Commonality in analyst coverage and information diffusion

Phua Jing Wen Kenny Nanyang Business School, Nanyang Technological University

30th September 2017 6th CIRANO-Sam M. Walton College of Business Workshop

Overview

Inter-firm linkages often guide economic interactions among firms. Acemoglu et al. (2012); Ahern (2013); Ahern and Harford (2014)

This paper explores information-based linkages based on analyst coverage.

Analysts produce information that is relevant across firms.* Degeorge et al. (2013); Muslu et al. (2014); Gomes et al. (2016)

Perhaps, analysts can facilitate information transfers in an inter-firm network.

Using the friendship paradox, I show that firms' returns are led by their neighbors'.

Network structure of market can generate information diffusion.

* Veldkamp, 2006; Degeorge et al., 2013; Muslu et al., 2014; Gomes et al., 2016

Network construction

Two stocks are linked if they are covered jointly by at least 1 analyst.

Network construction (cont'd)

Average network statistics

Number of firms	4,302
Largest component	4,280
Avg. shortest path	3
Diameter	8
Transitivity	39.3%
Avg. degree	69

Information production

There are strategic complementarities in information production for a stock and its neighbors.

A stylized model*

For stock *i*, neighbor *j* in a network, preference θ , quadratic cost *c*, and strategic multiplier *a*, an analyst produces information x_i and derives utility of:

$$\theta_i x_i + a \cdot x_i \sum_{j \in N_i} x_j - \frac{c x_i^2}{2}$$

Imbalances in information production

Information production for a stock increases with its degree.

Systematic imbalance in information production between firms and neighbors.

Main hypothesis

If we randomly select firms, and randomly select their neighbors:

Neighbor returns should lead firm returns, on average.

Data

I/B/E/S, Compustat, CRSP

analyst forecast data*, financial variables, stock returns

Python library – Networkx, Gephi network analysis and visualization

Filters

stock price > \$5

- 20 snapshots of network over 1995 to 2015
- 4301 firms annually on average
- average stock degree is 69
- neighbors' degrees are 26.6% higher than firms'

Portfolio strategy

Given known network at beginning of week w:

Portfolio strategy (cont'd)

Key findings

Long-short strategy yields 94 b.p. per week

robust to standard risk adjustments

Small neighbors' returns can lead firms' returns

not rehash of classical big-leads-small effect

Not completely driven by industry effects

• compatible but distinct from industry momentum

Stronger when imbalances are more acute

• consistent with theoretical mechanism

Short-lived and does not exhibit reversals

• diffusion of fundamentally-important information

Single-sorts

Neighbor returns	Weekly returns	Degree ratio	Number of firms	Firm size (\$'mil)	Firm B/M	(t-4, t-1) returns
Low	0.205	1.209	587	4520.1	1.777	0.854
N2	0.262	1.291	588	4846.6	1.933	0.967
N3	0.276	1.309	588	4936.5	1.902	0.999
N4	0.283	1.304	588	4898.8	1.875	1.025
High	0.299	1.225	589	4592.2	1.770	1.060
High minus Low	0.094***					
Fisher χ^2 (x 10 ³)	6.234					

Baseline: single-sort on neighbors' returns

Placebo: single-sort on pseudo-neighbors' returns

Neighbor returns	Weekly returns	Degree ratio	Number of firms	Firm size (\$'mil)	Firm B/M	(t-4, t-1) returns
Low	0.266	0.847	584	4751.5	1.835	0.985
N2	0.266	0.965	585	4750.8	1.836	0.983
N3	0.265	0.996	585	4749.3	1.835	0.984
N4	0.265	0.986	585	4750.0	1.834	0.984
High	0.265	0.873	585	4751.0	1.836	0.985
High minus Low	-0.001					
Fisher χ^2 (x 10 ³)	0.958					

Portfolio alphas

Portfolio alphas						
	3-factor		4-fac	tor	6-factor	
Portfolio	Alpha (%)	R ²	Alpha (%)	R ²	Alpha (%)	R ²
Low neighbor returns	-0.037	0.941	-0.005	0.953	0.009	0.951
	(1.640)		(0.350)		(0.482)	
N2	0.026	0.963	0.049***	0.970	0.044***	0.970
	(1.647)		(3.398)		(3.041)	
N3	0.045***	0.965	0.065***	0.972	0.055***	0.971
	(3.038)		(4.797)		(4.119)	
N4	0.053***	0.966	0.073***	0.972	0.065***	0.971
	(3.578)		(5.300)		(4.758)	
High neighbor returns	0.068***	0.953	0.092***	0.960	0.100***	0.959
	(3.622)		(5.205)		(5.647)	
High minus Low	0.106***		0.097***		0.090***	
	(3.548)		(3.262)		(3.005)	
GRS test statistic	5.594		9.730		9.206	

Information leadership of small neighbors

Double-sort o	n neighbor	returns and	l neighbor	sizes
Bousic Joil 0				JILCJ

	Neighbor size quintiles						
	Small	S2	S3	S4	Big		
Neighbor returns		1	Mean return	S			
Low	0.222	0.208	0.200	0.191	0.206		
N2	0.259	0.255	0.259	0.264	0.263		
N3	0.281	0.274	0.274	0.277	0.277		
N4	0.286	0.277	0.281	0.286	0.288		
High	0.295	0.312	0.304	0.299	0.276		
High minus Low	0.073***	0.105***	0.105***	0.108***	0.070***		
Fisher χ^2 (x 10 ³)	4.192	5.992	4.728	4.071	1.877		

Even small neighbors can have information leadership.*

Control for industry effects

Method 1

- Constrain algorithm to pick neighbors NOT IN firms' industries
- Global sort

Method 2

- pick neighbors IN firms' industries.
- Sort within industries
 Global sort
- Average L-S returns • across industries

Method 3

- Constrain algorithm to Constrain algorithm to pick neighbors IN firms' industries.

 - Industry-adjusted returns

Control for industry effects (cont'd)

Single-sort with controls for industry effects								
	2-digit SIC industries			FF-49 industries				
Method	(1)	(2)	(3)	(1)	(2)	(3)		
Neighbor returns	Mean returns							
Low	0.225	0.230	-0.195	0.225	0.233	-0.191		
N2	0.264	0.259	-0.130	0.265	0.258	-0.129		
N3	0.274	0.269	-0.117	0.273	0.267	-0.119		
N4	0.279	0.277	-0.115	0.283	0.277	-0.115		
High	0.285	0.287	-0.104	0.287	0.291	-0.100		
High minus Low	0.060***	0.057***	0.091***	0.062***	0.058***	0.092***		
Fisher χ^2 (x 10 ³)	0.782	1.233	2.128	0.841	1.134	1.901		

Industry effects account up to 40% of baseline strategy profitability.

Vector autoregressions

Firm size quintile	Dep. var	Firm returns _{t-1}	Neighbor returns _{t-1}	Granger causality χ ² (x 10 ³)	Cross- equation χ^2 (x 10 ³)
Small	Firm returns _t	-0.104***	0.179***	3.63***	3.34***
	Neighbor returns _t	-0.130***	0.086***	1.77***	
				_	
Q2	Firm returns _t	-0.263***	0.278***	3.10***	3.90***
	Neighbor returns _t	-0.247***	0.227***	3.19***	
Q3	Firm returns _t	-0.176***	0.153***	1.11***	1.64***
	Neighbor returns _t	-0.107	0.081	0.91	
Q4	Firm returns _t	0.047	-0.102	0.89	0.52
	Neighbor returns _t	0.100	-0.138***	0.91	
Big	Firm returns _t	0.173***	-0.239***	2.62***	0.08
	Neighbor returns _t	0.243***	-0.267***	2.29***	

Vector autoregressions of weekly returns (1 lag)

Information leadership is stronger among smaller firms.

Mechanism

Effect should be stronger when imbalances are more acute.

Revision rate ratio $_{i,j,y} = \frac{\text{# revisions per analyst }_{j,y-1}}{\text{# revisions per analyst }_{i,y-1}}$

Mechanism (cont'd)

	imple sorts on inm	ple sorts on infinisize, revision rate ratio, and neighbor returns							
				Firm	n size				
		Sm	nall	Mee	dium	Big			
	Revision rate ratio	Low	High	Low	High	Low	High		
				Mean	returns				
Neighbor	Low	0.230	0.214	0.247	0.214	0.244	0.215		
returns	Medium	0.284	0.284	0.288	0.268	0.268	0.250		
	High	0.320	0.321	0.309	0.288	0.261	0.247		
	High – Low	0.090***	0.107***	0.062***	0.074***	0.017	0.033***		
	Fisher χ^2 (x 10 ³)	0.921	1.460	0.557	0.712	0.145	0.245		

Triple sorts on firm size, revision rate ratio, and neighbor returns

The returns of the biggest firms can be led when imbalances are very acute.

Performance trends

Non-reversals suggest the diffusion of fundamentally-important information.

Conclusions

The network structure of the equity market can generate information diffusion.

- 1. Under strategic complementarities in information production, neighbors have information leadership over firms.
- 2. Even small neighbors have information leadership.
- 3. Findings are not completely driven by industry effects.
- 4. Information under diffusion is likely to be fundamentally-relevant.