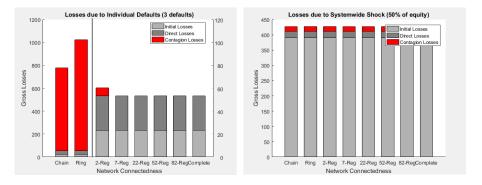
- GOOD for fixed total exposures (individual defaults)
- NO IMPACT for fixed total exposures (system-wide shocks)
- BAD for 'growing' network
- Ø Heterogeneous heavy-tailed degree networks:
 - robust to small equal shocks
 - prone to individual defaults (especially in the core)
- onde-level characteristics do not seem to have relationship with contagion losses to the whole network, while
- Inetwork-level measures tend to explain those losses

- Reverse stress testing
- Different connectedness levels for heterogeneous degree networks
- Relationship between solvency contagion losses and other contagion & systemic risk measures
- Network structure before shock and after final round of contagion


Definition: Contagion distance $d_{cont}(u, v)$ from v to u minimizes the path distance composed by the length $L_{\beta}(\gamma_{u,v})$ and maximized log path probability along the path $\gamma_{u,v}$, i.e.,

$$d_{cont}(u,v) := \min_{\gamma_{uv}} \left[L_{\beta}(\gamma_{uv}) - \left(\sum_{(u_i,u_{i-1}) \in E_{\gamma}} \log p_{u_i,u_{i-1}} \right) \right]$$
(1)

where $L_{\beta}(\gamma_{uv})$ is sum of link costs along the path and link cost of each step is the exposure size mapped to [0,1] using β -distribution.


- short $d_{eff}
 ightarrow$ close to others ightarrow likely to infect ightarrow strongly contagious
- long $d_{eff}
 ightarrow$ distant ightarrow not likely to propagate ightarrow weakly contagious

Contagion Distance Cnt'd

- contagiousness of node based on its network properties (importance, positioning, interconnectedness), not damage
- increases with #steps on the path (and link costs of those steps)
- decreases with connectivity of nodes on the path

Some more plots. Impact of Connectedness

